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Abstract
In this paper, we obtain Poincaré-type inequalities for the composite operator acting
on differential forms and establish the Lp, Lipschitz, and BMO norm estimates. We also
give the weighted versions of the comparison theorems for the Lp, Lipschitz, and BMO
norms.
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1 Introduction
Differential forms are a generalization of the traditional functions. In recent years, differ-
ential forms have been widely used in physics systems, differential geometry, and PDEs.
In this paper, we are interested in the properties of the composite operator acting on dif-
ferential forms. Operator theory plays a critical role in investigating the properties of the
solutions to partial differential equations. Many questions in partial differential equations
involve estimating various norms of operators. The operator theory for functions has been
very well developed in recent years. However, compared to the function cases, the opera-
tor theory for differential forms is more complicated, so we need some advanced methods
to deal with operators. This paper contributes to derive the properties of the composite
operator M�

s ◦D◦G on differential forms, where M�
s is the general sharp maximal operator

defined by

M
�
s (u) = M

�
s u(x) = sup

r>

(


|B(x,r)|
∫

B(x,r)

∣∣u(t) – uB(x,r)

∣∣s dt
)/s

for any u(x) ∈ Lp(M,�l), where  ≤ s ≤ p. Here D is the Dirac operator proposed by the
physicist Dirac. According to the needs of practical problems, different versions of the
Dirac operators have been defined. The Dirac operator we are studying is the Hodge-Dirac
operator defined by D = d + d∗. Here d is the exterior differential operator on differential
forms, and d∗ is the formal adjoint operator of d. See [] for more details. The operator G
is the well-known Green’s operator satisfying the equation

�G(u) = u – H(u),

where H is the harmonic projection operator. See [–] for more results and applications
for the sharp maximal operator, the Dirac operator, and Green’s operator.
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In the following, M stands for a bounded convex domain in R
n, n ≥ . The Lebesgue

measure of a measurable set E ⊆ R
n is denoted by |E|. We use B and σB to denote con-

centric balls such that diam(σB) = σdiam(B). By �l = �l(Rn) we denote the linear space
of all l-vectors spanned by the exterior products eI = ei ∧ ei ∧ · · · ∧ eil for all ordered
l-tuples I = (i, i, . . . , il),  ≤ i < i < · · · < il ≤ n. The l-form u(x) = �IuI(x) dxI is a linear
combination of the standard basis dxI = dxi ∧ · · · ∧ dxil for all ordered l-tuples I . If the
coefficient uI is differential, we say that u is a differential l-form. By D′(M,�l) we denote
the space of all differential l-forms. Similarly, we write Ls(M,�l) for the l-form u(x) on M
with uI satisfying

∫
M |uI |s < ∞.

A differential l-form u ∈ D′(M,�l) is called a closed form if du =  in M. From the
Poincaré lemma ddu =  we know that du is a closed form. The module of a differential
form u is given by |u| = ∗(u ∧ ∗u) ∈ D′(M,�).

A very important operator, the homotopy operator T : C∞(M,�l) → C∞(M,�l–), is
defined by

Tu =
∫

M
ϕ(y)Kyu dy

for differential forms u, where ϕ ∈ C∞
 (M) is normalized by

∫
M ϕ(y) dy = , and Ky is the

liner operator defined by

(Kyu)(x; ξ, . . . , ξl–) =
∫ 


tl–u(tx + y – ty; x – y; ξ, . . . , ξl–) dt.

For the homotopy operator T , we have the following decomposition, which will be used
repeatedly in this paper:

u = d(Tu) + T(du)

for any differential form u. A closed form uM is defined by uM = d(Tu); in particular, when
u is a -form, uM = |M|– ∫

M u(y) dy. In regard to Green’s operator, we need the following
results in []:

‖dd∗G(u)‖s,B + ‖d∗dG(u)‖s,B + ‖dG(u)‖s,B + ‖d∗G(u)‖s,B + ‖G(u)‖s,B ≤ C(s)‖u‖s,B,
‖d∗G(u)‖s,B = ‖Gd∗(u)‖s,B, and ‖dG(u)‖s,B = ‖Gd(u)‖s,B

for any differential form u in M and  < s < ∞.

2 Poincaré-type inequality
In this section, we give a Poincaré-type inequality for the composite operator M�

s ◦ D ◦ G,
which will be used in the estimates for the Lp, Lipschitz, and BMO norms. We will need
the following lemmas.

The following estimate for the homotopy operator T appears in [].

Lemma . Let u ∈ Lt
loc, l = , , . . . , n,  < t < ∞, be a differential form in M, and T be the

homotopy operator defined on differential forms. Then there exists a constant C, indepen-
dent of u, such that

‖Tu‖t,M ≤ C|M|diam(M)‖u‖t,M.
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We will use the generalized Hölder inequality repeatedly.

Lemma . [] Let  < q < ∞,  < p < ∞, and s– = q– + p–. If f and g are measurable
functions on R

n, then

‖fg‖s,M ≤ ‖f ‖q,M‖g‖p,M

for any M ⊂R
n.

The following lemma appears in [].

Lemma . Let ϕ : [, +∞) be a strictly increasing convex function such that ϕ() = . If
u(x) ∈ D′(M,�l) satisfies ϕ(|u|) ∈ L(M,μ), then for any a > , we have

∫
M

ϕ

(
a

|u – uM|

)
dμ ≤

∫
M

ϕ
(
a|u|)dμ.

First, we establish the boundedness for the composite operator M�
s ◦ D ◦ G.

Lemma . Let u ∈ Lt(M,�l), l = , , . . . , n,  ≤ s < t < ∞, be a differential form in a do-
main M. Then, there exists a constant C, independent of u, such that

∥∥M�
s DG(u)

∥∥
t,B ≤ C|B|diam(B)‖u‖t,B.

Proof For a ball B in M, using Lemma . for any B(x,r) ⊂ B and the decomposition theo-
rem, we have

(


|B(x,r)|
∫

B(x,r)

∣∣DG(u) –
(
DG(u)

)
B(x,r)

∣∣s dt
)/s

= |B(x,r)|–/s∥∥DG(u) –
(
DG(u)

)
B(x,r)

∥∥
s,B(x,r)

= |B(x,r)|–/s∥∥TdDG(u)
∥∥

s,B(x,r)

≤ C|B(x,r)|–/s+/n∥∥dDG(u)
∥∥

s,B(x,r)

= C|B(x,r)|+/n–/s∥∥ddG(u) + dd∗G(u)
∥∥

s,B(x,r)

= C|B(x,r)|+/n–/s∥∥dd∗G(u)
∥∥

s,B(x,r)

≤ C|B(x,r)|+/n–/s‖u‖s,B(x,r) . ()

Since  + /n – /s > , taking the supremum over r, we get

sup
r>

((


|B(x,r)|
∫

B(x,r)

∣∣DG(u) –
(
DG(u)

)
B(x,r)

∣∣s dt
)/s)

≤ sup
r>

(
C|B(x,r)|+/n–/s‖u‖s,B(x,r)

)

≤ sup
r>

(
C|B|+/n–/s‖u‖s,B

)

= C|B|+/n–/s‖u‖s,B. ()
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Using the generalized Hölder inequality, we find

‖u‖s,B ≤ ‖u‖t,B‖‖ts/(t–s),B

= |B|(t–s)/ts‖u‖t,B. ()

Combining () and (), we obtain

∥∥M�
s DG(u)

∥∥
t,B ≤ ∥∥C|B|+/n–/s‖u‖s,B

∥∥
t,B

≤ ∥∥C|B|+/n–/s+(t–s)/ts‖u‖t,B
∥∥

t,B

= C|B|+/n–/t‖u‖t,B‖‖t,B

= C|B|+/n‖u‖t,B. ()

The proof of Lemma . is completed. �

Theorem . Let u ∈ Lt(M,�l), l = , , . . . , n,  ≤ s < t < ∞, be a differential form in a
domain M. Then,

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
t,B ≤ C|B|diam(B)‖u‖t,B,

where C is a constant independent of u.

Proof Choosing ϕ(t) = xt , a = , and ω(x) ≡  in Lemma ., we have

‖u – uB‖t,B ≤ C‖u‖t,B.

Replacing u by M
�
s DG(u) and using Lemma ., we get

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
t,B ≤ C

∥∥M�
s DG(u)

∥∥
t,B

≤ C|B|diam(B)‖u‖t,B. ()

The proof of Theorem . is completed. �

3 Lipschitz and BMO norm inequalities
In this section, we compare the Lp norm, Lipschitz norm, and BMO norm of the com-
posite operator M�

s ◦ D ◦ G applied to differential forms. Especially, when we estimate the
Lipschitz norm in terms of the BMO norm, we need the differential form to satisfy some
versions of harmonic equations. We first introduce some definitions.

We call an equation a nonhomogeneous A-harmonic equation if

d
A(x, du) = B(x, du), ()

where the operators A : M × �l(Rn) → �l(Rn) and B : M × �l(Rn) → �l–(Rn) satisfy

∣∣A(x, ξ )
∣∣ ≤ a|ξ |p–, A(x, ξ ) · ξ ≥ |ξ |p and

∣∣B(x, ξ )
∣∣ ≤ b|ξ |p–
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for almost all x ∈ M and all ξ ∈ �l(Rn). Here p >  is a constant related to equation ()
and a, b > . Now we give definitions of the BMO and Lipschitz norms. See [] for more
details.

For u ∈ L
loc(M,�l), l = , , . . . , n, we write u ∈ loc Lipk(M,�l),  ≤ k ≤ , if

‖u‖loc Lipk ,M = sup
σB⊂M

|B|–(n+k)/n‖u – uB‖,B < ∞

for some σ > .
For u ∈ L

loc(M,�l), l = , , . . . , n, we write u ∈ BMO(M,�l) if

‖u‖∗,M = sup
σB⊂M

|B|–‖u – uB‖,B < ∞

for some σ > . Similarly, we can define the weighted BMO norm and Lipschitz norm.
For u ∈ L

loc(M,�l, w), l = , , , . . . , n, we write u ∈ loc Lipk(M,�l, w),  ≤ k ≤ , if

‖u‖loc Lipk ,M,w = sup
σB⊂M

(
μ(B)

)–(n+k)/n‖u – uB‖,B,w < ∞

for some σ > , where w is a weight, and μ is the Radon measure defined by dμ = w(x) dx.
For u ∈ L

loc(M,�l, w), l = , , , . . . , n, we write u ∈ BMO(M,�l, w) if

‖u‖∗,M,w = sup
σB⊂M

(
μ(B)

)–‖u – uB‖,B,w < ∞

for some σ > , where w is a weight, and μ is the Radon measure defined by dμ = w(x) dx.
We also need the following inequality.

Lemma . [] Take ϕ be a strictly increasing convex function on [, +∞) such that
ϕ() = . If u(x) ∈ D′(M,�l) satisfies ϕ(|u|) ∈ L(M,μ) and for any constant c,

μ
{

x ∈ M : |u – c| > 
}

> ,

where μ is the Radon measure defined by dμ(x) = ω(x) dx with weight ω(x), then for any
a > , we have

∫
M

ϕ
(
a|u|)dμ ≤ C

∫
M

ϕ
(
a|u – uM|)dμ,

where C is a constant independent of u.

Now, we estimate the Lipschitz norm of M�
s ◦ D ◦ G in terms of the Lt-norm.

Theorem . Let u ∈ Lt(M,�l), l = , , . . . , n,  ≤ s < t < ∞, be a differential form in M.
Then, there exists a constant C, independent of u, such that

∥∥M�
s DG(u)

∥∥
loc Lipk ,M ≤ C‖u‖t,M,

where k is a constant with  ≤ k ≤ .
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Proof From Theorem . we obtain

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
t,B ≤ C|B|diam(B)‖u‖t,B

for all balls B with B ⊂ M. Using the Hölder inequality, we have

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B

≤
(∫

B

∣∣M�
s DG(u) –

(
M

�
s DG(u)

)
B

∣∣t dx
)/t(∫

B
t/(t–) dx

)(t–)/t

≤ |B|(t–)/t∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
t,B

= |B|–/t∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
t,B

≤ |B|–/tC|B|diam(B)‖u‖t,B

≤ C|B|–/t+/n‖u‖t,B. ()

From the definition of the Lipschitz norm and () it follows that

∥∥M�
s DG(u)

∥∥
loc Lipk ,M = sup

σB⊂M
|B|–(n+k)/n∥∥M�

s DG(u) –
(
M

�
s DG(u)

)
B

∥∥
,B

= sup
σB⊂M

|B|––k/n∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B

≤ sup
σB⊂M

|B|––k/nC|B|–/t+/n‖u‖t,B

= sup
σB⊂M

C|B|–k/n–/t+/n‖u‖t,B

≤ sup
σB⊂M

C|M|–k/n–/t+/n‖u‖t,B

≤ C sup
σB⊂M

‖u‖t,B

≤ C‖u‖t,M. ()

This ends the proof of Theorem .. �

From the definitions of the Lipschitz and BMO norms we can get a simple relationship.

Theorem . Let u ∈ Ls(M,�l), l = , , . . . , n,  ≤ s < ∞, be a differential form in M. Then,

∥∥M�
s DG(u)

∥∥∗,M ≤ C
∥∥M�

s DG(u)
∥∥

loc Lipk ,M,

where k is a constant with  ≤ k ≤ , and C is a constant independent of u.

Proof From the definition of the BMO norms we obtain

∥∥M�
s DG(u)

∥∥∗,M = sup
σB⊂M

|B|–∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B

= sup
σB⊂M

|B|k/n|B|–(n+k)/n∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B
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≤ sup
σB⊂M

|M|k/n|B|–(n+k)/n∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B

≤ |M|k/n sup
σB⊂M

|B|–(n+k)/n∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B

≤ C sup
σB⊂M

|B|–(n+k)/n∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B

≤ C
∥∥M�

s DG(u)
∥∥

loc Lipk ,M. ()

This ends the proof of Theorem .. �

Theorem . Let u ∈ Ls(M,�l), l = , , . . . , n,  < s < ∞, satisfy equation () in M and
suppose that μ{x ∈ M : |u – c| > } > . Then,

∥∥M�
s DG(u)

∥∥
loc Lipk ,M ≤ C‖u‖∗,M,

where k is a constant with  ≤ k ≤ , and C is a constant independent of u.

Proof From () we have

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B ≤ C|B|–/s+/n‖u‖s,B.

Using the reverse Hölder inequality and Lemma ., we get

‖u‖s,B ≤ C|B|(–s)/s‖u‖,σB ≤ C|B|(–s)/s∥∥u – (u)B
∥∥

,σB,

where σ > . So, we have

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B ≤ C|B|+/n∥∥u – (u)B

∥∥
,σB.

Letting σ ′ > σ , we have

∥∥M�
s DG(u)

∥∥
loc Lipk ,M = sup

σ ′B⊂M
|B|–(n+k)/n∥∥M�

s DG(u) –
(
M

�
s DG(u)

)
B

∥∥
,B

≤ sup
σ ′B⊂M

C|B|+/n–k/n|B|–∥∥u – (u)B
∥∥

,σB

≤ C sup
σ ′B⊂M

C|B|–∥∥u – (u)B
∥∥

,σB

≤ C‖u‖∗,M. ()

This ends the proof of Theorem .. �

By Theorem . and Theorem . we can easily estimate the BMO norm of the compos-
ite operator M�

s ◦ D ◦ G.

Corollary . Let u ∈ Lt(M,�l), l = , , . . . , n,  ≤ s < t < ∞, be a differential form in M.
Then,

∥∥M�
s DG(u)

∥∥∗,M ≤ C‖u‖t,M,

where C is a constant independent of u.
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4 The weighted norm inequalities
In this section, we consider the weighted situation. The weight function we select is
A(α,β ,γ , M)-weight, which contains the well-known Ar(M)-weight. We will use the
Radon measure to deal with the A(α,β ,γ , M)-weight in the proof.

Definition . [] We say that a measurable function w(x) defined on a subset M ⊂ R
n

satisfies the A(α,β ,γ , M)-condition for some positive constants α, β , γ if w(x) >  a.e. and

sup
B⊂M

(


|B|
∫

B
wα dx

)(


|B|
∫

B
w–β dx

)γ /β

< ∞.

Now, we give estimates for the weighted Lipschitz and BMO norms.

Theorem . Let u ∈ Lq(M,�l,μ), l = , , . . . , n,  ≤ s < q < ∞. Assume that the Radon
measure μ is defined by dμ = w(x) dx with w(x) ∈ A(α,β ,γ , M) for some α > , where  <
p < ∞, β = αq/(αp – p – αq), γ = αq/p, and αp – p – αq > . Then,

∥∥M�
s DG(u)

∥∥
loc Lipk ,M,w ≤ C‖u‖p,M,w,

where C is a constant independent of u.

Proof Using the generalized Hölder inequality with exponents satisfying /q = /αq +
(α – )/αq, we get

(∫
B

∣∣M�
s DG(u) –

(
M

�
s DG(u)

)
B

∣∣qw(x) dx
)/q

=
(∫

B

∣∣(M�
s DG(u) –

(
M

�
s DG(u)

)
B

)
w(x)/q∣∣q dx

)/q

≤
(∫

B

∣∣M�
s DG(u) –

(
M

�
s DG(u)

)
B

∣∣αq/(α–) dx
)(α–)/αq(∫

B

(
w(x)/q)αq dx

)/αq

≤ C|B|diam(B)
(∫

B
|u|αq/(α–) dx

)(α–)/αq(∫
B

w(x)α dx
)/αq

. ()

Using the generalized Hölder inequality with exponents satisfying (α – )/αq = /p + (αp –
p – αq)/αqp, we get

(∫
B
|u|αq/(α–) dx

)(α–)/αq

=
(∫

B

∣∣uw(x)/pw(x)–/p∣∣αq/(α–) dx
)(α–)/αq

≤
(∫

B

∣∣uw(x)/p∣∣p dx
)/p

×
(∫

B

(
w(x)–/p)αqp/(αp–p–αq) dx

)(αp–p–αq)/αqp

=
(∫

B
|u|pw(x) dx

)/p

×
(∫

B

(
w(x)–)αq/(αp–p–αq) dx

)(αp–p–αq)/αqp

. ()
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Since w(x) ∈ A(α, αq
(αp–p–αq) , αq

p , M), we have

(∫
B

w(x)α dx
)/αq(∫

B

(
w(x)–)αq/(αp–p–αq) dx

)(αp–p–αq)/αqp

= |B|/αq
((


|B|

(
w(x)

)α dx
)(


|B|

∫
B

(
w(x)–)αq/(αp–p–αq) dx

)(αp–p–αq)/p)/αq

≤ C. ()

Combining (), (), and (), we obtain

(∫
B

∣∣M�
s DG(u) –

(
M

�
s DG(u)

)
B

∣∣qw(x) dx
)/q

≤ C|B|diam(B)
(∫

B
|u|pw(x) dx

)/p

.

It follows that

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B,w

=
∫

B

∣∣M�
s DG(u) –

(
M

�
s DG(u)

)
B

∣∣dμ

≤
(∫

B

∣∣M�
s DG(u) –

(
M

�
s DG(u)

)
B

∣∣qw(x) dx
)/q(∫

B
q/(q–) dμ

)(q–)/q

=
(
μ(B)

)(q–)/q∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
q,B,w

≤ C
(
μ(B)

)(q–)/q|B|diam(B)‖u‖p,B,w. ()

Finally, we get

∥∥M�
s DG(u)

∥∥
loc Lipk ,M,w

= sup
σB⊂M

(
μ(B)

)–(n+k)/n∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
B

∥∥
,B,w

≤ C sup
σB⊂M

(
μ(B)

)–(n+k)/n+(q–)/q++/n‖u‖p,B,w

≤ C sup
σB⊂M

(
μ(M)

)–(n+k)/n+(q–)/q++/n‖u‖p,B,w

≤ C‖u‖p,M,w. ()

This ends the proof of Theorem .. �

Similarly to the proof of Theorem ., we have the following corollary.

Corollary . Let u ∈ Ls(M,�l,μ), l = , , . . . , n,  ≤ s < ∞, be a differential form in M, μ
and w(x) be the same as in Theorem .. Then,

∥∥M�
s DG(u)

∥∥∗,M,w ≤ C
∥∥M�

s DG(u)
∥∥

loc Lipk ,M,w,

where C is a constant independent of u.
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The following corollary can be obtained by combining Theorem . and Corollary ..

Corollary . Let u, μ, w(x), and p be as in Theorem .. Then,

∥∥M�
s DG(u)

∥∥∗,M,w ≤ C‖u‖p,M,w,

where C is a constant independent of u.

5 Applications
In this section, we apply our results to some differential forms.

Example . Let M = {(x, y, z) : x
 + x

 + · · · + x
n ≤ } ⊂ R

n and u(x, . . . , xn) be defined in
R

n by

u(x, . . . , xn) =
n∑

i=

e+x
 +···+x

n
xi

 + (x
 + · · · + x

n) dxi.

So u(x, . . . , xn) is a differential form in M. Now we estimate ‖M�
s DG(u) – (M�

s DG(u))M‖t,M .
By simple calculation we obtain

‖u‖t,M =
(∫

M
|u|t dx

)/t

≤
(∫

M

(
e+x

 +···+x
n
(
x

 + · · · + x
n
))t/ dx

)/t

≤
(∫

M

(
e)t/ dx

)/t

= e|M|/t .

Using Theorem ., we have

∥∥M�
s DG(u) –

(
M

�
s DG(u)

)
M

∥∥
t,� ≤ C|M|diam(M)e|M|/t

= eC
(

πn/

�( + n/)

)+/t

.

Example . Let u(x, . . . , xn) be defined in R
n by

u(x, . . . , xn) =
n∑

i=

√
 + x

 + · · · + x
n

dxi.

For a ball B ⊂ R
n with radius r, it is difficult to estimate the upper bound directly for

‖M�
s DG(u)‖loc Lipk ,B, but by Theorem . we have

∥∥M�
s DG(u)

∥∥
loc Lipk ,B ≤ C‖u‖t,B

≤ C
(∫

B

((
x

 + · · · + x
n
)
/
(
 + x

 + · · · + x
n
))t/ dx

)/t
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≤ C|B|/t

= C
(

πn/rn

�( + n/)

)/t

.

Similarly, we also obtain an upper bound for the BMO norm of the composite operator
M

�
s ◦ D ◦ G.
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