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Abstract
In this paper, we propose some preconditioning techniques for reduced saddle point
systems arising from linear elliptic distributed optimal control problems. The
eigenvalues of preconditioned matrices are analyzed. Moreover, the bounds of these
eigenvalues with respect to the mesh size h are also obtained. Some numerical tests
are presented to validate the theoretical analysis.
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1 Introduction
We consider the preconditioning techniques for solving the saddle point system arising
from linear elliptic distributed optimal control problems:

min
u,f



‖u – û‖

L(�) + β‖f ‖
L(�)

subject to – �u = f in �,

u = g on ∂�, ()

where � ⊂ R
 is a simply connected polygonal domain with a connected boundary ∂�.

The data û is the target function, and the parameter β is the Tikhonov regular parameter. u
is the state variable, and f is called the control variable. Such problems are simple models,
which were originally introduced by Lions in []. Some more complex formulations, which
include control constraints or state constraints, can be found in [–].

For the elliptic PDE-constrained optimization problem (), we take the method based on
discretize-then-optimize [] approach. More concretely, we use the P conforming finite
elements for the approximations of the state variable u and the control variable f , which
yields the following corresponding minimization problem [, ]:

⎧
⎨

⎩

min
u,f


 uT Mu – uT b + α + βfT Mf

subject to Ku = Mf + d,
()
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where K ∈R
m×m is the stiffness matrix, M ∈ R

m×m is the mass matrix. Both M and K are
symmetric and positive definite. b ∈ R

m is the discrete Galerkin projection of the target
function û. α = 

‖û‖
L(�), and d ∈ R

m contains the terms arising from the boundaries of
finite element approximation of the state u. Then, using the Lagrange multiplier technique
for the minimization problem (), we can find that f , u and λ satisfy the following linear
saddle point system []:

Ax =

⎛

⎜
⎝

βM  –M
 M K

–M K 

⎞

⎟
⎠

⎛

⎜
⎝

f
u
λ

⎞

⎟
⎠ =

⎛

⎜
⎝


b
d

⎞

⎟
⎠ = g, ()

where λ is a vector of Lagrange multipliers. To obtain the above system, we have used the
fact that K = KT . Obviously, from the first equation of (), we can obtain that

f =


β
λ. ()

Substituting () into (), we can easily obtain the following reduced system:

Ay =

(
M K
K – 

β
M

)(
u
λ

)

=

(
b
d

)

= g. ()

This paper is devoted to constructing efficient preconditioners for the reduced linear
saddle point system (). Comparing with (), () is a smaller linear system so that it can
help us to reduce computational cost. As we know, previous work has been mainly devoted
to the development of efficient solution techniques for the original linear saddle point sys-
tem (), such as the block diagonal preconditioner and the constraint preconditioner [],
block triangular diagonal preconditioner [], block-counter-diagonal and block-counter-
tridiagonal preconditioning techniques []. Other recent work in this direction can also be
found in [–]. For the reduced saddle point problem (), there have existed several pre-
conditioning algorithms, we refer the reader to [–] for details. In our work, we extend
similar preconditioning techniques, which were used in [, ] for system (), to the sad-
dle point system (). We also refer the reader to [] for analogous discussions, where the
optimal control of Stokes equations was addressed. The major contribution of our work
is to establish the bounds of eigenvalues of the preconditioned matrices with respect to
the discretization mesh size h, though we also provide the analysis of eigenvalues of the
preconditioned matrices using the usual linear algebraic techniques developed in [, ,
]. In particular, for the case that the Tikhonov parameter β is not very small, the bounds
of eigenvalues of preconditioned matrices are proved to remain bounded away from  as
h →  with a bound independent of h. This suggests that they are optimal preconditioners
in the sense that their performances are independent of the mesh size h.

The rest of our paper is organized as follows. In Section , we provide precondition-
ing techniques for the situation that the Tikhonov parameter β is not very small, then
we discuss the corresponding spectral analysis. In Section , we propose precondition-
ing techniques for the case that the Tikhonov parameter β is sufficiently small, and then
the corresponding spectral analysis is presented. In Section , some numerical results are
presented to demonstrate our theoretical analysis.
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2 Preconditioners for the Tikhonov parameter β not very small
When the Tikhonov parameter β is not very small, we may provide block-counter diago-
nal preconditioner Pbcd and block-counter-triangular diagonal preconditioner Pbctd as the
following form:

Pbcd =

(
 K
K 

)

()

and

Pbctd =

(
M K
K 

)

. ()

For the block-counter diagonal preconditioner Pbcd, we have the following results.

Theorem . Let A ∈R
m×m be the coefficient matrix of the linear system () and Pbcd ∈

R
m×m be defined in (). Denote by νl the eigenvalue of K–M ∈ R

m×m, where νl > , l =
, , . . . , m, and by x(l) ∈C

m the corresponding eigenvector for l = , , . . . , m. Then
(i) the eigenvalues of the preconditioned matrix P–

bcdA are

λ
(l)
k =  –

√


β
νle

(k+)π i
 , k = , , l = , , . . . , m,

where i denotes the imaginary unit;
(ii) the eigenvectors of the preconditioned matrix P–

bcdA are of the form

(
x(l)

–
√

β

μl
e

(k+)π i
 K–Mx(l)

)

, l = , , . . . , m, k = , .

Proof (i) By a direct calculation, we get

P–
 A =

(
 K–

K– 

)(
M K
K – 

β
M

)

=

(
I – 

β
K–M

K–M I

)

. ()

To proceed, let

E = I – P–
 A =

(
 

β
K–M

–K–M 

)

=

(
 

β
D

–D 

)

, ()

where D = K–M. Therefore,

E =

(
– 

β
D 

 – 
β

D

)

. ()

Then from () we can know that if νl is the eigenvalue of K–M, then the eigenvalues
of E are

√


β
νle

(k+)π i
 , k = , . Thus, the eigenvalues of the preconditioned matrix P–

bcdA

are  –
√


β

νle
(k+)π i

 , k = , . This yields (i).
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(ii) By similar techniques used in the proof of (ii) in Theorem ., we can obtain the
corresponding conclusions. �

For the block-counter-triangular diagonal preconditioner Pbctd, we have the following
results.

Theorem . Let A ∈R
m×m be the coefficient matrix of the linear system () and Pbctd ∈

R
m×m be defined in (). Denote by νl the eigenvalue of K–M ∈ R

m×m, where νl > , l =
, , . . . , m, and by y(l) ∈C

m the eigenvector of (K–M) for l = , , . . . , m. Then
(i) the eigenvalues of the preconditioned matrix P–

bctdA are  with algebraic multiplicity
m, and the remaining eigenvalues equal 

β
ν

l + , l = , , . . . , m;
(ii) the eigenvectors of the preconditioned matrix P–

bctdA are of the form

(
x


)

, ∀x ∈ Cm\{}, and

(
– 

ν
K–My(l)

y(l)

)

, l = , , . . . , m.

Proof (i) A straightforward calculation shows that

P–
bctdA =

(
 K–

K– –K–MK–

)(
M K
K – 

β
M

)

=

(
I – 

β
K–M

 I + 
β

K–MK–M

)

. ()

It follows from the above equality that the eigenvalues of the preconditioned matrix P–
bctdA

are  with algebraic multiplicity m, and m eigenvalues with the form  + 
β

ν, where ν is
any eigenvalue of the matrix K–M. This demonstrates the conclusions of (i).

(ii) Let {λ, (x, y)T } be an eigenpair for the matrix P–
bctdA, then from the expression of

P–
bctdA in (), we have

(
I – 

β
K–M

 I + 
β

K–MK–M

)(
x
y

)

=

(
x
y

)

= λe,

or the above equation can be rewritten as

⎧
⎨

⎩

(x – 
β

K–My) = λx,

(I + 
β

K–MK–M)y = λy.

It is easy to see that if λ = , then y = , thus the corresponding eigenvectors take the form

e =

(
x


)

, with ∀x ∈C
m\{}. ()

If λ �= , we have

x =


β( – λ)
K–My ()

and

(
I + βM–KM–K

)
y = λy. ()
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Thus, λ = 
β

ν + , with ν an eigenvalue of the matrix K–M. Direct computations lead to

x = –

ν

K–My. ()

Obviously, y ∈C
m is an eigenvector of the matrix (K–M). This completes the proof. �

Furthermore, using the theory of finite element methods, we can use the results stated
in the above two theorems to obtain more concrete bounds that involved the discretiza-
tion mesh size h. Since in our numerical tests we use the P conforming finite elements
to discretize problem (), we recall the following lemma from [, ] which will be used
frequently in our theory analysis.

Lemma . Let Th = {Ti : i = , , . . . , Eh} be a family of quasi-uniform and shape regularity
triangulations of the domain � ⊂ R

. Denote by hTi the diameter of the element Ti and
h = maxTi∈Th hTi . For the P conforming finite element, the mass matrix M and the stiffness
matrix K satisfy

ch ≤ xT Mx
xT x

≤ ch, ()

dh ≤ xT Kx
xT x

≤ d, ()

∀x �=  ∈R
m. Constants c, c, d and d are positive and independent of h and β .

With the above prepared techniques, we can obtain the following two corollaries.

Corollary . Let λ be an eigenvalue of P–
bcdA, with Pbcd andA being defined in () and ().

Then the following bound holds:

√

 +
c

 h

βd


≤ |λ| ≤
√

 +
c


βd


. ()

Proof From (i) in Theorem ., the eigenvalues of P–
bcdA are

λ
(l)
k =  –

√


β
νle

(k+)π i
 , k = , , l = , , . . . , m.

A direct calculation shows that

∣
∣λ

(l)
k

∣
∣ =  +


β

ν
l – 

√


β
cos

(k + )π


=  +


β
ν

l . ()

In the last step of the above equation we have used the fact that cos (k+)π
 = .

Thus, from the above equality, we know that if we want to bound |λ(l)
k |, it is sufficient to

bound νl . Recalling that νl is an eigenvalue of K–M, we get

K–Mx = νlx,

i.e., Mx = νlKx,
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thus xT Mx = νlxT Kx,

νl =
xT Mx
xT Kx

. ()

From () in Lemma ., we obtain


d

≤ xT x
xT Kx

≤ 
dh . ()

Thus, from (), () and () we get

ch

d
≤ νl ≤ c

d
. ()

Then the corollary follows by () and (). �

Corollary . Let λ be an eigenvalue of P–
bctdA, with Pbctd and A defined in () and ().

Then the eigenvalues of the preconditioned matrix P–
bctdA are  with algebraic multiplicity

m, the remaining m eigenvalues can be bounded as follows:

√

 +
c

 h

βd


≤ λ ≤
√

 +
c


βd


. ()

Proof From (i) in Theorem ., using the same proof procedure as in Corollary ., we
can obtain the corresponding conclusion. �

Remark . From () and () in Corollaries . and ., we can see that the eigenvalues
of the preconditioned matrices P–

bcdA and P–
bctdA satisfy

 ≤ |λ| ≤
√

 +
c


βd


as h → . ()

Furthermore, if β is not too small, then from () we know that the eigenvalues of the
preconditioned matrices P–

bcdA and P–
bctdA are clustered. When the parameter β is not

too small, () also means that Pbcd and Pbtcd may perform as optimal preconditioners in
the sense that their performances are independent of the mesh size h.

Remark . In practical computations, we may choose good approximations K̃ and M̃ for
K and M, respectively. Then the corresponding preconditioners Pbcd and Pbctd are replaced
by

P̃bcd =

(
 K̃
K̃ 

)

and P̃bctd =

(
M̃ K̃
K̃ 

)

,

respectively.
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3 Preconditioners for the Tikhonov parameter β sufficiently small
In this section, we discuss block diagonal and block-triangular diagonal preconditioning
techniques for the linear system () and analyze the eigenvalues and eigenvectors of the
preconditioned matrices. The block diagonal preconditioner is given by

Pbd =

(
M 
 – 

β
M

)

, ()

and the block-triangular diagonal preconditioner is of the form

Pbtd =

(
M K
 – 

β
M

)

. ()

Moreover, we find that both the preconditioned matrices P–
bdA and P–

btdA have eigenvalues
around  when the Tikhonov parameter β is sufficiently small (i.e., β 
 ). These prop-
erties are stated in the following two theorems. The spectral analysis for preconditioned
matrices is largely based on the references [, ]. First, we consider the block diagonal
preconditioner.

Theorem . Let A ∈ R
m×m be the coefficient matrix of the linear system () and Pbd ∈

R
m×m be defined in (). Set μl the eigenvalue M–K ∈ R

m×m, where μl > , l = , , . . . , m,
and x(l) ∈C

m the corresponding eigenvector for l = , , . . . , m. Then
(i) the eigenvalues of the preconditioned matrix P–

bdA are

λ
(l)
k =  –

√
βμle

(k+)π i
 , k = , , l = , , . . . , m,

where i denotes the imaginary unit;
(ii) the eigenvectors of the preconditioned matrix P–

bdA are of the form

⎛

⎝
– 

√
βμle

(k+)π i


M–Kx(l)

x(l)

⎞

⎠ , l = , , . . . , m, k = , .

Proof (i) A simple calculation shows that

P–
bdA =

(
M– 

 –βM–

)(
M K
K – 

β
M

)

=

(
I M–K

–βM–K I

)

. ()

To proceed, let

C = I – P–
bdA =

(
 –M–K

βM–K 

)

=

(
 –B

βB 

)

, ()

where B = M–K . Therefore,

C =

(
–βB 

 –βB

)

. ()
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From () we can know that if μl is the eigenvalue of M–K , then the eigenvalues of C
are

√
βμle

(k+)π i
 , k = , . Thus, the eigenvalues of the preconditioned matrix P–

bdA are
 –

√
βμle

(k+)π i
 , k = , . This leads to (i).

(ii) Let μl be the eigenvalue of M–K ∈ R
m×m and x(l) ∈C

m be the corresponding eigen-
vector for l = , , . . . , m, then

M–KM–Kx(l) = μ
l x(l).

Multiplying both sides of the above equation by –β yields

–βM–KM–Kx(l) = –βμ
l x(l) =

(√
βμle

(k+)π i


)x(l),

i.e.,

–βM–K


√
βμle

(k+)π i


· M–Kx(l) =
(√

βμle
(k+)π i


)
x(l). ()

Let

y = –


√
βμle

(k+)π i


M–Kx(l),

then

–M–Kx(l) =
(√

βμle
(k+)π i


)
y. ()

From the expressions of () and () we obtain

⎧
⎨

⎩

–Bx(l) = (
√

βμle
(k+)π i

 )y,

βBy = (
√

βμle
(k+)π i

 )x(l).

Thus,

C

(
y

x(l)

)

=

(
 –B

βB 

)(
y

x(l)

)

=
(√

βμle
(k+)π i


)
(

y
x(l)

)

.

Therefore, if x(l) ∈ C
m is an eigenvector of the matrix B, then

( y
x(l)

)
is the eigenvector of the

matrix C ∈R
m×m. This finishes the proof. �

Then we turn our attention to the block-triangular diagonal preconditioner.

Theorem . Let A ∈ R
m×m be the coefficient matrix of the linear system () and

Pbtd ∈ R
m×m be defined in (). Set μl the eigenvalue of M–K ∈ R

m×m, where μl > ,
l = , , . . . , m, and x(l) ∈C

m the eigenvector of the matrix (M–K) for l = , , . . . , m. Then
(i) the eigenvalues of the preconditioned matrix P–

btdA are  with algebraic multiplicity
m, and the remaining eigenvalues are equal to βμ

l + , l = , , . . . , m;
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(ii) the eigenvectors of the preconditioned matrix P–
btdA are of the form

(

y

)

, ∀y ∈ Cm\{}, and

(
x(l)

– 
μ

M–Kx(l)

)

, l = , , . . . , m.

Proof (i) By a direct calculation we get that

P–
btdA =

(
M– βM–KM–

 –βM–

)(
M K
K – 

β
M

)

=

(
I + βM–KM–K 

–βM–K I

)

. ()

It follows from the above equality that the eigenvalues of the preconditioned matrix
P–

btdA are  with algebraic multiplicity m, and m eigenvalues with the form  + βμ, where
μ is any eigenvalue of the matrix M–K . This demonstrates the conclusions of (i).

(ii) Let {λ, (x, y)T } be an eigenpair for the matrix P–
btdA, then from the expression of P–

btdA
in (), we have

(
I + βM–KM–K 

–βM–K I

)(
x
y

)

= λ

(
x
y

)

= λe,

or the above equation can be rewritten as

⎧
⎨

⎩

(I + βM–KM–K)x = λx,

–βM–Kx + y = λy.

It is easy to see that if λ = , then x = , thus the corresponding eigenvectors take the form

e =

(

y

)

, with ∀y ∈ C
m\{}. ()

If λ �= , we have

y =
β

 – λ
M–Kx ()

and

(
I + βM–KM–K

)
x = λx. ()

Thus, λ = βμ + , with μ an eigenvalue of the matrix M–K . A direct calculation shows
that

y = –

μ

M–Kx. ()

Obviously, x ∈C
m is an eigenvector of the matrix (M–K). This completes the proof. �

Furthermore, we provide more concrete bounds which involved the discretization mesh
size h. The results are stated in the following corollaries.
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Corollary . Let λ be an eigenvalue of P–
bdA, with Pbd and A defined in () and ().

Then the following bound holds:

√

 +
βd


c


≤ |λ| ≤

√

 +
βd


c

 h . ()

Proof From (i) in Theorem ., the eigenvalues of P–
bdA are

λ
(l)
k =  –

√
βμle

(k+)π i
 , k = , , l = , , . . . , m.

A direct calculation leads to

∣
∣λ

(l)
k

∣
∣ =  + βμ

l – 
√

β cos
(k + )π


=  + βμ

l . ()

In the last step of the above equation we have used the fact that cos (k+)π
 = .

Thus, from the above equation, we know that if we want to bound |λ(l)
k |, it is enough to

bound μl . Recalling that μl is an eigenvalue of M–K , we get

M–Kx = μlx,

i.e., Kx = μlMx,

thus xT Kx = μlxT Mx,

μl =
xT Kx
xT Mx

. ()

From () in Lemma ., we obtain


ch ≤ xT x

xT Mx
≤ 

ch . ()

Thus, from (), () and () we get

d

c
≤ μl ≤ d

ch . ()

Then the corollary follows by () and (). �

Corollary . Let λ be an eigenvalue of P–
btdA, with Pbtd and A defined in () and ().

Then the eigenvalues of the preconditioned matrix P–
btdA are  with algebraic multiplicity

m, the remaining m eigenvalues can be bounded as follows:

√

 +
βd


c


≤ λ ≤

√

 +
βd


c

 h . ()

Proof From (i) in Theorem ., using the same proof procedure as in Corollary ., we
can obtain the corresponding conclusion. �
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Remark . From Theorems . and ., we can see that the eigenvalues of the precon-
ditioned matrices P–

bdA and P–
btdA are around  when the Tikhonov parameter β is suffi-

ciently small.

Remark . In actual computations, we may choose good approximations K̃ and M̃ for
K and M, respectively. Then the corresponding preconditioners Pbd and Pbtd are replaced
by

P̃bd =

(
M̃ 
 – 

β
M̃

)

and P̃btd =

(
M̃ K̃
 – 

β
M̃

)

,

respectively. Some examples of proper M̃ and K̃ were presented in [, ].

4 Numerical experiments
The test problem we consider is the following linear elliptic optimal control problem:

min
u,f



‖u – û‖

 + β‖f ‖


subject to – �u = f in �,

u =  on ∂�,

where � = (, ) × (, ), û ∈ L(�) is given by

û =

⎧
⎨

⎩

 if (x, y) ∈ [, 
 ],

, otherwise.

Our numerical experiments are performed by MATLAB. We consider four uniformly
refined meshes, which are constructed by subsequently splitting each triangle into four
triangles by connecting the midpoints of the edges of the triangle. First, by setting the
regular parameter β = – (not very small), we show the eigenvalues of the precondi-
tioned matrices P–

bcdA and P–
bctdA in Figures  and , they are both clustered. These results

demonstrate the theoretical analysis in Theorems . and .. Also, by setting the regular
parameter β = – (very small), we show the eigenvalues of the preconditioned matrices

Figure 1 The eigenvalue distribution of the
preconditioned matrix P–1

bcdA with β = 10–2 and
h = 2–3.
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Figure 2 The eigenvalue distribution of the
preconditioned matrix P–1

bctdA with β = 10–2 and
h = 2–3.

Figure 3 The eigenvalue distribution of the
preconditioned matrix P–1

bdA with β = 10–8 and
h = 2–3.

Figure 4 The eigenvalue distribution of the
preconditioned matrix P–1

btdA with β = 10–8 and
h = 2–3.

P–
bdA and P–

btdA in Figures  and , both of them are clustered. These results validate the
theoretical analysis in Theorems . and ..

Furthermore, for comparison, we show the number of iterations for different precondi-
tioners with different regular parameters in Table . In all implementations, we use zero
as initial guess and stop the iteration when ‖r(k)(= b – Ax(k))‖/‖r()(= b)‖ ≤ –. The
iteration methods we use are preconditioned GMRES methods. From the results stated
in Table , first we find that when the regular parameter β is not very small, the number
of iterations of Pbcd and Pbctd preconditioners is smaller than Pbd and Pbtd, thus we should
choose Pbcd or Pbctd as preconditioners. Moreover, in this case, we observe that the num-
ber of iterations of the preconditioned GMRES methods is hardly sensitive to the changes
in the mesh size h, this validates the analysis in Remark .. On the other hand, when the
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Table 1 The number of iterations for different preconditioners

β h Pbd Pbtd Pbcd Pbctd

10–1 2–2 296 5 4 3
2–3 - - 5 3
2–4 - - 5 3
2–5 - - 5 3

10–2 2–2 214 5 6 4
2–3 - - 6 4
2–4 - - 6 4
2–5 - - 6 4

10–3 2–2 180 5 8 5
2–3 - 2,899 12 5
2–4 - - 10 6
2–5 - - 8 6

10–4 2–2 50 5 14 5
2–3 1,172 414 20 9
2–4 - - 18 10
2–5 - - 20 10

10–5 2–2 14 5 22 5
2–3 142 62 84 26
2–4 1,972 967 96 30
2–5 - - 100 34

10–7 2–2 3 3 56 5
2–3 8 6 800 -
2–4 28 23 - -
2–5 284 188 - -

10–8 2–2 3 3 72 5
2–3 3 4 1,262 -
2–4 8 8 - -
2–5 30 31 - -

10–9 2–2 3 2 94 8
2–3 3 3 1,236 -
2–4 3 4 - -
2–5 5 9 - -

10–10 2–2 1 2 96 -
2–3 1 2 1,446 -
2–4 2 3 - -
2–5 3 4 - -

regular parameter β is very small, the number of iterations of Pbd and Pbtd preconditioners
is smaller than Pbcd and Pbctd, thus Pbd or Pbtd preconditioners are our choices.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by YZ. All authors contributed equally in writing this article and read and
approved the final manuscript.

Acknowledgements
We thank the anonymous referees for their valuable comments and suggestions which led to an improved presentation
of this paper. This work was supported by the opening fund of Jiangsu Key Lab for NSLSCS (Grant No. 201402), the
Training Program for Outstanding Young Teachers in Guangdong Province (Grant No. 20140202), and the Educational
Commission of Guangdong Province (Grant No. 2014KQNCX210).

Received: 30 March 2015 Accepted: 22 October 2015

References
1. Lions, JL: Optimal Control of Systems. Springer, New York (1968)



Zeng et al. Journal of Inequalities and Applications  (2015) 2015:355 Page 14 of 14

2. Bergounioux, M, Ito, K, Kunisch, K: Primal-dual strategy for constrained optimal control problems. SIAM J. Control
Optim. 37, 1176-1194 (1999)

3. Bergounioux, M, Kunisch, K: Primal-dual strategy for state-constrained optimal control problems. Comput. Optim.
Appl. 22, 193-224 (2002)

4. Casas, E: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 31, 1297-1327 (1993)
5. Rees, T, Dollar, HS, Wathen, AJ: Optimal solvers for PDE-constrained optimization. SIAM J. Sci. Comput. 32, 271-298

(2010)
6. Bai, Z: Block preconditioners for elliptic PDE-constrained problems. Computing 91, 379-395 (2011)
7. Rees, T, Stoll, M: Block-triangular preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 17,

977-996 (2010)
8. Herzog, R, Sachs, E: Preconditioned conjugate gradient method for optimal control problems with control and state

constraints. SIAM J. Matrix Anal. Appl. 31, 2291-2317 (2010)
9. Pearson, JW, Wathen, A: A new approximation of the Schur complement in preconditioners for PDE-constrained

optimization. Numer. Linear Algebra Appl. 19, 816-829 (2012)
10. Schöberl, J, Zulehner, W: Symmetric indefinite preconditioners for saddle point problems with applications to

PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29, 752-773 (2007)
11. Zhang, G, Zheng, Z: Block-symmetric and block-lower-triangular preconditioner PDE-constrained optimization

problems. J. Comput. Math. 31, 370-381 (2013)
12. Bai, Z, Benzi, M, Chen, F, Wang, Z: Preconditioned MHSS iteration methods for a class of block two-by-two linear

systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343-369 (2013)
13. Borzì, A, Schulz, V: Multigrid methods for PDE optimization. SIAM Rev. 51, 361-395 (2009)
14. Lass, O, Vallejos, M, Borzi, A, Douglas, CC: Implementation and analysis of multigrid schemes with finite elements for

elliptic optimal control problems. Computing 84, 27-48 (2009)
15. Schöberl, J, Simon, R, Zulehner, W: A robust multigrid method for elliptic optimal control problems. SIAM J. Numer.

Anal. 49, 1482-1503 (2011)
16. Simoncini, V: Reduced order solution of structured linear systems arising in certain PDE-constrained optimization

problems. Comput. Optim. Appl. 53, 591-617 (2012)
17. Vallejos, M, Borzì, A: Multigrid optimization methods for linear and bilinear elliptic optimal control problems.

Computing 82, 31-52 (2008)
18. Zulehner, W: Nonstandard norms and robust estimates for saddle point problems. SIAM J. Matrix Anal. Appl. 32,

536-560 (2011)
19. Wang, S: A class of preconditioned iterative methods for the optimal control of the Stokes equations. Master thesis,

Nanjing normal university (May 2014)
20. Elman, HC, Silvester, DJ, Wathen, AJ: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible

Fluid Dynamics. Numerical Mathematics and Scientific Computation Series. Oxford University Press, Oxford (2005)


	Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems
	Abstract
	MSC
	Keywords

	Introduction
	Preconditioners for the Tikhonov parameter beta not very small
	Preconditioners for the Tikhonov parameter beta sufﬁciently small
	Numerical experiments
	Competing interests
	Authors' contributions
	Acknowledgements
	References


