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Abstract
In this paper, we apply the least-squares method to estimate the unknown
parameters in first-order random coefficient integer-valued autoregressive
(RCINAR(1)) processes. The least-squares estimator is derived and its limiting
properties are discussed. Furthermore, we also derive a statistic to test the
randomness of coefficients. Numerical results from simulation studies suggest that
the proposed method is good for practical use.
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1 Introduction
Integer-valued time series have received increasing attention in the probabilistic and sta-
tistical literature over the past several years because of its applicability in many different
areas such as the natural sciences, the social sciences, international tourism demand, and
economy. See, for instance, Davis et al. [] and MacDonald and Zucchini []. There are
two main classes of time series models that have been developed recently for count data:
state-space models and thinning models. For state-space models, we refer to Fukasawa
and Basawa [].

Steutal and Van Harn [] defined a first-order integer-valued autoregressive (INAR())
model. To this aim, they first proposed a ‘thinning’ operator ◦, which is defined as

φ ◦ X =
X∑

i=

Bi,

where X is an integer-valued random variable and φ ∈ [, ], {Bi} is an i.i.d. Bernoulli ran-
dom sequence with P(Bi = ) = φ that is independent of X. Based on the ‘thinning’ opera-
tor ◦, the INAR() model is defined as

Xt = φ ◦ Xt– + Zt , t ≥ , (.)

where {Zt} is a sequence of i.i.d. non-negative integer-valued random variables.
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The ‘thinning’ operator integer-valued models have been studied by many authors (see,
e.g., [–]). Note that the parameter φ may vary with time and it may be random, Zheng et
al. [] extended the above model to the following first-order random coefficient integer-
valued autoregressive (RCINAR()) model:

Xt = φt ◦ Xt– + Zt , t ≥ , (.)

where {φt} are a sequence of i.i.d. sequence with cumulative distribution function pφ on
[, ) with E(φt) = φ and Var(φt) = σ 

φ ; {Zt} is a sequence of i.i.d. non-negative integer-
valued random variables with E(Zt) = λ and Var(Zt) = σ 

Z . Moreover, {φt} and {Zt} are
independent.

Obviously, when σ 
φ is equal to zero, the model (.) becomes an INAR() model.

Zheng et al. [] also generalized the above model to a pth-order model. For model (.),
Zheng et al. [] established the ergodicity and derived the conditional least-squares and
quasi-likelihood estimators of the model parameters. By employing the cumulative sum
(CUSUM) test based on the conditional least-squares and modified quasi-likelihood es-
timators, Kang and Lee [] considered the problem of testing for a parameter change
in a RCINAR() model. By using the empirical likelihood method, Zhang et al. (see, e.g.,
[, ]) described how to build confidence regions for the unknown parameters. Roiter-
shtein and Zhong [] studied the weak limits of extreme values and the growth rate of
partial sums.

In this paper, we apply the least-squares method to estimate the variances of random co-
efficients and errors in model (.). The least-squares estimator is derived and its limiting
properties are discussed. Furthermore, we also derive a statistic to test the randomness of
coefficients.

The rest of this paper is organized as follows. In Section , we introduce the methodology
and the main results. Simulation results are reported in Section . Section  provides the
proofs of the main results.

The symbols ‘
d−→’ and ‘

p−→’ denote convergence in distribution and convergence in
probability, respectively. Convergence ‘almost surely’ is written as ‘a.s.’. Furthermore,
‘Mτ

k×p’ denotes the transpose matrix of the k × p matrix Mk×p, ‖ · ‖ denotes the Euclidean
norm of the matrix or vector.

2 Methodology and main results
In this section, we will first discuss how to apply least-squares method to estimate the
unknown parameter σ 

φ and σ 
Z . Let β = (σ 

φ ,φ( – φ) – σ 
φ ,σ 

Z)τ and Rt(φ,λ) = Xt –
E(Xt|Xt–). For simplicity, we write Rt(φ,λ) as Rt , omitting the parameter φ and λ. Note
that E(Xt|Xt–) = φXt– + λ and E(R

t |Xt–) = Zτ
t β , where Zt = (X

t–, Xt–, )τ The condi-
tional least-squares estimator β̂ of β , based on the sample X, X, . . . , Xn is obtained by
minimizing

Q =
n∑

t=

(
R

t – E
(
R

t |Xt–
))

with β . Substituting E(R
t |Xt–) = Zτ

t β in Q and solving

∂Q/∂β =
n∑

t=

(
R

t – E
(
R

t |Xt–
))

Zt (.)
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for β , we obtain

β̂ =

( n∑

t=

ZtZτ
t

)– n∑

t=

R
t Zt . (.)

Let β̃ = β̂(φ̂, λ̂), where φ̂ and λ̂ are given by Zheng et al. []. β̃ can be used to estimate the
unknown parameter β .

In order to obtain the limiting properties of β̃ , we assume the following conditions:

(A) {Xt} is a strictly stationary and ergodic process.
(A) E|Xt| < ∞.

The following theorem gives the limit distribution of β̃ .

Theorem . Assume that (A) and (A) hold. Then

√
n(β̃ – β)

d−→ N
(
,�–W�–),

where W = E(ZtZτ
t (R

t – Zτ
t β)), � = E(ZtZτ

t ).

Let θ = (σ 
φ ,σ 

Z)τ , T =
(  

 
 

)
and T̃ = (, , )τ . Based on the estimate of β̃ , the estimate θ̂

of θ can be given by Tτ β and the estimate σ̂ 
φ of σ 

φ can be given by T̃τ β . By Theorem .,
we have the following corollary.

Corollary . Assume that (A) and (A) hold. Then

√
n(θ̃ – θ )

d−→ N
(
, Tτ�–W�–T

)
,

where W = E(ZtZτ
t (R

t – Zτ
t β)), � = E(ZtZτ

t ).

Corollary . Assume that (A) and (A) hold. Then

√
n
(
σ̂ 

φ – σ 
φ

) d−→ N
(
, T̃τ�–W�–T̃

)
,

where W = E(ZtZτ
t (R

t – Zτ
t β)), � = E(ZtZτ

t ).

If σφ = , the model (.) becomes a INAR() model. Therefore, in order to test the ran-
domness of coefficients, we only need to test whether the σφ is zero. To this aim, we con-
sider the following hypothesis test:

H: σ 
φ =  vs. H: σ 

φ > . (.)

In order to obtain the test statistic, we consider the estimation of W and �. Let Ŵ =

n
∑n

t=(ZtZτ
t (R

t (φ̂, λ̂) – Zτ
t β̂)) and �̂ =

∑n
t= ZtZτ

t . Then Ŵ and �̂ are the consistent esti-
mate of W and �, respectively.
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Corollary . Assume that (A) and (A) hold. Then

Ŵ
p−→ W

and

�̂
p−→ �.

By Corollary ., it is easy to see that

T̃τ �̂–Ŵ �̂–T̃
p−→ T̃τ�–W�–T̃ . (.)

Combining with Corollary ., we have

√
n(σ̂ 

φ – σ 
φ )

√
T̃τ �̂–Ŵ �̂–T̃

d−→ N(, ). (.)

By (.), we can obtain the confidence interval for the true parameter σ 
φ . The asymptotic

( – ν)% confidence interval of σ 
φ is

[
σ̂ 

φ –

√
T̃τ �̂–Ŵ �̂–T̃

n
u ν


, σ̂ 

φ +

√
T̃τ �̂–Ŵ �̂–T̃

n
u ν



]
,

where u ν


is the upper ν/-quantile of the standard normal distribution.

3 Simulation study
In this section, we conduct some simulation studies which show that our proposed meth-
ods perform very well. We consider the RCINAR() process

Xt = φt ◦ Xt– + Zt , t ≥ , (.)

where {φt} is a sequence of i.i.d. sequence with E(φt) = φ and Var(φt) = σ 
φ ; {Zt} is a se-

quence of i.i.d. Poisson sequence with E(Zt) = λ.
In the first simulation study, we calculate the probability of accepting the null hypothesis

when it is true at the nominal level α = . and .. To this aim, we consider the following
models.

Model I φt = φ, Zt ∼ Poisson(λ).
We take φ = ., ., ., ., and ., and take λ =  and . Samples of size n = ,

, and . All simulation studies are based on , repetitions. The results of the sim-
ulations are presented in Table  and the figures in parentheses are the simulation results
at the nominal level α = ..

In the second simulation study, we calculate the probability of rejecting the null hypoth-
esis when it is false at the nominal level α = . and .. To this aim, we consider the
following model.
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Table 1 Accepting the null hypothesis when it is true

φ n = 50 n = 100 n = 300

λ = 1 0.10 0.985 (0.983) 0.990 (1.000) 0.983 (1.000)
0.30 0.980 (1.000) 1.000 (1.000) 1.000 (1.000)
0.50 0.982 (1.000) 1.000 (1.000) 1.000 (1.000)
0.70 0.997 (1.000) 1.000 (1.000) 1.000 (1.000)
0.90 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

λ = 2 0.10 0.999 (1.000) 0.999 (1.000) 0.999 (1.000)
0.30 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.50 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.70 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.90 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

Table 2 Rejecting the null hypothesis when it is false

σ 2
φ n = 50 n = 100 n = 300

λ = 1 0.10 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.15 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.20 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.25 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.30 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.32 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

λ = 2 0.10 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.15 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.20 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.25 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.30 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)
0.32 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

Model II φt ∼ U(, φ), Zt ∼ Poisson(λ).
We take σ 

φ = ., ., ., ., ., and .. Samples of size n = , , and .
All simulation studies are based on , repetitions. The results of the simulations are
presented in Table  and the figures in parentheses are the simulation results at the nom-
inal level α = ..

The results in Tables  and  lead to the following observations: When the null hypothe-
sis is true, we have a larger probability to accept the null hypothesis. When the alternative
hypothesis is true we also have a larger probability to reject the null hypothesis. There-
fore, using the test method obtained by us, we have a larger probability to make a correct
judgment.

4 Proofs of the main results
In order to prove Theorem ., we first prove the following lemma.

Lemma . Assume that (A) and (A) hold. Then

√
n(β̂ – β)

d−→ N
(
,�–W�–),

where W = E(ZtZτ
t ), � = E(ZtZτ

t ).
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Proof After simple algebraic calculations, we have

√
n(β̂ – β) =

(

n

n∑

t=

ZtZτ
t

)–
√
n

n∑

t=

Zt
(
R

t – Zτ
t β

)
.

By the ergodic theorem, we have


n

n∑

t=

ZtZτ
t

a.s.−→ �. (.)

Therefore, in order to prove Lemma ., we need only to prove that

√
n

n∑

t=

Zt
(
R

t – Zτ
t β

) d−→ N(, W ). (.)

By the Cramer-Wold device, it suffices to show that, for all c ∈ R \ (, , ),

√
n

n∑

t=

cτ Zt
(
R

t – Zτ
t β

) d−→ N
(
, cτ Wc

)
. (.)

For simplicity of notation, we write cτ Zt(R
t – Zτ

t β) for Gt,c(β). Further, let ξnt = √
n Gt,c(β)

and Fnt = σ (ξnr ,  ≤ r ≤ t). Then {∑n
t= ξnt ,Fnt ,  ≤ t ≤ n, n ≥ } is a zero-mean, square

integrable martingale array. By making use of a martingale central limit theorem [], it
suffices to show that

max
≤t≤n

|ξnt|
p−→ , (.)

n∑

t=

ξ 
nt

p−→ cτ Wc, (.)

E
(

max
≤t≤n

ξ 
nt

)
is bounded in n, (.)

and the σ -fields are nested:

Fnt ⊆ F(n+)t for  ≤ t ≤ n, n ≥ . (.)

Note that (.) is obvious. In the following, we first consider (.). By a simple calcula-
tion, we have, for all ε > ,

P
{

max
≤t≤n

|ξnt| > ε
}

≤
n∑

t=

P
{|ξnt| > ε

}

=
n∑

t=

P
{∣∣∣∣

√
n

Gt,c(β)
∣∣∣∣ > ε

}

= nP
{∣∣Gt,c(β)

∣∣ >
√

nε
}

= n
∫

�

I
(∣∣Gt,c(β)

∣∣ >
√

nε
)

dP
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≤ n
∫

�

I
(∣∣Gt,c(β)

∣∣ >
√

nε
) (Gt,c(β))

(
√

nε) dP

=

ε

∫

�

I
(∣∣Gt,c(β)

∣∣ >
√

nε
)(

Gt,c(β)
) dP. (.)

Now by the Lebesgue control convergence theorem, we immediately see that (.) con-
verges to  as n → ∞. This settles (.).

Next we consider (.). By the ergodic theorem, we have

n∑

t=

ξ 
nt =

n∑

t=

(
√
n

Gt,c(β)
)

a.s.−→ E
(
Gt,c(β)

)

= cτ Wc.

Hence (.) is proved.
Finally we consider (.). Note that {( √

n Gt,c(θ)), t ≥ } is a stationary sequence. Then
we have

E
(

max
≤t≤n

ξ 
nt

)
= E

(
max
≤t≤n

(
√
n

Gt,c(β)
))

≤ 
n

E

( n∑

t=

(
Gt,c(β)

)
)

=

n

n∑

t=

E
(
Gt,c(β)

)

= cτ Wc.

This proves (.). Thus, we complete the proof of Lemma .. �

Proof of Theorem . Note that

√
n(β̃ – β) =

√
n(β̃ – β̂) +

√
n(β̂ – β).

By Lemma ., it suffices to prove that

√
n(β̃ – β̂) = op(). (.)

Note that

√
n(β̃ – β̂) =

(

n

n∑

t=

ZtZτ
t

)–

× √
n

n∑

t=

Zt
(
R

t (φ̂, λ̂) – R
t (φ,λ)

)
.

By (.), we know that


n

n∑

t=

ZtZτ
t = Op().
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In the following, we prove that

√
n

n∑

t=

Zt
(
R

t (φ̂, λ̂) – R
t (φ,λ)

)
= op(). (.)

First note that, by the mean value theorem,

R
t (φ̂, λ̂) – R

t (φ,λ) = –Rt
(
φ∗,λ∗)(Xt–(φ̂ – φ) + λ̂ – λ

)
,

where φ∗ lies between φ̂ and φ, λ∗ lies between λ̂ and λ. This implies that

√
n

n∑

t=

Zt
(
R

t (φ̂, λ̂) – R
t (φ,λ)

)

=
–√

n

n∑

t=

ZtRt
(
φ∗,λ∗)(Xt–(φ̂ – φ) + λ̂ – λ

)

=
–√

n

n∑

t=

Zt
(
Rt(φ,λ) + Rt

(
φ∗,λ∗) – Rt(φ,λ)

)(
Xt–(φ̂ – φ) + λ̂ – λ

)

=
–√

n

n∑

t=

Zt
((

φ – φ∗)Xt– + λ – λ∗ + Rt(φ,λ)
)(

Xt–(φ̂ – φ) + λ̂ – λ
)

=
–√

n

n∑

t=

ZtRt(φ,λ)Xt–(φ̂ – φ)

–
√
n

n∑

t=

ZtRt(φ,λ)(λ̂ – λ)

–
√
n

n∑

t=

Zt
(
φ – φ∗)X

t–(φ̂ – φ)

–
√
n

n∑

t=

Zt
(
λ – λ∗)Xt–(φ̂ – φ)

–
√
n

n∑

t=

Zt
(
φ – φ∗)Xt–(λ̂ – λ)

–
√
n

n∑

t=

Zt
(
λ – λ∗)(λ̂ – λ)

� Jn + Jn + Jn + Jn + Jn + Jn.

In the following, we prove that Jni = op(), i = , , , , , . First, we consider Jn. Note
that

Jn =
–
n

n∑

t=

ZtRt(φ,λ)Xt–
(√

n(φ̂ – φ)
)
.

By Theorem . in Zheng et al. [], we know that

√
n(φ̂ – φ) = Op(). (.)
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Moreover, by the ergodic theorem, we have

–
n

n∑

t=

ZtRt(φ,λ)Xt–
p−→ –E

(
ZtRt(φ,λ)Xt–

)
. (.)

Note that

E
(
ZtRt(φ,λ)Xt–

)
= E

(
E
((

Rt(φ,λ)ZtXt–
)|Ft–

))

= E
(
ZtXt–E

(
Rt(φ,λ)|Ft–

))

= .

This, together with (.) and (.), proves that

Jn = op(). (.)

Similarly, we can prove that

Jn = op(). (.)

Next, we prove that

Jn = op(). (.)

Note that

‖Jn‖ ≤ √
n

n∑

t=

∣∣ZtX
t–

∣∣∥∥φ – φ∗∥∥‖φ̂ – φ‖

≤ √
n

n∑

t=

∣∣ZtX
t–

∣∣∥∥φ – φ∗∥∥

≤ √
n


n

n∑

t=

∣∣ZtX
t–

∣∣(∥∥√
n(φ̂ – φ)

∥∥). (.)

By the ergodic theorem, we have


n

n∑

t=

∣∣ZtX
t–

∣∣ = Op(). (.)

By (.), we have

∥∥√
n(φ̂ – φ)

∥∥ = Op(). (.)

Moreover, note that

√
n

= o(), (.)

which, combined with (.), (.), and (.), implies (.).



Zhao and Hu Journal of Inequalities and Applications  (2015) 2015:359 Page 10 of 12

Similarly, we can prove that

Jn = op(), (.)

Jn = op() (.)

and

Jn = op(). (.)

Thus, by (.), (.), (.), (.), (.), and (.), (.) can be proved. The proof of
Theorem . is thus completed. �

The proof of Corollary . and Corollary . is obvious, we omit it here.

Proof of Corollary . By the ergodic theorem, we can prove that

�̂
p−→ �.

Next, we prove that

Ŵ
p−→ W . (.)

Note that

Ŵ – W =

n

n∑

t=

ZtZτ
t
((

R
t (φ̂, λ̂) – Zτ

t β̂
) –

(
R

t (φ,λ) – Zτ
t β

))

=

n

n∑

t=

ZtZτ
t
(
R

t (φ̂, λ̂) – R
t (φ,λ)

)
+


n

n∑

t=

ZtZτ
t
((

Zτ
t β̂

) –
(
Zτ

t β
))

–

n

n∑

t=

ZtZτ
t
(
R

t (φ̂, λ̂)Zτ
t β̂ – R

t (φ,λ)Zτ
t β

)

� Hn + Hn + Hn.

First, we consider Hn. Note that

‖Hn‖ =

∥∥∥∥∥

n

n∑

t=

(β̂ – β)τ ZtZtZτ
t Zτ

t (β̂ + β)

∥∥∥∥∥

≤ ‖β̂ – β‖ 
n

n∑

t=

‖Zt‖‖β̂ + β‖. (.)

By Theorem ., we have

β̂ – β = op() (.)

and

β̂ + β
p−→ β . (.)
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Further, by the ergodic theorem, we have


n

n∑

t=

‖Zt‖ = Op(). (.)

This, combined with (.), (.), and (.), implies that

Hn = op(). (.)

Similar to the proof of (.), we can prove that

Hn = op() (.)

and

Hn = op(). (.)

This, combined with (.), we can prove (.). The proof of Corollary . is thus com-
pleted. �

5 Conclusion
Integer-valued time series data are fairly common in economics and medicine, such as
the number of patients in a hospital at a specific time. In this paper, we propose a method
to estimate the unknown parameters in first-order random coefficient integer-valued au-
toregressive processes. The limiting properties are investigated and simulations indicate
that the method is feasible. This method is particularly useful when establishing models
for practical data.
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