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Abstract
In this paper, the local Poincaré inequality and embedding inequality are proved first.
Then the global embedding inequality of composite operators for differential forms
on Lϕ-averaging domains with Lϕ-norm is established. Some examples are also given
to illustrate applications.
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1 Introduction
The purpose of this paper is to establish the global Sobolev embedding inequality with
Lϕ-norm for the composite operators applied to differential forms on Lϕ-averaging do-
mains. As extensions of functions, differential forms have been deeply studied and widely
applied in many fields, such as global analysis, nonlinear analysis, PDEs and differential
geometry; see [–] for more information. The Sobolev embedding inequality, as a fun-
damental tool in the Sobolev space of functions, has been very well studied in []. The
homotopy operator T , Dirac operator D, and Green’s operator G are three key operators
acting on differential forms and each of them has received much attention recently. How-
ever, the compositions of these operators are so complicated that the results concerned on
them are quite few. Even though they are very complicated, the study for the composite
operators has been increasing during the recent years; see [–, ]. In many cases, we
need to study or to use the compositions of operators. For example, we have to deal with
the composition of the Dirac operator D and Green’s operator G when we consider the
Poisson equation D(G(u)) = u – H(u), where D = � and H is the projection operator. In
, Ding and Liu initiated the study of the composition D ◦ G and obtained some basic
inequalities in []. During our recent investigation of the operator theory of differential
forms, we realized that for applying the decomposition theorem to D ◦ G, it is necessary
to deal with the composition T ◦ D ◦ G. Hence, we are motivated to study the composition
T ◦ D ◦ G. We obtain some basic estimates for T ◦ D ◦ G and establish the global Sobolev
embedding inequality with Lϕ-norm

∥
∥TDG(u) –

(

TDG(u)
)

E

∥
∥

W ,ϕ
E

≤ C‖u‖L,ϕ
E

,

where E is an Lϕ-averaging domain [].
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For convenience, we keep using the traditional notations and terminologies. Except
for special instructions, E ⊆ R

n is a bounded domain, and |E| denotes the Lebesgue
measure of E, n ≥ . Suppose that Br

x is a ball with a radius r, centered at x. For any
σ > , B ⊆ E and σB ⊆ E have the same center and satisfy diam (σB) = σ diam(B). Let
�l(Rn) be the space of all l-forms in R

n, which is expanded by the exterior product of
eB = ei ∧ ei ∧ · · · ∧ eil , where B = (i, . . . , il),  ≤ i < · · · < il ≤ n, l = , , . . . , n. C∞(�lE) is
the space of a smooth l-form on E. We use D′(E,�l) to denote the space of all differential
l-forms on E, that is, u(x) belongs to D′(E,�l) if and only if there exist some lth-differential
functions uB in E such that u(x) =

∑

B uB(x) dxB =
∑

uii···il (x) dxi ∧ dxi ∧ · · · ∧ dxil .
Lp(E,�l) is a Banach space with the norm equipped by ‖u‖p,E = (

∫

E |u(x)|p dx)/p, where
u(x) ∈ D′(E,�l) and every coefficient function uB ∈ Lp(E),  < p < ∞. In fact, u(x) on E
is the Schwarz distribution. If w(x) >  a.e. and w(x) ∈ L

loc(Rm), w(x) is called a weight.
Let dμ = w(x) dx, then Lp(E,�l, w) is a weighted Banach space with the norm expressed
by ‖u(x)‖p,E,w = (

∫

E |u(x)|pw(x) dx)/p. In this notation, the exterior derivative is denoted by
d and the Hodge codifferential operator is expressed by d�. Refer to [] for more details.
Moreover, the Dirac operator, designated by D, was initially set forth by Paul Dirac, and
we get its extensions, such as the Hodge-Dirac operator and the Euclidean Dirac opera-
tor. In this paper, the Dirac operator we choose is the Hodge-Dirac operator D = d∗ + d.
The Green’s operator is a bound self-adjoint linear operator. It is commonly used to de-
fine the Poisson equation for differential forms; here it is represented by G. The homotopy
operator T [], advanced by Iwaniec, is defined on C∞(D,�l) and constructed as follows:

Tu =
∫

D
ψ(y)Kyu dy,

where the linear operator Ky is denoted by (Kyu)(x; ξ, . . . , ξl–) =
∫ 

 tl–u(tx + y – ty; x –
y, ξ, . . . , ξl–) dt, and ψ from C∞

 (D) is normalized so that
∫

ψ(y) dy = .
From [], we obtain some good results. For any differential form u, the decomposition

below holds:

u = d(Tu) + T(du). (.)

Meanwhile, for u	 ∈ D′(	,�l), we define

u	 =

{

|	|– ∫

	
u(y) dy, l = ,

dT(u), l = , , . . . , n.
(.)

Then we know that, for any differential form u ∈ Ls
loc(B,�l), l = , . . . , n,  < s < ∞,

∥
∥∇(Tu)

∥
∥

s,B ≤ C|B|‖u‖s,B and ‖Tu‖s,B ≤ C|B|diam(B)‖u‖s,B (.)

holds for any ball B in 	.
Concerning the homotopy operator T , according to [], we can obtain a nice property.

That is, 	 ⊂R
n is the union of a collection of cube 	k , whose sides are parallel to the axes,

whose interiors are mutually disjoint, and whose diameters are approximately propor-
tional to their distances from F , where F is the complement of 	 in R

n. In detail, 	 ⊂ R
n

can be expressed as follows:
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() 	 =
⋃∞

k= 	k ;
() 	

i ∩ 	
j = ∅, if j �= i;

() there exist two constants C >  and C > , such that

C diam(	k) ≤ distance(	k , F) ≤ C diam(	k).

Based on this fact, the homotopy operator T can be extended to any domain 	 ⊂R
n. For

any x ∈ 	, x ∈ 	k for some k, let T	k be the homotopy operator defined on 	k , which is
the convex and bounded set. So, the following definition for T on any domain 	 holds:

T	 =
+∞
∑

k=

T	k χ	k ,

where χ	k is the characteristic function defined on 	.
Further, it is essential to recall some well-known results as regards the A-harmonic equa-

tion for differential forms, which appeared in []. To be more precise, we here consider the
non-homogeneous A-harmonic equation as follows:

d�A(x, du) = B(x, du), (.)

where A : E × ∧l(Rn) → ∧l(Rn) and B : E × ∧l(Rn) → ∧l–(Rn) satisfy the conditions

∣
∣A(x, ξ )

∣
∣ ≤ a|ξ |p–, A(x, ξ ) · ξ ≥ |ξ |p and

∣
∣B(x, ξ )

∣
∣ ≤ b|ξ |p–

for almost every x ∈ E and all ξ ∈ ∧l(Rn). Meanwhile, the parameters a, b >  and  < p <
∞ associated with (.) are constants and a fixed exponential, respectively. If B = , the
equation d�A(x, du) =  is called a homogeneous A-harmonic equation.

In addition, for proving the global embedding inequality on the Lϕ-averaging domain,
we also need the following definitions and notations.

A function ϕ(x) is called an Orlicz function, if ϕ(x) satisfies: () ϕ(x) is continuously
increasing; () ϕ() = . Furthermore, if the Orlicz function ϕ(x) is a convex function, ϕ(x)
is named a Young function. Therefore, based on this type of functions, the Orlicz norm
for differential forms can be denoted as follows.

Take ϕ(x) as a Orlicz function, and E ⊂ R
n as a bounded domain, for any u(x) ∈

Lp
loc(E,�l), l = , , , . . . , n, the Orlicz norm for the differential form is equipped with

‖u‖Lϕ
E

= inf

{

λ >  :
∫

E
ϕ

( |u|
λ

)

dμ ≤ 
}

,

where the measure μ is expressed by dμ = w(x) dx, w(x) is a weight.
It is easy to prove that Lϕ

E is a Banach space. Actually, provided that ϕ(x) is taken as
ϕ(x) = xs (s > ), then ϕ(x) is an Orlicz function, and it trivially corresponds to a Ls(μ)
space. As a result of that, we can say that Lϕ

E is the generalization of Ls
E .

Similarly, we intend to give Lϕ-averaging domains. Based on the Orlicz norm above, the
Orlicz-Sobolev space of l-form is denoted by W ,ϕ(E,�l), with the norm

‖u‖W ,ϕ
E

= ‖u‖W ,ϕ (E,�l) = diam(E)–‖u‖Lϕ
E

+ ‖∇u‖Lϕ
E

. (.)
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From the definition of W ,ϕ
E , we know that W ,ϕ

E is equal to Lϕ
E ∩ Lϕ

,E . In detail, if ϕ(x) is
expressed by ϕ(x) = ts (s > ), we can conclude the norm of W ,s

E for the differential form:

‖u‖W ,s
E

= ‖u‖W ,s(E,�l) = diam(E)–‖u‖Ls
E

+ ‖∇u‖Ls
E
.

Besides that, we will show another definition, which was initially introduced by Ding.

Definition . [] Let ϕ(x) be a Young function, the proper domain E ⊆ R
n is called

the Lϕ-averaging domain, if μ(E) < ∞ and there exists a constant C >  such that for any
B ⊆ E and ϕ(|u|) ∈ L

loc(E,μ), u satisfies


μ(E)

∫

E
ϕ
(

τ |u – uB |
)

dμ ≤ C sup
B⊂E


μ(B)

∫

B
ϕ
(

σ |u – uB|)dμ,

where the measure μ is denoted by dμ = w(x) dx, w(x) is a weight, σ and τ are constants
with  < τ ,σ < , and the supremum is over all balls B ⊂ E with B ⊂ E.

Using the same analysis method as of the Lϕ
E-norm, we can conclude that Lϕ-averaging

domains are the generalization of Ls-averaging domains.

2 Main results
Before the main results given, we will make some restrictions to the Young function ϕ(x).
Here, we let the Young function ϕ(x) belong to the G(p, q, C)-class ( ≤ p < q < ∞, C ≥ ),
that is, for any t > , the Young function ϕ(x) satisfies:

() /C ≤ ϕ(t/p)/f (t) ≤ C;
() /C ≤ ϕ(t/q)/g(t) ≤ C,

where f and g are increasingly convex and concave functions defined on [,∞], respec-
tively.

Now, we establish four important theorems based on the above-mentioned conditions.

Theorem . Let T be the homotopy operator, D be the Dirac operator, and G be the
Green’s operator. Meanwhile, we assume that ϕ(|u|) ∈ L

loc(E), u ∈ C∞(�lE) is a solution of
the non-homogeneous A-harmonic equation, the Young function imposed a doubling prop-
erty ϕ(x) belongs to the G(p, q, C)-class, and the bounded subset E ⊆R

n is the Lϕ-averaging
domain. Then, for any ball B ⊆ E, we get

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

Lϕ
B

≤ C diam(B)‖u‖Lϕ
σB

,

where σB ⊆ E and σ >  is a constant.

Theorem . Let T be the homotopy operator, D be the Dirac operator, and G be the
Green’s operator. Meanwhile, we assume that ϕ(|u|) ∈ L

loc(E), u ∈ C∞(�lE), is a solution
of the non-homogeneous A-harmonic equation, the Young function ϕ(x) having imposed
a doubling property belongs to the G(p, q, C)-class and the bounded subset E ⊆ R

n is the
Lϕ-averaging domain. Then, for any ball B ⊆ E, we get

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

W ,ϕ
B

≤ C diam(B)‖u‖L,ϕ
σB

,

where σB ⊆ E and σ >  is a constant.
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Based on the above theorem, we cannot only establish the following global embedding
inequality on Lϕ-averaging domains, but we also get the global Poincaré-type inequality
fortunately.

Theorem . Let T be the homotopy operator, D be the Dirac operator, and G be the
Green’s operator. Additionally, we assume that ϕ(|u|) ∈ L

loc(E), u ∈ C∞(�lE), is a solution
of the non-homogeneous A-harmonic equation, the Young function ϕ(x) having imposed
a doubling property belongs to the G(p, q, C)-class and the bounded subset E ⊆ R

n is the
Lϕ-averaging domain. Then, for any ball B ⊆ E, we have

∥
∥TDG(u) –

(

TDG(u)
)

E

∥
∥

W ,ϕ
E

≤ C‖u‖L,ϕ
E

.

Theorem . Let T be the homotopy operator, D be the Dirac operator, and G be the
Green’s operator. Additionally, we assume that ϕ(|u|) ∈ L

loc(E), u ∈ C∞(�lE), is a solution
of the non-homogeneous A-harmonic equation, the Young function ϕ(x) having imposed
a doubling property belongs to the G(p, q, C)-class and the bounded subset E ⊆ R

n is the
Lϕ-averaging domain. Then, for any ball B ⊆ E, we have

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

Lϕ
E

≤ C‖u‖Lϕ
E

,

where B ⊆ B is a fixed ball.

3 Preliminary results
For proving the theorems in Section , we shall show and demonstrate some lemmas in
this section.

Lemma . [] Let  < p, q < ∞, and 
t = 

p + 
q , if f and g are the measurable functions

defined on R
n, then

‖fg‖t,I ≤ ‖f ‖p,I · ‖g‖q,I

for any I ⊆R
n.

The inequality in Lemma . is actually the generalized Hölder inequality. Specifically,
if t =  and  < p, q < ∞, the inequality above is the classical Hölder inequality.

Lemma . [] Let u be a solution of the non-homogeneous A-harmonic equation in
a domain 	, and  < s, t < ∞, then there exists a constant C, independent of u, such
that

‖u‖s,B ≤ C|B| t–s
st ‖u‖t,σB

for all balls B with σB ⊂ E, where σ >  is some constant.

In fact, we can get a valuable result; if u satisfies the inequality in Lemma ., we say u
belongs to the WRH-class.
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Lemma . [] Suppose that the differential form u ∈ Lp(E,�l), l = , . . . , n, and G is the
Green’s operator, then there exists a constant C, independent of u, such that

∥
∥dd∗G(u) + d∗dG(u) +

(

d + d∗)G(u) + G(u)
∥
∥

p,B ≤ C‖u‖p,B

for any B ⊂ 	.

Because � = d∗d + dd∗ and D = d∗ + d, by using Lemma ., it implies that

∥
∥�G(u)

∥
∥

p,B ≤ C‖u‖p,B and
∥
∥DG(u)

∥
∥

p,B ≤ C‖u‖p,B.

Lemma . [] If u ∈ Lp(D,�l),  < p < ∞, then uD ∈ Lp(D,�l) and

‖uD‖p,D ≤ Ap(n)μ(D)‖u‖D.

According to the above results, we can prove a very useful lemma as follows.

Lemma . Let T be the homotopy operator, D be the Dirac operator, and G be the Green’s
operator. Additionally, we assume that u ∈ C∞(�lE) is a solution of the non-homogeneous
A-harmonic equation, the Young function ϕ(x) belongs to the G(p, q, C)-class, and the
bounded subset E ⊆R

n is the Lϕ-averaging domain. Then, for any ball B ⊆ E, we have

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

s,B ≤ C|B|diam(B)‖u‖s,B

for any B ⊂ E, where s > .

Proof Notice that TDG(u) is at least differential -form, therefore, by using (.) and re-
placing u by TDG(u), we have

TDG(u) = Td
(

TDG(u)
)

+ dT
(

TDG(u)
)

.

It follows from (.) that dT(TDG(u)) = (TDG(u))B, that is,

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

s,B =
∥
∥Td

(

TDG(u)
)∥
∥

s,B.

Applying (.), Lemma ., and Lemma ., we obtain

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

s,B =
∥
∥Td

(

TDG(u)
)∥
∥

s,B

≤ C|B|diam(B)
∥
∥d

(

TDG(u)
)∥
∥

s,B

≤ C|B|diam(B)
∥
∥
(

DG(u)
)

B

∥
∥

s,B

≤ C|B|diam(B)
∥
∥DG(u)

∥
∥

s,B

≤ C|B|diam(B)‖u‖s,B.

Thus, we finish the proof of this lemma. �
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Note By observing the proving process, we can get a valuable result as follows:

∥
∥Td

(

TDG(u)
)∥
∥

s,B ≤ C|B|diam(B)‖u‖s,B.

Lemma . Let T be the homotopy operator, D be the Dirac operator, and G be the Green’s
operator. Additionally, we assume that u ∈ C∞(�lE) is a solution of the non-homogeneous
A-harmonic equation, the Young function ϕ(x) having imposed a doubling property belongs
to the G(p, q, C)-class and the bounded subset E ⊆ R

n is the Lϕ-averaging domain. Then,
for any ball B ⊆ E, we have

∥
∥TDG(u)

∥
∥

Lϕ
B

≤ C diam(B)‖u‖Lϕ
σB

,

where the constant σ >  and σB ⊆ E.

Proof From (.), we have

∥
∥TDG(u)

∥
∥

s,B ≤ C diam(B)|B|∥∥DG(u)
∥
∥

s,B

≤ C diam(B)|B|‖u‖s,B. (.)

Because ϕ belongs to the G(p, q, C)-class, we have

∫

B
ϕ
(∣
∣TDG(u)

∣
∣
)

dx

= g · g–
(∫

B
ϕ
(∣
∣TDG(u)

∣
∣
)

dx
)

≤ g
(∫

B
g–ϕ

(∣
∣TDG(u)

∣
∣
)

dx
)

≤ g
(∫

B
C

∣
∣TDG(u)

∣
∣
q dx

)

≤ Cϕ

(∫

B
C

∣
∣TDG(u)

∣
∣
q dx

) 
q

.

Since ϕ is doubling, according to (.) and Lemma ., we have

∫

B
ϕ
(∣
∣TDG(u)

∣
∣
)

dx

≤ Cϕ
(

C|B|+ 
n ‖u‖q,B

)

≤ Cϕ

(

|B|+ 
n |B| 

p – 
q

(∫

σB
|u|p dx

) 
p
)

≤ Cf
(

|B|p(+ 
n )|B| p

q –
(∫

σB
|u|p dx

))

≤ C

(∫

σB
f
(|B|p–+p( 

q + 
n ) + |u|p)dx

)

≤ C

(∫

σB
Cϕ

(|B|+ 
q + 

n – 
p |u|)dx

)
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≤ C|B|+ 
q + 

n – 
p

∫

σB
ϕ
(|u|)dx

≤ C|B| 
n

∫

σB
ϕ
(|u|)dx. (.)

Therefore, by using |B| 
n = C diam(B), we can get the following result:

∥
∥TDG(u)

∥
∥

Lϕ
B

≤ C diam(B)‖u‖Lϕ
σB

,

where σ > .
This is the end of the proof of Lemma .. �

Lemma . Let T be the homotopy operator, D be the Dirac operator, and G be the Green’s
operator. Additionally, we assume that ϕ(|u|) ∈ L

loc(E) and u ∈ C∞(�lE) is a solution of
the non-homogeneous A-harmonic equation, the Young function ϕ(x) having imposed a
doubling property belongs to the G(p, q, C)-class and E is a bounded domain. Then we get

∥
∥∇Td

(

TDG(u)
)∥
∥

Lϕ
B

≤ C|B|diam(B)‖u‖Lϕ
σB

for all balls B with σB ⊂ E, where σ >  is some constant.

Proof According to the elementary inequality (.) of the homotopy operator T and Lem-
ma ., we have

∥
∥∇Td

(

TDG(u)
)∥
∥

p,B ≤ C|B|∥∥d
(

TDG(u)
)∥
∥

p,B ≤ C|B|∥∥DG(u)
∥
∥

p,B. (.)

Applying (.) and Lemma ., we get

∥
∥∇Td

(

TDG(u)
)∥
∥

p,B ≤ C|B|diam(B)‖u‖p,B.

Using the same method as used in Lemma ., the following inequality holds:

∥
∥∇Td

(

TDG(u)
)∥
∥

Lϕ
B

≤ C diam(B)‖u‖Lϕ
σB

.

The proof of Lemma . is completed. �

Lemma . (Covering lemma) [] Each domain 	 has a modified Whitney cover of cubes
V = {Qi} such that

⋃

i

Qi = 	,
∑

Qi∈V
χ√


 Qi

≤ Nχ	

and some N > , and if Qi ∩ Qj �= ∅, then there exists a cube R (this cube does not need
to be a member of V) in Qi ∩ Qj such that Qi ∪ Qj ⊂ NR. Moreover, if 	 is δ-John, then
there is a distinguished cube Q ∈ V which can be connected with every cube Q ∈ V by a
chain of cubes Q, Q, . . . , Qk = Q from V and such that Q ⊂ ρQi, i = , , , . . . , k, for some
ρ = ρ(n, δ).
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4 Demonstration of main results
According to the above definitions and lemmas, we will prove four theorems in detail. First
of all, let us prove Theorem ..

Proof of Theorem . First of all, similar to the proof of Lemma ., we have

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

Lϕ
B

=
∥
∥Td

(

TDG(u)
)∥
∥

Lϕ
B
. (.)

This means that the key point is to prove the following inequality:

∥
∥Td

(

TDG(u)
)∥
∥

Lϕ
B

≤ C‖u‖Lϕ
σB

.

According to the properties of the G(p, q, C)-class, we have
∫

B
ϕ
(∣
∣Td

(

TDG(u)
)∣
∣
)

dx

= g · g–
(∫

B
ϕ
(∣
∣Td

(

TDG(u)
)∣
∣
)

dx
)

≤ g
(∫

B
g–ϕ

(∣
∣Td

(

TDG(u)
)∣
∣
)

dx
)

≤ g
(∫

B
C

∣
∣Td

(

TDG(u)
)∣
∣
q dx

)

≤ Cϕ

(∫

B
C

∣
∣Td

(

TDG(u)
)∣
∣
q dx

) 
q

.

Because ϕ is doubling, using Lemma ., we have
∫

B
ϕ
(∣
∣Td

(

TDG(u)
)∣
∣
)

dx

≤ Cϕ
(

C|B|+ 
n ‖u‖q,B

)

≤ Cϕ

(

|B|+ 
n |B| 

p – 
q

(∫

σB
|u|p dx

) 
p
)

≤ Cf
(

|B|p(+ 
n )|B| p

q –
(∫

σB
|u|p dx

))

≤ C

(∫

σB
f
(|B|p–+p( 

q + 
n )|u|p)dx

)

≤ C

(∫

σB
Cϕ

(|B|+ 
q + 

n – 
p |u|)dx

)

≤ C|B|+ 
q + 

n – 
p

∫

σB
ϕ
(|u|)dx

≤ C|B| 
n

∫

σB
ϕ
(|u|)dx. (.)

Combining (.) with (.) and using |B| 
n = C diam(B) yield

∫

B
ϕ
(∣
∣TDG(u) –

(

TDG(u)
)

B

∣
∣
)

dx ≤ C diam(B)
∫

σB
ϕ
(|u|)dx.
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As a result, we obtain
∫

B
ϕ

( |TDG(u) – (TDG(u))B|
λ

)

dx ≤ C diam(B)
∫

σB
ϕ

( |u|
λ

)

dx

for any B with σB ⊂ E and any constant λ > . It means that the following inequality on
Lϕ

E-averaging domains holds:

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

Lϕ
B

≤ C diam(B)‖u‖Lϕ
σB

.

The proof of this theorem is finished. �

Remark From the proof of Theorem ., it is easy to derive the following inequality:

∥
∥Td

(

TDG(u)
)∥
∥

Lϕ
B

≤ C diam(B)‖u‖Lϕ
σB

. (.)

We shall prove Theorem . by using Theorem . and Lemma ..

Proof for Theorem . Using (.) repeatedly, we have

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

W ,ϕ
B

=
∥
∥Td

(

TDG(u)
)∥
∥

W ,ϕ
B

. (.)

Combining (.) with (.), and applying Theorem . and Lemma ., we have

∥
∥TDG(u) –

(

TDG(u)
)

B

∥
∥

W ,ϕ
B

= diam(B)–∥∥Td
(

TDG(u)
)∥
∥

Lϕ
B

+
∥
∥∇Td

(

TDG(u)
)∥
∥

Lϕ
B

≤ (

diam(B)
)–(C diam(B)‖u‖Lϕ

σB

)

+ C‖u‖Lϕ
σB

≤ C‖u‖Lϕ
σB

+ C‖u‖Lϕ
σB

≤ C‖u‖Lϕ
σB

,

where σ = max{σ,σ} and σ > , for all balls B with σB ⊂ E.
This is the end of the proof of Theorem .. �

Proof for Theorem . From the covering lemma, Lemma ., and Lemma ., we have

∥
∥∇Td

(

TDG(u)
)∥
∥

Lϕ
E

≤
∑

B∈V

∥
∥∇Td

(

TDG(u)
)∥
∥

Lϕ
B

≤
∑

B∈V

(

C|B|‖u‖Lϕ
σB

)

≤ CN‖u‖Lϕ
E

≤ C‖u‖Lϕ
E

. (.)

Similarly, using the covering lemma, Lemma ., and (.) implies

∥
∥Td

(

TDG(u)
)∥
∥

Lϕ
E

≤
∑

B∈V

∥
∥Td

(

TDG(u)
)∥
∥

Lϕ
B

≤
∑

B∈V

(

C diam(B)‖u‖Lϕ
σB

)
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≤ C diam(E)N‖u‖Lϕ
E

≤ C diam(E)‖u‖Lϕ
E
. (.)

Thus, from (.), (.), and (.), we obtain

∥
∥TDG(u) –

(

TDG(u)
)

E

∥
∥

W ,ϕ
E

=
∥
∥Td

(

TDG(u)
)∥
∥

W ,ϕ
E

=
(

diam(E)
)–∥

∥Td
(

TDG(u)
)∥
∥

Lϕ
E

+
∥
∥∇Td

(

TDG(u)
)∥
∥

Lϕ
E

≤ (

diam(E)
)–(C diam(E)‖u‖Lϕ

E

)

+ C‖u‖Lϕ
E

≤ C‖u‖Lϕ
E

.

We have completed the proof of Theorem .. �

Next, we will prove Theorem . by using Definition . and Theorem ..

Proof of Theorem . According to Definition ., we have

|E|–
∫

E
ϕ
(∣
∣TDG(u) –

(

TDG(u)
)

B

∣
∣
)

dx ≤ sup
B⊂E

|B|–
∫

B
ϕ
(∣
∣TDG(u) –

(

TDG(u)
)

B

∣
∣
)

dx

≤ sup
B⊂E

|B|–C diam(B)
∫

σB
ϕ
(|u|)dx.

Because supB⊆E
∫

E ϕ(|u|) dx does not depend on B, we obtain

|E|–
∫

E
ϕ
(∣
∣TDG(u) –

(

TDG(u)
)

B

∣
∣
)

dx ≤ sup
B⊂E

|B|–C diam(B)
∫

E
ϕ
(|u|)dx.

Therefore, we have
∫

E
ϕ
(

λ–∣∣TDG(u) –
(

TDG(u)
)

B

∣
∣
)

dx ≤ C
∫

E
ϕ
(

λ–|u|)dx.

We finish the proof of Theorem .. �

In addition, we can obtain a global estimate about the composite operators using the
same method as of Theorem ..

Corollary . Let T be the homotopy operator, D be the Dirac operator, and G be the
Green’s operator. Additionally, we assume that u ∈ C∞(�lE) is a solution of the non-
homogeneous A-harmonic equation, the Young function ϕ(x) belongs to the G(p, q, C)-class,
and the bounded subset E ⊆ R

n is the Lϕ-averaging domain. Then, for any ball B ⊆ E, we
have

∥
∥TDG(u)

∥
∥

Lϕ
E

≤ C diam(B)‖u‖Lϕ
E

.

Remark If we choose ϕ(x) = xs, we have

∥
∥TDG(u)

∥
∥

s,E ≤ C diam(B)‖u‖s,E.
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5 Applications
In this section, we will discuss the applications of the results obtained.

Example . Let r >  and 	 = {(x, x, x) : x
 + x

 + x
 ≤ r} ⊂R

. Consider the -form

u(x, x, x) =
x

 + (x
 + x

 + x
) dx +

x

 + (x
 + x

 + x
) dx +

x

 + (x
 + x

 + x
) dx

defined in 	. Then u is a solution of the non-homogeneous A-harmonic equation for any
operators A and B satisfying the required conditions.

As the application of the obtained theorems, our goal is to get the upper bound of
TDG(u) satisfying the above conditions. Normally, we would consider calculating the inte-
gral of TDG(u), however, one will see that TDG(u) with the Lϕ-norm is very complicated.
In this case, we can use Theorem . to get the estimate of TDG(u) with the Lϕ-norm
in W ,ϕ

	 .
Initially, according to the condition and the expression of u in Example ., we see that

∣
∣u(x, x, x)

∣
∣
 =

x


( + (x
 + x

 + x
)) +

x


( + (x
 + x

 + x
)) +

x


( + (x
 + x

 + x
)) .

Furthermore, because u is defined in 	 and (x
 + x

 + x
) > , we get

∣
∣u(x, x, x)

∣
∣ ≤ . (.)

As a result, by using Theorem . and (.), we have

∥
∥TDG(u) –

(

TDG(u)
)

	

∥
∥

W ,ϕ
	

≤ C‖u‖Lϕ
	

≤ C‖‖Lϕ
	

≤ Cr.

The above example can be extended to the case of Rn. Particularly, we can check that the
-form defined in R

n,

u(x, . . . , xn) =
n

∑

i=

xi

 + (x
 + · · · + x

n) dxi,

is a solution of the non-homogeneous A-harmonic equation for any operators A and B
satisfying the required conditions. So, we can also apply Theorem . to this extended
case as we did in Example ..

To end this section, we take a -form in R
 as an example.

Example . Let k, m >  be constants. Consider a differential -form in R
,

u(x, y, z) =
k

m + x + y + z dx ∧ dy ∧ dz.

Then u is a solution of the non-homogeneous A-harmonic equation for any operators A
and B satisfying the required conditions.
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Similarly, applying the same method, we can obtain the following result as regards
TDG(u) in any bounded set 	 ⊂ R

:

∣
∣u(x, y, z)

∣
∣ ≤ k

m

and

∥
∥TDG(u) –

(

TDG(u)
)

	

∥
∥

W ,ϕ
	

≤ C‖u‖Lϕ
	

≤ C‖k/m‖Lϕ
	

.
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