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Abstract
We characterize the Bloch spaces and Besov spaces of pluriharmonic mappings on
the unit ball of Cn by using the following quantity:

supρ(z,w)<r,z �=w
(1–|z|2)α (1–|w|2)β |D̂(m)f (z)–D̂(m)f (w)|

|z–w| , where α + β = n + 1, D̂(m) = ∂m

∂zm + ∂m

∂ z̄m ,
|m| = n. This generalizes the main results of (Yoneda in Proc. Edinb. Math. Soc.
45:229-239, 2002) in the higher dimensional case.
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1 Introduction
Let Cn = {z = (z, . . . , zn) : z, . . . , zn ∈ C} denote the n dimensional complex vector space.
For a = (a, . . . , an) ∈ C

n, we define the Euclidean inner product 〈·, ·〉 by

〈z, a〉 = zā + · · · + znān,

where āk (k ∈ {, . . . , n}) denotes the complex conjugate of ak . Then the Euclidean length
of z is defined by

|z| = 〈z, z〉 
 =

(|z| + · · · + |zn|
) 

 .

Denote a ball in C
n with center a and radius r >  by

B
n(a, r) =

{
z ∈C

n : |z – a| < r
}

.

In particular, we let Bn denote the unit ball Bn(, ) and let D be the unit disk in C.
A complex-valued function f of Bn into C is called pluriharmonic if there are two holo-

morphic functions h and g , such that f = h + ḡ . We denote by P(Bn) the class of all pluri-
harmonic mappings on the unit ball of Cn.

Let f = h + ḡ ∈P(Bn). For a multi-index m = (m, . . . , mn), we employ the notations

∇f (z) =
(

∂f
∂z

, . . . ,
∂f
∂zn

)
, ∇f (z) =

(
∂f
∂ z̄

, . . . ,
∂f
∂ z̄n

)
,

∂mf =
∂mf
∂zm =

∂ |m|f
∂zm

 · · · ∂zmn
n

, ∂
mf =

∂mf
∂ z̄m =

∂ |m|f
∂ z̄m

 · · · ∂ z̄mn
n

,
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D̂(m)f = ∂mf + ∂
mf = ∂mh + ∂

mg,

where |m| = m + · · · + mn. Obviously, if f ∈P(Bn), then so does D̂(m)f .
Similar to the planar case, the Bloch space PB(Bn) of P(Bn) consists of all mappings

f ∈P(Bn) such that

‖f ‖ = sup
z∈Bn

(
 – |z|)(∣∣∇f (z)

∣∣ +
∣∣∇f (z)

∣∣) < ∞;

the little Bloch space PB(Bn) consists of all mappings f ∈PB(Bn) such that

lim|z|→–

(
 – |z|)(∣∣∇f (z)

∣
∣ +

∣
∣∇f (z)

∣
∣) = .

Let dλ(z) = ( – |z|)–n– dv(z), where dv is the normalized Lebesgue measure of Bn. For
 ≤ p < ∞, the Besov space Bp of P(Bn) consists of all mappings f ∈ P(Bn) such that ( –
|z|)(|∇f (z)| + |∇f (z)|) ∈ Lp(Bn, dλ), i.e.

‖f ‖Lp(dλ(z)) =
∫

Bn

((
 – |z|)(∣∣∇f (z)

∣
∣ +

∣
∣∇f (z)

∣
∣))p dλ(z) < ∞.

For a planar harmonic mapping f in D, Colonna [] proved that f ∈PB(D) if and only if
the Lipschitz number

βf = sup
z,w∈D,z �=w

|f (z) – f (w)|
arctanh| z–w

–z̄w | < ∞.

Let

l = sup
w∈D(z,r),z �=w

( – |z|)α( – |w|)β |D̂(n–)f (z) – D̂(n–)f (w)|
|z – w| ,

where D(z, r) is the Bergman disc with center z ∈ D and radius r, n ≥  an integer and
α + β = n. By means of it, Yoneda [] characterized the spaces PB(D) and Bp as follows.

Theorem A Let n ≥  be an integer and f ∈ P(D). Then f ∈ PB(D) if and only if l is
bounded.

Theorem B Let n ≥  be an integer and f ∈P(D). Then f ∈ Bp if and only if

∫

D

lp dλ(z) < ∞.

In this article, we consider the corresponding problems in higher dimensional set-
ting. We refer to [–] for the related topics for holomorphic or harmonic functions.
See [–] for various characterizations of the Bloch, little Bloch, and Besov spaces in
the unit ball of Cn. In Section , we recall some basic facts for pluriharmonic map-
pings. Our main results are Theorems -, whose proofs will be presented in Sections 
and .
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2 Preliminaries
Let Aut(Bn) denote the group of biholomorphic mappings ofBn onto itself. It is well known
that Aut(Bn) is generated by the unitary operators on B

n and the involutions φa of the form

φa(z) =
a – Paz – ( – |a|) 

 Qaz
 – 〈z, a〉 ,

where a, z ∈ B
n,

Paz =
a〈z, a〉
〈a, a〉 , Qaz = z – Paz.

For z, w ∈ B
n, we define ρ(z, w) = |φz(w)|. It is known that ρ is a distance function on B

n,
and we call it pseudo-hyperbolic metric (cf. [, ]). For r ∈ (, ), the pseudo-hyperbolic
ball with center z and radius r is given by

E(z, r) =
{

w ∈ B :
∣
∣φz(w)

∣
∣ < r

}
.

Clearly, E(z, r) = φz(B(, r)).

Lemma  ([]) Let  < r <  and w ∈ E(z, r). Then

 – |z| �  – |w| � ∣∣ – 〈z, w〉∣∣ � ∣∣E(z, r)
∣∣


n+ ,

where |E(z, r)| is the normalized volume of E(z, r), A � B means that there is a constant
C >  such that B/C ≤ A ≤ BC.

The following lemma is crucial [].

Lemma  Suppose that f : Bn(a, r) →C is continuous and pluriharmonic in B
n(a, r). Then

there exists C >  such that

∣
∣∇f (a)

∣
∣ +

∣
∣∇f (a)

∣
∣ ≤ C

r

∫

∂Bn

∣
∣f (a + rζ ) – f (a)

∣
∣dσ (ζ ).

Let h be a holomorphic function in B
n. We say that h ∈ B if

sup
z∈Bn

(
 – |z|)∣∣∇h(z)

∣∣ < ∞;

similarly, h ∈ B if h ∈ B and

lim|z|→–

(
 – |z|)∣∣∇h(z)

∣
∣ = .

It is obvious that a pluriharmonic mapping f = h + ḡ ∈ P(Bn) (resp. PB(Bn)) if and only
if both h, g ∈ B (resp. B).

The following is a characterization of the space B (resp. B).
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Lemma  ([]) Let h be holomorphic in B
n and N a positive integer. Then h ∈ B (resp.

B) if and only if

sup
z∈Bn

(
 – |z|)N

∣∣
∣∣
∂mh(z)
∂zm

∣∣
∣∣ < ∞

(
resp. lim|z|→–

(
 – |z|)N

∣∣
∣∣
∂mh(z)
∂zm

∣∣
∣∣ = 

)

for all values of the multi-index m with |m| = N .

Corollary  Let f = h + ḡ be a pluriharmonic mapping in B
n and N a positive integer. Then

f ∈PB(Bn) (resp. PB(Bn)) if and only if

sup
z∈Bn

(
 – |z|)N(∣∣∂mf

∣
∣ +

∣
∣∂

mf
∣
∣) = sup

z∈Bn

(
 – |z|)N(∣∣∂mh

∣
∣ +

∣
∣∂

mg
∣
∣) < ∞,

respectively,

lim|z|→–

(
 – |z|)N(∣∣∂mf

∣
∣ +

∣
∣∂

mf
∣
∣) = lim|z|→–

(
 – |z|)N(∣∣∂mh

∣
∣ +

∣
∣∂

mg
∣
∣) → 

for all values of the multi-index m with |m| = N .

As an application of Lemma , we obtain the following.

Lemma  Let h be holomorphic in B
n. Then h ∈ B if and only if for each j ∈ {, . . . , n},

L = sup
z,w∈Bn ,z �=w

( – |z|)( – |w|)
|z – w|

∣
∣∣∣
∂h(z)
∂zj

–
∂h(w)
∂zj

∣
∣∣∣ < ∞.

Proof Fixing a point w and letting

z = w + ξ∇
(

∂h
∂zj

)
(w) → w

with ξ ∈C, we have

(
 – |w|)

∣
∣∣
∣∇

(
∂h
∂zj

)
(w)

∣
∣∣
∣ ≤ L,

for each j ∈ {, . . . , n}. By Lemma , we see that h ∈ B.
For the converse, we assume that h ∈ B. Let hj(z) = ∂h(z)

∂zj
, then for each j ∈ {, . . . , n},

∣∣hj(z) – hj(w)
∣∣ =

∣
∣∣∣

∫ 



dhj

ds
(
sz + ( – s)w

)
ds

∣
∣∣∣

≤
n∑

k=

∣∣
∣∣(zk – wk)

∫ 



∂hj

∂zk

(
sz + ( – s)w

)
ds

∣∣
∣∣

≤ √
n|z – w|

∫ 



∣∣∇hj
(
sz + ( – s)w

)∣∣ds

≤ C|z – w|
∫ 



ds
( – |sz + ( – s)w|) .
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It follows from [] that there exists  < C < ∞ such that

∫ 



ds
( – |sz + ( – s)w|) ≤ C

( – |z|)( – |w|)
.

This implies that

sup
z,w∈Bn ,z �=w

( – |z|)( – |w|)
|z – w|

∣
∣hj(z) – hj(w)

∣
∣ < ∞.

So the result follows. �

3 The Bloch space for pluriharmonic mappings
In this section, we give some characterizations of the spaces PB(Bn) and PB(Bn) which
can be viewed as the generalizations of Yoneda’s results in the higher dimensional case.

Theorem  Let f ∈P(Bn), N ≥  be an integer and  < r < . Then f ∈PB(Bn) if and only
if

Lf = sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w| < ∞

for all values of the multi-index m with |m| = N , where α + β = N + .

Proof First we prove the sufficiency. Let f (z) ∈ P(Bn), then for each multi-index m with
|m| = N , D̂(m)f (z) is also pluriharmonic. According to Lemma , for z ∈ B

n and r ∈ (, ),

∣∣∇(
D̂(m)f

)
(z)

∣∣ +
∣∣∇(

D̂(m)f
)
(z)

∣∣ ≤ C
( – |z|)

∫

∂Bn

∣∣(D̂(m)f
)
(z + �ζ ) –

(
D̂(m)f

)
(z)

∣∣dσ (ζ ),

where � = r(–|z|)
 . By a simple computation, we see that Bn(z,�) ⊂ E(z, r), so

∣∣∇(
D̂(m)f

)
(z)

∣∣ +
∣∣∇(

D̂(m)f
)
(z)

∣∣ ≤ C
( – |z|)

sup
w∈E(z,r)

∣∣(D̂(m)f
)
(z) –

(
D̂(m)f

)
(w)

∣∣.

Since for each w ∈ E(z, r), w �= z,

( – |z|) 
 ( – |w|) 



|z – w| ≥ ( – r) 


r
,

by Lemma , we can deduce that

( – |z|)α( – |w|)β

|z – w| ≥ C
(
 – |z|)N .

Therefore, there exists a positive constant C such that

(
 – |z|)N+(∣∣∇(

D̂(m)f
)∣∣ +

∣
∣∇(

D̂(m)f
)∣∣) ≤ CLf ,

from which we see that f ∈PB(Bn).
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Now we prove the necessity. Let w ∈ E(z, r), w �= z. Then for each multi-index m with
|m| = N , we have

∣∣(D̂(m)f
)
(z) –

(
D̂(m)f

)
(w)

∣∣ =
∣
∣∣
∣

∫ 



d(D̂(m)f )
ds

(
sz + ( – s)w

)
ds

∣
∣∣
∣

≤
n∑

k=

∣∣
∣∣(zk – wk)

∫ 



∂(D̂(m)f )
∂zk

(
sz + ( – s)w

)
ds

∣∣
∣∣

+
n∑

k=

∣∣
∣∣(z̄k – w̄k)

∫ 



∂(D̂(m)f )
∂ z̄k

(
sz + ( – s)w

)
ds

∣∣
∣∣

≤ √
n|z – w|

∫ 



(∣∣∇(
D̂(m)f

)(
sz + ( – s)w

)∣∣

+
∣∣∇(

D̂(m)f
)(

sz + ( – s)w
)∣∣)ds

≤ C|z – w|
∫ 



ds
( – |sz + ( – s)w|)N+ .

By Lemma  we infer that there exists ι >  such that  – |w| = ι( – |z|) and

|(D̂(m)f )(z) – (D̂(m)f )(w)|
|z – w| ≤ C

∫ 



ds
(s( – |z|) + ( – s)( – |w|))N+

≤ C′

( – |z|)N+

∫ 



ds
[s + ι( – s)]N+

≤ C′′

( – |z|)α( – |w|)β
.

Thus,

Lf = sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w| < ∞.

So the proof is complete. �

Theorem  Let f ∈P(Bn) and N = , . Then f ∈PB(Bn) if and only if

sup
z,w∈Bn ,z �=w

(
 – |z|) N


(
 – |w|) N



∣
∣∣
∣
(D̂(m)f )(z) – (D̂(m)f )(w)

z – w

∣
∣∣
∣ < ∞

for all multi-index with |m| = N – .

Proof The sufficiency follows from Theorem . We only need to prove the necessity. When
N = , we refer to [, ]. Now we prove N = . Let f = h + ḡ . Then for each j ∈ {, . . . , n},

sup
z,w∈Bn ,z �=w

( – |z|)( – |w|)
|z – w|

∣
∣∣
∣
∂f (z)
∂zj

+
∂f (z)
∂ z̄j

–
∂f (w)
∂zj

–
∂f (w)
∂ z̄j

∣
∣∣
∣

≤ sup
z,w∈Bn ,z �=w

( – |z|)( – |w|)
|z – w|

(∣
∣∣
∣
∂h(z)
∂zj

–
∂h(w)
∂zj

∣
∣∣
∣ +

∣
∣∣
∣
∂g(z)
∂zj

–
∂g(w)
∂zj

∣
∣∣
∣

)
.
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Since f ∈PB(Bn), h, g ∈ B, by Lemma ,

sup
z,w∈Bn ,z �=w

( – |z|)( – |w|)
|z – w|

∣
∣∣∣
∂h(z)
∂zj

–
∂h(w)
∂zj

∣
∣∣∣ < ∞,

≤ sup
z,w∈Bn ,z �=w

( – |z|)( – |w|)
|z – w|

∣
∣∣∣
∂g(z)
∂zj

–
∂g(w)
∂zj

∣
∣∣∣ < ∞.

This completes the proof. �

Theorem  Let f ∈ PB(Bn), N ≥  be an integer and  < r < . Then f ∈ PB(Bn) if and
only if

lim|z|→–
sup

z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w| =  ()

for all values of the multi-index m with |m| = N , where α + β = N + .

Proof Sufficiency. Assume that () holds. Then for any ε > , there exists δ ∈ (, ) such
that

sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w| < ε

whenever δ < |z| < . It follows from an argument similar to the proof of Theorem , that
we have

(
 – |z|)N+(∣∣∇(

D̂(m)f
)∣∣ +

∣∣∇(
D̂(m)f

)∣∣)

≤ C sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w| < Cε,

whenever δ < |z| < . Hence

lim|z|→–

(
 – |z|)N+(∣∣∇(

D̂(m)f
)∣∣ +

∣∣∇(
D̂(m)f

)∣∣) = ,

from which we see that f ∈PB(Bn).
Necessity. For λ ∈ (, ), let fλ(z) = f (λz). By Lemma  and the proof of Theorem , we

see that for each multi-index m with |m| = N ,

( – |z|)α( – |w|)β |D̂(m)(f – fλ)(z) – D̂(m)(f – fλ)(w)|
|z – w|

≤ C
(
 – |ξ |)N+(∣∣∇D̂(m)(f – fλ)(ξ )

∣
∣ +

∣
∣∇D̂(m)(f – fλ)(ξ )

∣
∣)

and

( – |z|)α( – |w|)β |D̂(m)fλ(z) – D̂(m)fλ(w)|
|z – w|

≤ Cλ

( – |λ|)N+

(
 – |η|)N+(∣∣∇(

D̂(m)fλ
)
(η)

∣
∣ +

∣
∣∇(

D̂(m)fλ
)
(η)

∣
∣)
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for all z, w ∈ B
n, ρ(z, w) < r and ξ ,η ∈ E(z, r). So

Lf ≤ C
(
 – |ξ |)N+(∣∣∇D̂(m)(f – fλ)(ξ )

∣∣ +
∣∣∇D̂(m)(f – fλ)(ξ )

∣∣)

+
Cλ

( – |λ|)N+

(
 – |η|)N+(∣∣∇(

D̂(m)fλ
)
(η)

∣
∣ +

∣
∣∇(

D̂(m)fλ
)
(η)

∣
∣).

First letting |z| → – and then letting λ → –, we obtain the desired result. �

From Theorem  and the proof of Theorem , we have the following.

Corollary  Let f ∈PB(Bn) and N = , . Then f ∈PB(Bn) if and only if

lim|z|→–
sup

z,w∈Bn ,z �=w

(
 – |z|) N


(
 – |w|) N



∣∣
∣∣
(D̂(m)f )(z) – (D̂(m)f )(w)

z – w

∣∣
∣∣ = 

for all multi-index with |m| = N – .

4 The Besov space for pluriharmonic mappings
In order to state and prove our next result, we need the following lemmas.

Lemma  Let f ∈P(Bn). Then f ∈ Bp if and only if

sup
z∈Bn

(
 – |z|)N+(∣∣∇(

D̂(m)f
)∣∣ +

∣∣∇(
D̂(m)f

)∣∣) ∈ Lp(
B

n, dλ
)

for all values of the multi-index m with |m| = N , and p(N + ) ≥ n.

Proof This follows from [], Theorem .. �

Lemma  Let h be holomorphic in B
n and  < r < . Then there exist constants K > ,

r < r′ <  such that

sup
z∈Bn ,ρ(z,w)<r,z �=w

∣∣
∣∣
h(z) – h(w)

z – w

∣∣
∣∣ ≤ K

∫

E(z,r′)

∣
∣∇h(u)

∣
∣dλ(u).

Proof By the subharmonicity and Lemma , for each w ∈ B
n, we have

sup
z∈Bn ,ρ(z,w)<r,z �=w

∣
∣∣
∣
h(z) – h(w)

z – w

∣
∣∣
∣ ≤ C sup

ζ∈E(z,r)

∣∣∇h(ζ )
∣∣

≤ C
|E(z, r′)|

∫

E(z,r′)

∣
∣∇h(ζ )

∣
∣dv(ζ )

≤ K
∫

E(z,r′)

∣
∣∇h(ζ )

∣
∣dλ(ζ )

for some r′ > r. �

Theorem  Let f ∈P(Bn), N ≥  be an integer and  < r < . Then f ∈ Bp if and only if

Kf =
∫

Bn

(
sup

z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w|

)p

dλ(z) < ∞

for all values of the multi-index m with |m| = N , where α + β = N + , and p(N + ) ≥ n.
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Proof Let f = h + ḡ ∈P(Bn). Suppose that

∫

Bn

(
sup

z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w|

)p

dλ(z) < ∞.

Let

Lf (z) = lim
z→w

sup
( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|

|z – w| .

It follows from the proof of Theorem  that we have

(
 – |z|)N+(∣∣∇(

D̂(m)f
)
(z)

∣∣ +
∣∣∇(

D̂(m)f
)
(z)

∣∣) ≤ CLf (z).

Since Lf (z) ≤ Lf , we see that

∫ (
 – |z|)(N+)p(∣∣∇(

D̂(m)f
)∣∣ +

∣
∣∇(

D̂(m)f
)∣∣)p dλ(z)

≤ C
∫

Bn

(
sup

z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β |D̂(m)f (z) – D̂(m)f (w)|
|z – w|

)p

dλ(z),

which yields f ∈ Bp.
To prove the necessity, we suppose that f = h + ḡ ∈ Bp. By Lemmas  and , for each

multi-index m,

Lf ≤ sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)α( – |w|)β (|∂mh(z) – ∂mh(w)| + |∂mg(z) – ∂mg(w)|)
|z – w|

≤ C sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)N+|∂mh(z) – ∂mh(w)|
|z – w|

+ C sup
z∈Bn ,ρ(z,w)<r,z �=w

( – |z|)N+|∂mg(z) – ∂mg(w)|
|z – w|

≤ C

∫

E(z,r′)

(
 – |u|)N+(∣∣∇(

∂mh
)
(u)

∣
∣ +

∣
∣∇(

∂mg
)
(u)

∣
∣)dλ(u).

Since
∫

E(z,r′)
dλ(u) < ∞,

by Hölder’s inequality and Fubini’s theorem, we can obtain

Kf ≤ C
∫

Bn

(∫

E(z,r′)

(
 – |u|)N+(∣∣∇(

∂mh
)
(u)

∣
∣ +

∣
∣∇(

∂mg
)
(u)

∣
∣)dλ(u)

)p

dλ(z)

≤ C
∫

Bn

(∫

E(z,r′)

(
 – |u|)(N+)p(∣∣∇(

∂mh
)
(u)

∣∣ +
∣∣∇(

∂mg
)
(u)

∣∣)p dλ(u)
)

dλ(z)

≤ C′
∫

Bn

(
 – |u|)(N+)p(∣∣∇(

∂mh
)
(u)

∣∣ +
∣∣∇(

∂mg
)
(u)

∣∣)p dλ(u).

It follows from Lemma  that Kf is bounded. This completes the proof. �
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