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Abstract
The aim of this paper is to prove continuity of the Riesz potential operator Rs : E �→ CH
in optimal couple E, CH, for the supercritical case on unbounded domain, where E is a
rearrangement invariant function space and CH is the generalized Hölder-Zygmund
space generated by a function space H. We also construct optimal domain and target
quasi-norms for Rs on unbounded domain.
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1 Introduction
Let Lloc be the space of all locally integrable functions f on Rn with lebesgue measure. The
Riesz potential operator Rs,  < s < n, n ≥  is defined by

Rsf (x) =
∫

Rn
f (y)|x – y|s–n dy,

where f ∈ Lloc.
It is well known that in the supercritical case s > n/p,

Rs : Lp �→ Cs–n/p, s > n/p, (.)

where Cγ ; γ >  is Hölder-Zygmund space [], but in the critical case s = n/p the function
Rsf may not be even continuous. We prove the optimal one is obtained if in above Lp is
replaced by Marcinkiewicz space Lp,∞. In this paper we prove similar optimal results, when
Lp,∞ is replaced by more general rearrangement invariant spaces E. More precisely, we
consider quasi-norm rearrangment invariant space E, consisting of functions f ∈ L + L∞,
such that the quasi-norm ‖f ‖E = ρ(f ∗) < ∞, where ρE a monotone quasi-norm, defined on
M+ with values in [,∞]. Here M+ is the cone of all locally integrable functions g ≥  on
(,∞) with Lebesgue measure.

Monotonicity means that g ≤ g implies ρE(g) ≤ ρE(g). We suppose that L ∩ L∞ ↪→
E ↪→ L + L∞, which means continuous embeddings. Here f ∗ is the decreasing rearrange-
ment of f , given by

f ∗(t) = inf
{
λ >  : μf (λ) ≤ t

}
, t > ,
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and μf is the distribution function of f , defined by

μf (λ) =
∣∣{x ∈ Rn :

∣∣f (x)
∣∣ > λ

}∣∣
n,

| · |n denoting the Lebesgue n-measure.
Finally,

f ∗∗(t) :=

t

∫ t


f ∗(s) ds.

Let αE , βE be the Boyd indices of E (see [–]). For example, if E = Lp, then αE = βE = /p
and the condition  > s/n ≥ /p means p > , βE < . For these reasons we suppose that for
the general E,  < αE = βE ≤ , and the case s/n > αE is called supercritical, while the case
s/n = αE is called critical. In the supercritical case the function Rsf ; f ∈ E is always contin-
uous [], while the spaces in the critical case αE = s/n, can be divided into two subclasses:
in the first subclass the functions Rsf may not be continuous; then the target space is re-
arrangement invariant, while these functions in the second subclass are continuous and
the target space is the generalized Hölder-Zygmund space CH [, ]. The separating space
for these two subclasses is given by the Lorentz space Ln/s,. The continuity of fractional
maximal operator and Bessel potential operator is discussed in [] and []. Gogatishvili
and Ovchinnikov in [] discussed the optimal Sobolev’s embeddings. The problem of the
optimal target rearrangement invariant spaces for potential type operators is considered
in [] by using Lp-capacities. The problem of mapping properties of the Riesz potential
in optimal couples of rearrangement invariant spaces is treated in [–]. The charac-
terization of the continuous embedding of the generalized Bessel potential spaces into
Hölder-Zygmund spaces CH, when H is a weighted Lebesgue space, is given in []. For
further literature and reviews, we refer the reader to [–].

The main goal of this paper is to prove continuity of the Riesz potential operator RS :
E �→ CH in an optimal couple E, CH , for the supercritical case on unbounded domain.
The same problem was considered in [] for bounded domain. The critical and subcritical
case for the continuity of Riesz potential operator was considered in [] and [].

The plane of this paper is as follows. In Section  we provide some basic definitions and
known results. In Section  we characterize the continuity of the Riesz potential operator
RS : E �→ CH . The optimal quasi-norms are constructed in Section .

2 Preliminaries
We use the notations a � a or a � a for nonnegative functions or functionals to mean
that the quotient a/a is bounded; also, a ≈ a means that a � a and a � a. We say
that a is equivalent to a if a ≈ a.

There is an equivalent quasi-norm ρp ≈ ρE that satisfies the triangle inequality ρ
p
p (g +

g) ≤ ρ
p
p (g) + ρ

p
p (g) for some p ∈ (, ] that depends only on the space E (see []). We

say that the quasi-norm ρE satisfies Minkowski’s inequality if for the equivalent quasi-
norm ρp,

ρp
p

(∑
gj

)
�

∑
ρp

p (gj), gj ∈ M+.

Usually we apply this inequality to functions g ∈ M+ with some kind of monotonicity.
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Recall the definition of the lower and upper Boyd indices αE and βE . Let gu(t) = g(t/u)
where g ∈ M+, and let

hE(u) = sup

{
ρE(g∗

u)
ρE(g∗)

: g ∈ M+
}

, u > ,

be the dilation function generated by ρE . Suppose that it is finite. Then

αE := sup
<t<

log hE(t)
log t

and βE := inf
<t<∞

log hE(t)
log t

.

The function hE is sub-multiplicative, increasing, hE() = , hE(u)hE(/u) ≥  hence  ≤
αE ≤ βE . We suppose that  < αE = βE ≤  and g∗∗(∞) = .

If βE <  we have by using Minkowski’s inequality that ρE(f ∗) ≈ ρE(f ∗∗).
Recall that w ∈ M+ is slowly varying function, if for every ε > , the function tεw(t) is

equivalent to increasing function and t–εw(t) is equivalent to a decreasing function.
In order to introduce the Hölder-Zygmund class of spaces, we denote the modulus of

continuity of order k by

ωk(t, f ) = sup
|h|≤t

sup
x∈Rn

∣∣
k
hf (x)

∣∣,

where 
k
hf are the usual iterated differences of f . When k =  we simply write ω(t, f ). Let

H be a quasi-normed space of locally integrable functions on the interval (, ) with the
Lebesgue measure, continuously embedded in L∞(, ) and ‖g‖H = ρH (|g|), where ρH is a
monotone quasi-norm on M+ which satisfies Minkowski’s inequality. The dilation func-
tion hH , generated by ρH , is defined as follows:

hH (u) = sup

{
ρH (χ(,)g̃u)
ρH(χ(,)g)

: g ∈ Ma

}
,

where (g̃u)(t) = g(ut) if ut < , (g̃u)(t) = g() if ut ≥ , and

Ma :=
{

g ∈ M+ : t–a/ng(t) is decreasing g is increasing and g(+) = 
}

.

The choice of the space Ma is motivated by the fact that ωn(t/n, f ), is equivalent to a func-
tion g ∈ Ma.

The function hH (u) is sub-multiplicative and u–hH (u) is decreasing and

hH () = , hH (u)hH (/u) ≥ .

Suppose that hH is finite. Then the Boyd indices of H are well defined,

αH = sup
<t<

log hH (t)
log t

and βH = inf
<t<∞

log hH (t)
log t

,

and they satisfy αH ≤ βH ≤ . In the following, we suppose that  ≤ αH = βH < .
For example, let H = Lq

∗(b(t)t–γ /n). Here  ≤ γ < a/n and b is a slowly varying func-
tion, and Lq

∗(w), or simply Lq
∗ if w = , is the weighted Lebesgue space with a quasi-norm

‖g‖Lq∗(w) = ρw,q(|g|). It turns out that αH = βH = γ /n.



Kang et al. Journal of Inequalities and Applications  (2015) 2015:398 Page 4 of 15

Definition . Let j = , , . . . and let Cj stand for the space of all functions f , defined on
Rn, that have bounded and uniformly continuous derivatives up to the order j, normed by
‖f ‖Cj = sup

∑j
l= |Plf (x)|, where Plf (x) =

∑
|ν|=l Dν f (x).

• If j/n < αH < (j + )/n for j ≥  or  ≤ αH < /n for j = , then CH is formed by all
functions f in Cj having a finite quasi-norm

‖f ‖CH = ‖f ‖Cj + ρH
(
tj/nω

(
t/n, Pjf

))
.

• If αH = (j + )/n, then CH consists of all functions f in Cj having a finite quasi-norm

‖f ‖CH = ‖f ‖Cj + ρH
(
tj/nω(t/n, Pjf

))
.

In particular, if H = L∞(t–γ /n), γ > , then CH coincides with the usual Hölder-Zygmund
space Cγ (see []). Also, if H = L∞, then CH = C. We need the following result about the
equivalent quasi-norm in the generalized Hölder-Zygmund spaces.

Theorem . (equivalence) ([]) Let ρH be a monotone quasi-norm, satisfying Minkowski’s
inequality and let  ≤ αH = βH < m/n. If ρH (tα) < ∞ for α > αH , then, for all such m,

‖f ‖CH ≈ ‖f ‖C + ρH
(
ωm(

t/n, f
))

. (.)

Let N be the class of all admissible couples, it will be convenient to use the following
definitions.

Definition . (admissible couple) We say that the couple (ρE ,ρH) ∈ N is admissible for
the Riesz potential if

∥∥Rsf
∥∥
CH � ρE

(
f ∗), f ∈ E. (.)

Then the couple E, H is called admissible. Moreover, ρE (E) is called domain quasi-norm
(domain space), and ρH (H) is called the target quasi-norm (target space).

To prove our result we introduce the classes of the domain and target quasi-norms,
where the optimality is investigated.

Let Nd consist of all domain quasi-norms ρE that are monotone, satisfy Minkowski’s
inequality,  < αE = βE < , and the condition

∫ ∞


ts/n–g(t) dt � ρE(g), g ↓, (.)

∫ ∞
 g∗(u) du � ρE(g∗) and ρE(χ(,)t–α) < ∞ if α < αE .
Let Nt consist of all target quasi-norms ρH that are monotone, satisfy Minkowski’s in-

equality,  ≤ αH = βH < , ρH(tα) < ∞ if α > αH and supχ(,)g(t) � ρG(χ(,)g), g ∈ Mn.
Finally

N :=
{

(ρE,ρH ) ∈ Nd × Nt : ρH
(
χ(,)ts/ng(t)

)
� ρE(g), g ↓}

.
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Definition . (optimal target quasi-norm) Given the domain quasi-norm ρE , the op-
timal target quasi-norm, denoted by ρH(E), is the strongest target quasi-norm, such that
(ρE,ρH(E)) ∈ N and

ρH (χ(,)g) � ρH(E)(χ(,)g), g ∈ Mn, (.)

for any target quasi-norm ρH such that the couple (ρE,ρH ) ∈ N is admissible. Since
CH(E) ↪→ CH , we call CH(E) the optimal Hölder-Zygmund space. For shortness, the space
H(E) is also called an optimal target space.

Definition . (optimal domain quasi-norm) Given the target quasi-norm ρH ∈ Nt , the
optimal domain quasi-norm, denoted by ρE(H), is the weakest domain quasi-norm, such
that (ρE(H),ρH ) ∈ N and

ρE(H)
(
f ∗) � ρE

(
f ∗), f ∈ E,

for any domain quasi-norm ρE ∈ Nd such that the couple (ρE,ρH ) ∈ N is admissible. The
space E(H) is called an optimal domain space.

Definition . (optimal couple) The admissible couple (ρE,ρH ) ∈ N is said to be optimal
if both ρE and ρH are optimal. Then the couple E, H is called optimal.

3 Admissible couples
Here we give a characterization of all admissible couples (ρE,ρH ) ∈ N . By using the fol-
lowing Hardy-Littlewood inequality [], p., we get the well-known mapping property:

Rs : (ts/n) �→ L∞.

Now from (.) it follows that

Rs : E → L∞. (.)

We have the following basic estimate.

Theorem . If f ∈ E, then

χ(,)ω
m(

t/n, Rsf
)
� S

(
f ∗)(t), s < m, (.)

where

Sg(t) :=
∫ t


us/n–g(u) du, g ∈ M+. (.)

Proof The proof of this result follows from Theorem . in []. �

Now we discuss the mapping property Rs : E �→ C.
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Theorem . A necessary and sufficient condition for the mapping

Rs : E �→ C

is the following:

∫ ∞


ts/n–g(t) dt � ρE(g), g ↓ . (.)

Proof We already know that

Rs : E → L∞. (.)

To prove that Rs(E) ⊂ C, it remains to show that Rsf is a uniformly continuous function.
It is enough to show that

lim
t→

ω
(
t


n , Rsf

)
=  if f ∈ E.

By using Marchaud’s inequality,

ω
(
t


n , Rsf

)
� t


n

∫ ∞

t
u

–
n ωm(

u

n , Rsf

)du
u

,

L’Hôpital’s rule, and (.), we get

lim
t→

ω
(
t


n , Rsf

)
� lim

t→

t –
n ωm(t 

n , Rsf )
t –

n

= lim
t→

ωm(
t


n , Rsf

)

� lim
t→

Sf ∗(t) = .

Hence

Rsf ∈ C.

It remains to prove that if Rs : E → C, then (.) is true for αE ≤ s/n. To this end we choose
a test function h as follows. Let g ∈ Dn–s, ρE(g) < ∞ and

h(x) =
∫ ∞


g(u)ϕ

(
xu–/n)du

u
, (.)

where ϕ ≥  is a smooth function with compact support in (–c–/n, c–/n) such that if ψ =
Rsϕ, then ψ() > . To see that this is possible, we calculate ψ(). Since

ψ(x) =
∫

Rn
ϕ(y)|x – y|s–n dy,

we have for appropriate d > ,

ψ() ≥
∫

|y|≤d
ϕ(y)|y|s–n dy �

∫
|y|≤d

ϕ(y) dy > .
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Note also that, for large c > ,

ψ(x) � |x|s–n, u > c. (.)

Indeed

ψ(x) =
∫

|y|≤d
ϕ(y)|x – y|s–n dy � |x|s–n

∫
|y|≤d

ϕ(y) dy

since

|x – y| ≥ |x| – |y| ≥ |x| – d ≥ |x|/, if c > d.

We also have

Rs(ϕ(
xu–/n)) = us/nψ

(
xu–/n).

Hence

f (x) := Rsh(x) =
∫ ∞


us/ng(u)ψ

(
xu–/n)du

u
.

We may take

h(x) �
∫ ∞

c|x|n
g(u) du/u,

hence, for appropriate c > ,

h∗(t) �
∫ ∞

t
g(u) du/u.

Applying Minkowski’s inequality and using αE > , we have

ρE
(
h∗)� ρE(g). (.)

Given that

sup
∣∣Rsh(x)

∣∣� ‖h‖E ,

we have in particular

∣∣Rsh()
∣∣� ‖h‖E ,

whence

Rsh() = ψ()
∫ ∞


us/n–g(u) du � ‖h‖E � ρE(g).

Thus (.) is proved. �
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In the following theorem, we characterize the admission couple. Note that this result
cannot obtained directly from Theorem . [], because here we consider an unbounded
domain.

Theorem . The couple (ρE,ρH ) ∈ N is admissible if and only if

ρH (χ(,)Sg) � ρE(g), g ↓ . (.)

Proof Let (.) be true. By using (.) and (.), we get

ρH
(
χ(,)ω

m(
t


n , Rsf

))
� ρH

(
χ(,)S

(
f ∗))� ρE

(
f ∗), m > s.

Therefore
∥∥Rsf

∥∥
CH ≈ ∥∥Rsf

∥∥
C + ρH

(
ωm(

t

n , Rsf

))

� ρE
(
f ∗) +

∥∥Rsf
∥∥

C

� ρE
(
f ∗) + ρE

(
f ∗)

� ρE
(
f ∗).

Thus ρE , ρH is an admissible couple.
For the converse, we have to prove that (.) implies (.). To this end we choose a test

function in the form f (x) = Rsh(x), where h is given by (.). We have

f (x) = Rsh(x) =
∫ ∞


us/ng(u)ψ

(
xu– 

n
)du

u
.

To estimate the modulus of continuity of f from below, we split f as follows:

f = ft + ft ,

where

ft(x) =
∫ t


u

s
n g(u)ψ

(
xu– 

n
)du

u
, ft(x) =

∫ ∞

t
u

s
n g(u)ψ

(
xu– 

n
)du

u
.

First we prove that, for some large C > ,

ωm(
Ct


n , ft

) ≥ ψ()


Sg(t).

To this aim consider


m
h ft(x) =

∫ t


u

s
n g(u)
m

h ψ
(
xu– 

n
)du

u
.

Also consider


m
h ψ

(
xu– 

n
)

=
m∑

k=

(–)m–k
(

m
k

)
ψ

(
(x + hk)u– 

n
)

= (–)mψ() +
m∑

k=

(–)m–k
(

m
k

)
ψ

(
hku– 

n
)

at x = .
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If |h| = Ct 
n , then for u < t, k ≥ , |h|ku– 

n ≥ Ck ≥ C, hence by (.) and for large C > ,

ψ
(
hku– 

n
)
� Cs–n, u < t, k ≥ .

Therefore,


m
h ft() =

∫ t


u

s
n g(u)

[
(–)mψ() +

m∑
k=

(–)m–kψ
(
hku– 

n
)]du

u

and, for large C > ,

∣∣
m
h ft()

∣∣ =

∣∣∣∣∣(–)mψ()
∫ t


u

s
n g(u)

du
u

+
m∑

k=

(–)m–k
∫ t


u

s
n g(u)ψ

(
hku– 

n
)du

u

∣∣∣∣∣

≥ ψ()
∫ t


u

s
n g(u)

du
u

– cm

∫ t


u

s
n g(u)ψ

(
hku– 

n
)du

u

≥ ψ()
∫ t


u

s
n g(u)

du
u

– Cs–ncm

∫ t


u

s
n g(u)

du
u

=
ψ()



∫ t


u

s
n g(u)

du
u

.

Hence

ωm(
Ct


n , ft

) ≥ ψ()


Sg(t)

or

ωm(
t


n , ft

) ≈ ωm(
Ct


n , ft

) ≥ ψ()


Sg(t). (.)

Further,

ωm(
t


n , f

) ≥ ωm(
t


n , ft

)
– ωm(

t

n , ft

)
.

Now we estimate the modulus of continuity of the second function from above. To this
aim, by using the formula [], p., we get

∣∣
m
h ft(x)

∣∣ =
∣∣∣∣
∫ ∞

–∞
Mm(u)

∑
|v|=m

m!
v!

Dvft(x + uh)hv du
∣∣∣∣

�
∫ ∞

–∞
Mm(u)

∑
|v|=m

m!
v!

∣∣Dvft(x + uh)
∣∣|h||v| du.

Hence

sup
x

∣∣
m
h ft(x)

∣∣� |h|m
∫ ∞

–∞
Mm(u) sup

∣∣Pmft(x + uh)
∣∣du � |h|m∥∥Pmft

∥∥
L∞ .

Therefore

sup
x

∣∣
m
h ft(x)

∣∣� |h|m∥∥Pmft
∥∥

L∞ . (.)
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To simplify (.), consider

∣∣Pmft
∣∣ =

∣∣∣∣
∫ ∞

t
u

s
n g(u)Pm(

ψ
(
xu– 

n
))du

u

∣∣∣∣,

sup
x

∣∣Pmft
∣∣�

∫ ∞

t
u

s
n g(u)u– m

n
∥∥Pmψ

∥∥
L∞

du
u

,

∥∥Pmft
∥∥

L∞ �
∫ ∞

t
u

s–m
n g(u)

du
u

. (.)

So (.) becomes

ωm(
t


n , ft

)
� t

m
n

∫ ∞

t
u

s–m
n g(u)

du
u

(.)

whence for m > s, we have

ωm(
t


n , ft

)
�

∫ ∞

t
t

s
n g(u)

du
u

.

Hence

χ(,)Sg(t) � χ(,)ω
m(

t

n , f

)
+ χ(,)

∫ ∞

t
t

s
n g(u)

du
u

, (.)

ρH (χ(,)Sg) � ρH
(
χ(,)ω

m(
t/n, f

))
+ ρH

(
χ(,)

∫ ∞

t
t

s
n g(u)

du
u

)
.

Now since (ρE ,ρH) ∈ N , we get

ρH (χ(,)Sg) � ρE(g). �

4 Optimal quasi-norms
Here we give a characterization of the optimal domain and optimal target quasi-norms.

4.1 Optimal domain quasi-norms
We can construct an optimal domain quasi-norm ρE(H) by Theorem . as follows.

Definition . (construction of an optimal domain quasi-norm) For a given target quasi-
norm ρH ∈ Nt we set

ρE(H)(g) := ρH(χ(,)Sg), g ∈ M+. (.)

Note that

αE(H) = βE(H) = s/n – αH .

Theorem . The couple ρE(H), ρH is admissible and the domain quasi-norm ρE(H) is op-
timal. Moreover, the target quasi-norm ρH is also optimal and

ρE(H)(g) ≈ ρH
(
χ(,)ts/ng

)
, g ↓ if αH > . (.)
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Proof The couple ρE(H), ρH is admissible since

ρH (χ(,)Sg) = ρE(H)(g).

Moreover, ρE(H) is optimal, since for any admissible couple (ρE ,ρH) ∈ N we have

ρH (χ(,)Sg) � ρE (g).

Therefore,

ρE(H)
(
f ∗) = ρH

(
χ(,)S

(
f ∗)) � ρE

(
f ∗), f ∈ E.

To prove that ρH is also optimal, let (ρE(H),ρH ) ∈ N be an arbitrary admissible couple.
Then

ρH (χ(,)Sg) � ρE(H)(g).

We have to show that

ρH (χ(,)g) � ρH (χ(,)g), g ∈ Mn. (.)

Since g ∈ Mn is a quasi-concave, it is equivalent to a concave one, hence

g(t) ≈
∫ t


h(u) du, h ↓ .

Let

h(t) = t–s/nh(t).

Therefore

ρH (χ(,)g) � ρH (χ(,)Sh) � ρE(H)(h) � ρH(χ(,)Sh) � ρH(χ(,)g).

Thus (.) is proved.
To prove the equivalence (.), first we prove that

ρE(H)(g) � ρH
(
χ(,)t

s
n g

)
, g ↓ if αH > .

To this aim we consider

ρH (χ(,)Sg) = ρH

(
χ(,)

∫ t


u

s
n g(u)

du
u

)

= ρH

(
χ(,)

∫ 


(tv)

s
n g(tv)

dv
v

)
.

Applying Minkowski’s inequality and using αH > , we have

ρE(H)(g) = ρH(χ(,)Sg) � ρH
(
χ(,)t

s
n g(t)

)
.
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For the reverse we use

t
s
n g(t) � Sg(t), g ↓,

whence

ρH
(
χ(,)t

s
n g(t)

)
� ρH

(
χ(,)Sg(t)

)
= ρE(H)(g). �

Example . Consider the space H = L∗(v), where v is slowly varying and v > . Then
ρH ∈ Nt and by Theorem ., we can construct an optimal domain E(H), where

ρE(H)(g) = ρH(Sg) =
∫ 


v(t)Sg(t) dt/t

=
∫ 


v(t)

∫ t


u

s
n g(u)

du
u

dt
t

=
∫ 


w(u)g(u)

du
u

,

and w(u) =
∫ 

u v(t) dt
t . Hence E(H) = (ts/nw) and this couple is optimal. Also αE = βE = s/n.

Example . Let H = L∞(v), where v is slowly varying and v > . Then ρH ∈ Nt . Let

ρE(g) = sup v(t)
∫ t


us/ng∗(u) du/u.

Then by Theorem . this is an optimal domain quasi-norm and the couple ρE , ρH is
optimal. In particular, the couple (ts/n), C is optimal.

4.2 Optimal target quasi-norms
Definition . (construction of an optimal target quasi-norm) For a given domain quasi-
norm ρE ∈ Nd , we set

ρH(E)(χ(,)g) := inf
{
ρE(h) : χ(,)g ≤ Sh, h ↓}

, g ∈ M+. (.)

Note that

αH(E) = βH(E) = s/n – αE .

Theorem . The target quasi-norm ρH(E) ∈ Nt , the couple ρE , ρH(E) is admissible, and
the target quasi-norm is optimal.

Proof The couple ρE , ρH(E) is admissible since

ρH(E)(χ(,)Sh) ≤ ρE(h), h ↓ .

Now to prove that ρH(E) is optimal, we take any admissible couple ρE,ρH ∈ Nt . Then

ρH (χ(,)Sh) � ρE(h), h ↓ .



Kang et al. Journal of Inequalities and Applications  (2015) 2015:398 Page 13 of 15

Therefore, if g ≤ Sh, h ↓, then

ρH (χ(,)g) ≤ ρH (χ(,)Sh) � ρE(h),

whence, taking the infimum, we get

ρH (χ(,)g) � ρH(E)(χ(,)g).

Hence ρH(E) is optimal. �

Theorem . If αE < s/n, then

ρH(E)(χ(,)g) ≈ ρE
(
t–s/ng(t)

)
, g ∈ Mn.

Moreover, the couple ρE , ρH(E) is optimal.

Proof Consider

ρE
(
t–s/nSh(t)

)
= ρE

(
t–s/n

∫ t


us/nh(u)

du
u

)

= ρE

(∫ 


vs/nh(tv)

dv
v

)
, h ↓ .

Applying Minkowski’s inequality and using βE < s/n, we have

ρE
(
t–s/nSh(t)

)
� ρE(h), h ↓ .

If χ(,)g ≤ Sh, g ∈ Mn, then

ρE
(
t–s/ng(t)

)
� ρE

(
ts/nSh(t)

)
� ρE(h)

and, taking the infimum, we get

ρE
(
t–s/ng(t)

)
� ρH(E)(χ(,)g).

On the other hand, for g ∈ Mn, let h(t) = t–s/ng(t)χ(,)(t). Then h ↓ and

Sh(t) =
∫ t


us/nh(u)

du
u

=
∫ t


us/nu–s/ng(u)

du
u

≥ g(t).

Therefore

ρH(E)(χ(,)g) � ρE(h) = ρE
(
t–s/ng(t)

)
.
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Now we show that the domain quasi-norm ρE is also optimal. We have

ρE(H(E))
(
f ∗) = ρH(E)

(
χ(,)Sf ∗)

≈ ρE
(
t–s/nSf ∗(t)

)

= ρE

(
t–s/n

∫ t


us/nf ∗(u)

du
u

)

� ρE
(
f ∗), f ∈ E.

Therefore

ρE(H(E))
(
f ∗) � ρE

(
f ∗); f ∈ E. �

Example . Consider the space E = q(tαw(t)),  < q ≤ ∞, where w is slowly varying
and s/n > α > . Then βE = αE = α and ρE ∈ Nd . Hence by Theorem .,

ρH(E)(g) ≈ ρE
(
t–s/ng(t)

)
=

(∫ 



(
t–s/nw(t)g∗(t)

)q dt
t

)/q

,

which implies that H(E) = Lq
∗(t–s/nw).

Moreover, the couple ρE , ρH (E) is optimal. In particular, the couple

Lp,∞,Cs–n/p, s > n/p,  < p < ∞,

is optimal.
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