
Cheng and Tao Journal of Inequalities and Applications  (2015) 2015:344 
DOI 10.1186/s13660-015-0872-4

R E S E A R C H Open Access

Fractional integral operator on
modulation and Wiener amalgam spaces
Meifang Cheng* and Wenyu Tao

*Correspondence:
cmf78529@mail.ahnu.edu.cn
Department of Mathematics and
Computer Science, Anhui Normal
University, Wuhu, 241000, P.R. China

Abstract
The purpose of this paper is to investigate the mapping properties of the fractional
integral operators on weighted modulation spaces. Based on this result, we also study
the boundedness of the bilinear fractional integral operators on product Wiener
amalgam spaces. Our results show that, besides modulation spaces, Wiener amalgam
spaces are good substitutions for Lebesgue spaces.

MSC: Primary 42B20; 42B25

Keywords: fractional integral operator; weighted modulation space; bilinear
fractional integral operator; Wiener amalgam space

1 Introduction
Time-frequency analysis is a modern branch of harmonic analysis. It has many applica-
tions in signal analysis and wireless communication (see [, ]). Time-frequency analysis
is a form of local Fourier analysis that treats time and frequency simultaneously. Inspired
by this idea, modulation and Wiener amalgam spaces have been introduced and used to
measure the time-frequency concentration of a function or a tempered distribution (see
[–]). During the last ten years, these two function spaces have not only become use-
ful function spaces for time-frequency analysis, they have also been employed to study
boundedness properties of pseudo-differential operators, Fourier multipliers, Fourier in-
tegral operators, and well-posedness of solutions to PDEs. For more details of the appli-
cations of these two function spaces, the reader is referred to [–] and the references
therein.

In this paper, we are mainly concerned with the mapping properties of the fractional in-
tegral operator on weighted modulation spaces. Using this result, we also prove the bound-
edness of the bilinear fractional integral operator on product Wiener amalgam spaces.
From our results, we will see that, besides modulation spaces, Wiener amalgam spaces are
good substitutions for Lebesgue spaces.

The fractional integral operator Iα is defined by

Iαf (x) =


γ (α)

∫
Rn

f (y)
|x – y|n–α

dy, γ (α) =
π

n
 �( α

 )α

�( n–α
 )

,
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where  < α < n. The well-known Hardy-Littlewood-Sobolev theorem says that Iα is
bounded from Lp(Rn) to Lq(Rn) for  < p < q < ∞ and 

q = 
p – α

n . This theorem plays im-
portant roles in partial differential equations.

In recent years, many authors were interested in the mapping properties of the fractional
integral operator on modulation spaces. For example, in [], Tomita regarded the oper-
ator Iα as a special case of pseudo-differential operator and proved the following results.
Set  < α < n,  < ε <  – α

n , and  < ρ < α
n . If  < p, p, q, q < ∞ satisfy


q

=

p

–
α

n
– ε and


q

=


p
+

α

n
– ρ,

then there exists a constant Cα,ε,ρ > , such that

‖Iαf ‖Mq,q (Rn) ≤ Cα,ε,ρ‖f ‖Mp,p (Rn)

for all f ∈ S(Rn).
Subsequently, Sugimoto and Tomita improved the results in [] and obtained necessary

and sufficient conditions for the boundedness of the operator Iα (see []). Using the def-
initions of the discrete form for modulation spaces, which will be given by Definition .
in the next section, they proved that Iα is bounded from Mp,q (Rn) to Mp,q (Rn) if and
only if


p

≤ 
p

–
α

n
,


q

<

q

+
α

n
,

where  < α < n and  < p, p, q, q < ∞.
Recently, in [], by using the norm of Hardy spaces Hp, Chen and Zhong introduced

the modulation Hardy spaces Mp,q for  < p ≤  and  < q ≤ ∞. They proved that if np
n–αp ≤

r ≤ ∞, then Iα is bounded from Mp,q
–α to Mr,q for  < p ≤  and  < q ≤ ∞. Moreover, for

 < p < ∞ and  < q, q ≤ ∞, they obtained Iα is bounded from Mp,q to M∞,q if and only
if


p

>
α

n
,


q

<

q

+
α

n
.

In their proofs, Chen and Zhong also used the definition of the discrete form for modula-
tion spaces.

Inspired by Sugimoto and Tomita, using the definition of integral form for modulation
spaces, which will be given by Definition . in Section , we prove the following result.

Theorem . For  < α < n and s, s ∈R, let  < p, p < ∞ and  < q, q ≤ ∞. If


p

≤ 
p

–
α

n
,


q

<

q

+
α

n
and s < s + n

(

q

–


q

)
,

then the fractional integral operator Iα is bounded from Mp,q
s (Rn) to Mp,q

s (Rn).
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Another purpose of this paper is to study the mapping properties of the bilinear frac-
tional integral operator Bα , which is defined by

Bα(f , g)(x) =
∫
Rn

f (x – y)g(x + y)
|y|n–α

dy,

on modulation spaces. It was showed in [] that if  < p < n
n–α

and  < q ≤ ∞, then

∥∥B̂α(f , g)
∥∥

M∞,∞ ≤ C‖f ‖M,
∥∥F–(g)

∥∥
Mp,q .

In particular, for p ≤ q,

∥∥Bα(f , g)
∥∥

M∞,∞ ≤ C‖f ‖M,‖g‖Mq,p .

Inspired by Chen and Zhong, in this paper, we investigate the boundedness of the bilin-
ear fractional integral operator Bα on Wiener amalgam spaces. Our result is as follows.

Theorem . For  < α < n,  < p, p < ∞, and  ≤ q, q, p, q < ∞, let p′
 and q′

 denote
the conjugate index of p and q, respectively. Suppose q′

 ≥ p′
, 

p
≤ 

p
– n–α

n , 
q

< 
q

+
n–α

n , and 
q′


+ 

p′


= 
p

+ 
q

, then the operator Bα maps W (FLp , Lq ) × W (FLp , Lp′
 ) to

W (FLq′
 , Lq ).

In what follows, we always denote C to be a positive constant that may be different at
each place, but is independent of the essential variables.

This paper is organized as follows. In Section , we give the definitions and basic prop-
erties of modulation and Wiener amalgam spaces. Section  is devoted to the proofs of
our main results.

2 Basic definitions and important lemmas
The following notations will be used throughout this paper. Let S(Rn) be the Schwartz
space of all complex-valued rapidly decreasing infinitely differentiable functions onR

n and
S ′(Rn) be the topological dual of S(Rn). For a function f in S(Rn), its Fourier transform
is defined by f̂ (ω) =

∫
f (t)e–π iω·t dt, and its inverse Fourier transform is f̌ (t) = f̂ (–t). The

translation and the modulation operators are defined by

Txf (t) = f (t – x) and Mωf (t) = eπ iω·tf (t)

for every x,ω ∈R
n. For s ∈R and x ∈R

n, the weight function 〈x〉s = ( + |x|) s
 .

Definition . Let g be a non-zero Schwartz function and  ≤ p, q ≤ ∞ and s ∈ R, the
weighted modulation space Mp,q

s (Rn) is defined as the closure of the Schwartz class with
respect to the norm

‖f ‖Mp,q
s

=
(∫

Rn

(∫
Rn

∣∣Vgf (x, w)
∣∣p dx

) q
p
〈w〉sq dw

) 
q

,
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with obvious modifications for p or q = ∞, where Vgf (x, w) is the so-called short time
Fourier transform (STFT), which is defined by

Vgf (x, w) = 〈f , Mξ Txg〉 =
∫

e–π iw·yf (y)g(y – x) dy,

i.e. the Fourier transform F applied to f Txg .

Recently, the above definition has been generalized by Kobayashi in [] to the case
 < p, q ≤ ∞. In his definition, the function g is restricted to the space 
δ(Rn), which is
defined as follows.

Definition . For δ > , we define 
δ(Rn) to be the space of all g ∈ S(Rn) satisfying

supp ĝ ⊂ {
ξ : |ξ | ≤ 

}
and

∑
k∈Zn

ĝ(ξ – δk) = .

We may choose a sufficiently small δ, such that the function space 
δ(Rn) is not empty.

Definition . Given a g ∈ 
δ(Rn), and  < p, q ≤ ∞, s ∈ R, we define the modulation
space Mp,q

s (Rn) to be the space of all tempered distributions f ∈ S ′(Rn) such that the quasi-
norm

‖f ‖Mp,q
s

=
(∫

Rn

(∫
Rn

∣∣f ∗ (Mwg)(x)
∣∣p dx

) q
p
〈w〉sq dw

) 
q

is finite, with obvious modifications for p or q = ∞.

For a more general definition, involving different kinds of weight functions, both in the
time and the frequency variables we refer the reader to []. Definitions . and . are the
integral form. We also have the definition of discrete form for modulation spaces, which
is very useful in studying unimodular Fourier multipliers.

Definition . Let  ≤ p, q ≤ ∞, s ∈R, and φ ∈ S(Rn) be such that

suppφ ⊂ [–, ]n,
∑
k∈Zn

φ(ξ – k) = 

for all ξ ∈ R
n. Denote φk(ξ ) = φ(ξ – k) and let φk(D) be the Fourier multiplier operator

given by φ̂k(D)f (ξ ) = φk(ξ )f̂ (ξ ). Then the weighted modulation space Mp,q
s (Rn) consists of

all f ∈ S ′(Rn) such that

‖f ‖Mp,q
s

=
(∑

k∈Zn

(
 + |k|)sq∥∥φk(D)f

∥∥q
p

) 
q

< ∞

with obvious modifications for p or q = ∞.

There is yet another definition of modulation spaces, which is given by Gabor frames and
plays a key role in studying simultaneously the local time and global frequency behavior
of functions (see []).
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The following basic properties of weighted modulation spaces, which play important
roles in this article, can be found in [, ].

Lemma . Let  < p, q ≤ ∞ and g ∈ 
δ(Rn). Then
() Different test functions g, g ∈ 
δ(Rn) define the same spaces and equivalent

quasi-norms on Mp,q
s (Rn).

() Let  < p ≤ p ≤ ∞,  < q ≤ q ≤ ∞ and s ∈R, then

Mp,q
s

(
R

n) ↪→ Mp,q
s

(
R

n).

() If  < p, q < ∞, then S(Rn) is dense in Mp,q
s (Rn).

() For  ≤ p, q < ∞ and s ∈R, (Mp,q
s )′ = Mp′ ,q′

–s .

To prove our main results, we also need the definition of the Wiener amalgam space
W (FLp, Lq)(Rn).

For  ≤ p ≤ ∞, let FLp(Rn) be the space of tempered distributions with their Fourier
transforms in Lp(Rn), that is,

FLp(
R

n) =
{

f ∈ S ′(
R

n) | f̂ ∈ Lp(
R

n)}

with norm ‖f ‖FLp = ‖f̂ ‖Lp(Rn).

Definition . For  ≤ p, q < ∞, a tempered distribution f is in the Wiener amalgam
spaces W (FLp, Lq)(Rn), if f is locally in FLp(Rn), that is, for every non-zero g ∈ C∞

 (Rn),
F (fTxg) ∈ Lp(Rn), and

‖f ‖W (FLp ,Lq) =
(∫

Rn

(∫
Rn

∣∣F (fTxg)(y)
∣∣p dy

) q
p

dx
) 

q

is finite, with obvious modifications for p or q = ∞. This definition is independent of the
choice of the test function g ∈ C∞

 (Rn).

Both the modulation spaces and the Wiener amalgam spaces are mixed-norm function
spaces. The following lemma gives the relationship between them.

Lemma . Let F be the Fourier transform and  ≤ p, q ≤ ∞, then Mp,q(Rn) = FW (FLp,
Lq)(Rn).

Proof Choose g ∈ S(Rn) such that g =  and f ∈ S ′(Rn). For every x, ξ ∈R
n, the definition

of the short time Fourier transform implies that

Vgf (x, ξ ) = e–π ix·ξ Vĝ f̂ (ξ , –x)

and

Vĝ f̂ (ξ , –x) = F (f̂ Tξ ĝ)(–x).
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Therefore, Definitions . and . yield

‖f ‖Mp,q =
(∫

Rn

(∫
Rn

∣∣Vgf (x, ξ )
∣∣p dx

) q
p

dξ

) 
q

=
(∫

Rn

(∫
Rn

∣∣Vĝ(f̂ )(ξ , –x)
∣∣p dx

) q
p

dξ

) 
q

=
(∫

Rn

(∫
Rn

∣∣F (f̂ Tξ ĝ)(–x)
∣∣p dx

) q
p

dξ

) 
q

= ‖f̂ ‖W (FLp ,Lq).

The proof of Lemma . is completed. �

3 Proof of the main results
In this section, we are going to prove our main results. First, we show the proof of Theo-
rem ..

Set Kα(x) = 
γ (α)


|x|n–α , where γ (α) = π

n
 �( α

 )α

�( n–α
 ) . The fractional integral operator Iα , which

is defined by Iα(f )(x) = (Kα ∗ f )(x), may be realized on the transform side as a Fourier
multiplier

Îα(f )(ξ ) = mα(ξ )f̂ (ξ ),

where mα(ξ ) = K̂α(ξ ).

Proof We consider the following three cases to obtain Theorem ..
Case : 

p
= 

p
– α

n and q > q.
Let g,χ ∈ 
δ(Rn) satisfy the condition g = χ ∗ χ . Then Mξ g = Mξχ ∗ Mξχ . Young’s

inequalities and the Hardy-Littlewood-Sobolev theorem give

∥∥Iα(f )
∥∥

Mp,q
s

=
(∫

Rn

∥∥Iα(f ) ∗ Mξ g
∥∥q

Lp 〈ξ 〉qs dξ

) 
q

≤
(∫

Rn

∥∥|Kα ∗ f ∗ Mξχ | ∗ |Mξχ |∥∥q
Lp 〈ξ 〉qs dξ

) 
q

≤ C‖χ‖L

(∫
Rn

‖f ∗ Mξχ‖q
Lp 〈ξ 〉qs dξ

) 
q

.

Using the Hölder inequalities for the exponent q
q

and ( q
q

)′, we get

‖Iαf ‖Mp,q
s

≤ C‖χ‖L

(∫
Rn

‖f ∗ Mξχ‖q
Lp 〈ξ 〉qs〈ξ 〉q(s–s) dξ

) 
q

≤ C‖χ‖L

(∫
Rn

(‖f ∗ Mξχ‖Lp 〈ξ 〉s
)q

q
q dξ

) q
q


q

×
(∫

Rn
〈ξ 〉(s–s) qq

q–q dξ

) 
q

q–q
q

.
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Denote

J =
(∫

Rn
〈ξ 〉(s–s) qq

q–q dξ

) 
q

q–q
q

.

Since s < s + n( 
q

– 
q

), an easy computation shows that

J =
[(∫

|ξ |≤
+

∫
|ξ |>

)
〈ξ 〉(s–s) qq

q–q dξ

] q–q
qq

≤ Cn +
(∫

Sn–

∫ ∞


ρ

(s–s) qq
q–q ρn– dρ dξ ′

) q–q
qq

≤ Cn < ∞.

Therefore,

‖Iαf ‖Mp,q
s

≤ C‖f ‖Mp,q
s

.

Case : 
p

= 
p

– α
n and q ≤ q. Since  < α

n < , we can choose  < q̃ ≤ ∞ such that
q > q̃ and 

q̃
< 

q
+ α

n . According to the proof of case , we can see that Iα is bounded from
Mp,q

s to Mp,q̃
s . By the condition q ≥ q > q̃ and the fact Mp,q̃

s ↪→ Mp,q
s , the proof of

Case  is completed.
Case : 

p
< 

p
– α

n . In this case,  < 
p

– α
n < . Take  < p̃ < ∞ such that 

p̃
= 

p
– α

n ,
then p > p̃. Using the embedding result Mp̃,q

s ↪→ Mp,q
s and the proof of Case  and ,

we finish the proof of Theorem .. �

Now, we turn our attention to the proof of Theorem .. From a Fourier point of view,
the bilinear fractional integral operator can be rewritten as

(
B̂α(f , g)

)
(ξ ) =

∫
Rn

g(t)F(t, ξ )e–π itξ dt,

where

F(t, ξ ) =
∫
Rn

|y|α–nf (t – y)eπ iyξ dy.

For the proof of Theorem ., we need some lemmas.

Lemma . Let H(t, y) = e–π it·yF–f (y) and Ĥ be the Fourier transform for the second
variable of H , then Ĥ(t, ξ ) = f (t + ξ ) and F(t, ξ ) = –αIn–α(H(t, ·))(ξ ).

Proof We only prove the second equality. The first one is very easy, we omit the details
here. Note that if we set y′ = y, F(t, ξ ) can be rewritten as

F(t, ξ ) =
∫
Rn

∣∣∣∣y′



∣∣∣∣
α–n

f
(
t – y′)eπ iy′ξ –n dy′

= –α

∫
Rn

|y|α–nf (t + y)e–π iyξ dy = –α
(
In–αH(t, ·))(–ξ ).

We finish the proof of Lemma .. �
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Lemma . Denote F
 (t, ξ ) = F(t, ξ ), then ‖F

 ‖Mp,q = Cn,p,q‖F‖Mp,q , where Cn,p,q =
–n(+ 

p – 
q ).

Proof Taking g ∈ S(Rn) \ {}, then we have

VgF
 (x, ξ , y,η) =

∫
Rn

F
 (s, t)g(s – x, t – ξ )e–π i(sy+tη) ds dt

=
∫
Rn

F(s, t)g(s – x, t – ξ )e–π i(sy+tη) ds dt.

Set t′ = t, then

VgF
 (x, ξ , y,η) = –n

∫
Rn

F
(
s, t′)g

(
s – x,

t′ – ξ



)
e–π i(sy+ t′

 η) ds dt′

= –n
∫
Rn

F
(
s, t′)φ(

s – x, t′ – ξ
)
e–π i(sy+t′ η

 ) ds dt′

= –nVφF
(

x, ξ , y,
η



)
,

where φ(s, t′) = g(s, t′
 ) ∈ S(Rn) \ {} is another window function. Definition . gives

‖F
 ‖Mp,q =

(∫
Rn

(∫
Rn

∣∣VgF
 (x, ξ , y,η)

∣∣p dx dξ

) q
p

dy dη

) 
q

= –n
(∫

Rn

(∫
Rn

∣∣∣∣VφF
(

x, ξ , y,
η



)∣∣∣∣
p

dx dξ

) q
p

dy dη

) 
q

.

Let ξ ′ = ξ , η′ = η

 . It is easy to check that

‖F
 ‖Mp,q = –n(+ 

p – 
q )

(∫
Rn

(∫
Rn

∣∣VφF(x, ξ , y,η)
∣∣p dx dξ

) q
p

dy dη

) 
q

= –n(+ 
p – 

q )‖F‖Mp,q = Cn,p,q‖F‖Mp,q .

We complete the proof of Lemma .. �

Lemma . Suppose φ, φ, g , h to be the non-zero Schwartz functions and W (g, h)(t, s) =
g(t)h(s)eπ its, then

VW (φ,φ)W (g, h)(u, u, v, v) = e–π iuuVφ g(u, u – v)Vφ h(u, v – u).

Proof The definition of the short time Fourier transform yields

VW (φ,φ)W (g, h)(u, u, v, v)

=
∫
Rn

∫
Rn

W (g, h)(t, s)W (φ,φ)(t – u, s – u)e–π i(tv+sv) dt ds

=
∫
Rn

∫
Rn

g(t)h(s)eπ itsφ(t – u)φ(s – u)eπ i(t–u)(s–u)e–π i(tv+sv) dt ds
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= e–π iuu
(∫

Rn
g(t)φ(t – u)eπ i(u–v)t dt

)(∫
Rn

h(s)φ(s – u)e–π i(v–u)s ds
)

= e–π iuuVφ g(u, u – v)Vφ h(u, v – u).

The proof of Lemma . is completed. �

Lemma . For  < p < ∞ and  ≤ q, p, q < ∞, let p′
 and q′

 denote the conjugate
index of p and q, respectively. If q′

 ≥ p′
 and 

q′


+ 
p′


= 

p
+ 

q
, then W (g, h) defined in

Lemma . is bounded from W (FLp , Lp′
 ) × Mq,q′

 to Mp′
,q′

 .

Proof For each g ∈ W (FLp , Lp′
 ) and h ∈ Mq,q′

 , Lemma . indicates

∥∥W (g, h)
∥∥

Mp′
,q′



=
(∫

Rn

(∫
Rn

∣∣VW (φ,φ)W (g, h)(u, u, v, v)
∣∣p′

 du du
) q′


p′

 dv dv
) 

q′


=
(∫

Rn

(∫
Rn

∣∣Vφ g(u, u – v)
∣∣p′


∣∣Vφ h(u, v – u)

∣∣p′
 du du

) q′


p′
 dv dv

) 
q′

 .

Note that Vφ g(u, u – v) = e–π iu(u–v)Vφ̂ ĝ(u – v, –u). If we denote P(x, y) = P̃(–x, y),
then

∥∥W (g, h)
∥∥

Mp′
,q′



=
(∫

Rn

(∫
Rn

∣∣Vφ̂ ĝ(u – v, –u)
∣∣p′


∣∣Vφ h(u, v – u)

∣∣p′
 du du

) q′


p′
 dv dv

) 
q′



=
(∫

Rn

(∫
Rn

∣∣ ˜Vφ̂ ĝ(v – u, –u)
∣∣p′


∣∣Vφ h(u, v – u)

∣∣p′
 du du

) q′


p′
 dv dv

) 
q′



=
(∫

Rn

(∫
Rn

(∣∣ ˜Vφ̂ ĝ(·, –u)
∣∣p′

 ∗ ∣∣Vφ h(·, v – u)
∣∣p′


)
(v) du

) q′


p′
 dv dv

) 
q′



=
(∫

Rn

∥∥∥∥
∫
Rn

(∣∣ ˜Vφ̂ ĝ(·, –u)
∣∣p′

 ∗ ∣∣Vφ h(·, v – u)
∣∣p′


)
(v) du

∥∥∥∥
q′


p′



L

q′


p′
 (v)

dv
) 

q′
 .

Since 
q′


+ 

p′


= 
p

+ 
q

, using Minkowski’s integral inequalities, Young’s inequalities, and
Lemma ., we obtain

∥∥W (g, h)
∥∥

Mp′
,q′



≤
(∫

Rn

(∫
Rn

∥∥∣∣ ˜Vφ̂ ĝ(·, –u)
∣∣p′

 ∗ ∣∣Vφ h(·, v – u)
∣∣p′


∥∥

L

q′


p′
 (v)

du

) q′


p′
 dv

) 
q′



= ‖ĝ‖
Mp,p′


‖h‖

Mq,q′


= ‖g‖
W (FLp ,Lp′

 )
‖h‖

Mq,q′


.

The proof of Lemma . is completed. �
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We give the proof of Theorem ..

Proof Choose h ∈ S(Rn) \ {} and denote by 〈·, ·〉 the inner product, then

〈
B̂α(f , g), h

〉
=

∫
Rn

B̂α(f , g)(ξ )h(ξ ) dξ

=
∫
Rn

∫
Rn

F(t, ξ )g(t)h(ξ )e–π itξ dt dξ

=
〈
F , W (g, h)

〉
,

where W (g, h) = g(t)h(ξ )eπ itξ . Hölder’s inequalities show

∣∣〈B̂α(f , g), h
〉∣∣ =

∣∣〈F , W (g, h)
〉∣∣

=
∣∣〈VW (φ,φ)F , VW (φ,φ)W (g, h)

〉∣∣
≤ ‖F‖Mp,q

∥∥W (g, h)
∥∥

Mp′
,q′


.

Lemma ., Lemma ., and Theorem . yield

‖F‖Mp,q = Cn,p,q‖F
 ‖Mp,q = Cn,p,q

∥∥In–α

(
H(t, ·))∥∥Mp,q

≤ Cn,p,q

∥∥H(t, ·)∥∥Mp,q = Cn,p,q

∥∥F–f
∥∥

Mp,q

= Cn,p,q‖f ‖W (FLp ,Lq ).

On the other hand, Lemma . gives

∥∥W (g, h)
∥∥

Mp′
,q′


≤ C‖g‖

W (FLp ,Lp′
 )

‖h‖
Mq,q′


.

Therefore,

∣∣〈B̂α(f , g), h
〉∣∣ ≤ Cn,p,q‖f ‖W (FLp ,Lq )‖g‖

W (FLp ,Lp′
 )

‖h‖
Mq,q′


,

which implies B̂α(f , g) ∈ Mq′
,q and

∥∥B̂α(f , g)
∥∥

Mq′
,q ≤ Cn,p,q‖f ‖W (FLp ,Lq )‖g‖

W (FLp ,Lp′
 )

.

Lemma . indicates ‖Bα(f , g)‖
W (FLq′

 ,Lq )
= ‖B̂α(f , g)‖

Mq′
,q , we conclude

∥∥Bα(f , g)
∥∥

W (FLq′
 ,Lq )

≤ Cn,p,q‖f ‖W (FLp ,Lq )‖g‖
W (FLp ,Lp′

 )
.

The proof of Theorem . is finished. �
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