# Generalized multi-valued mappings satisfy some inequalities conditions on metric spaces 

Chakkrid Klin-eam ${ }^{1,2^{*}}$, Cholatis Suanoom ${ }^{1}$ and Suthep Suantai ${ }^{3}$

*Correspondence:
chakkridk@nu.ac.th
${ }^{1}$ Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
${ }^{2}$ Research Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, 65000, Thailand
Full list of author information is available at the end of the article


#### Abstract

In this paper, we prove a condition of the existence for generalized multi-valued mappings satisfying some inequalities in metric spaces. These results are improved versions of results of Boško Damjanović and Dragan Dorić (Filomat 25:125-131, 2011).

MSC: 47H05; 47H10; 47J25 Keywords: fixed points; generalization multi-valed mapping; condition SCC; metric spaces


## 1 Introduction and preliminaries

Let $(X, d)$ be a metric space. We denote by $\mathrm{CB}(X)$ the family of all non-empty closed bounded subsets of $X$. Let $H(\cdot, \cdot)$ be the Hausdorff metric, i.e.,

$$
H(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\},
$$

for $A, B \in \mathrm{CB}(X)$, where

$$
d(x, B)=\inf _{y \in B} d(x, y) .
$$

(i) Let $T$ be a self-mapping on $X$. Then $T$ is called a Banach contraction mapping if there exists $r \in[0,1)$ such that

$$
d(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$.
(ii) $T$ is called a Kannan mapping if there exists $a \in\left[0, \frac{1}{2}\right)$ such that

$$
d(T x, T y) \leq a d(x, T x)+a d(y, T y)
$$

for all $x, y \in X$.
(iii) If $T$ is a mapping such that

$$
d(T x, T y) \leq r \max \{d(x, T x), d(y, T y)\}
$$

such that $r \in[0,1)$ and all $x, y \in X$, then $T$ is called a generalized Kannan mapping. In 1973, Hardy and Rogers [1] introduced a condition as follows:
(iv) Let $x, y \in X$. Then there exists $a_{i} \geq 0$ such that

$$
d(T x, T y) \leq a_{1} d(x, y)+a_{2} d(x, T x)+a_{3} d(y, T y)+a_{4} d(x, T y)+a_{5} d(y, T x)
$$

where $\sum_{i=1}^{5} a_{i}<1$.
(v) Ciric [2] defined the following condition which generalizes the Banach contraction and Kannan mapping, that is,

$$
d(T x, T y) \leq r \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}
$$

such that $r \in[0,1)$ and all $x, y \in X$.
If $X$ is complete and at least one of (i), (ii), (iii), (iv), and (v) holds, then $T$ has a unique fixed point (see [1-5]).

In 2008, Suzuki [6] introduced the condition $C$ as follows. $T$ is said to satisfy condition $C$ if

$$
\frac{1}{2} d(x, T x) \leq d(x, y) \quad \text { implies } \quad d(T x, T y) \leq d(x, y)
$$

for all $x, y \in C$.
In the same year, Kikkawa and Suzuki [7] generalized the Kannan mapping resulting in the following theorem.

Theorem 1.1 (Kikkawa and Suzuki [7]) Let T be a mapping on complete metric space ( $X, d$ ) and let $\varphi$ be a non-increasing function from $[0,1)$ into $\left(\frac{1}{2}, 1\right]$ defined by

$$
\varphi(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{1}{\sqrt{2}} \\ \frac{1}{1+r}, & \text { if } \frac{1}{\sqrt{2}} \leq r<\frac{1}{2} .\end{cases}
$$

Let $\alpha \in\left[0, \frac{1}{2}\right)$ and put $r=\frac{\alpha}{1-\alpha} \in[0,1)$. Suppose that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad d(T x, T y) \leq \alpha d(x, T x)+\alpha d(y, T y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$. Then $T$ has a unique fixed point $z$ and $\lim _{n \rightarrow \infty} T^{n} x=z$ holds for every $x \in X$.
Theorem 1.2 (Kikkawa and Suzuki [7]) Let $T$ be a mapping on a complete metric space $(X, d)$ and let $\theta$ be a non-increasing function from $[0,1)$ into $\left(\frac{1}{2}, 1\right]$ defined by

$$
\theta(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{1}{2}(\sqrt{5}-1) \\ \frac{1-r}{r^{2}}, & \text { if } \frac{1}{2}(\sqrt{5}-1) \leq r<\frac{1}{\sqrt{2}} \\ \frac{1}{r+1}, & \text { if } \frac{1}{\sqrt{2}} \leq r<1\end{cases}
$$

Suppose that $r \in[0,1)$ such that

$$
\begin{equation*}
\theta(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad d(T x, T y) \leq r \max \{d(x, T x), d(y, T y)\} \tag{1.2}
\end{equation*}
$$

for all $x, y \in X$. Then $T$ has a unique fixed point $z$ and $\lim _{n \rightarrow \infty} T^{n} x=z$ holds for every $x \in X$.

In 2011, Karapinar and Tas [8] stated some new conditions which are modifications of Suzuki's condition $C$, as follows. $T$ is said to satisfy condition SCC if

$$
\frac{1}{2} d(x, T x) \leq d(x, y) \quad \text { implies } \quad d(T x, T y) \leq M(x, y)
$$

for all $x, y \in K$, where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(y, T x), d(x, T y)\} .
$$

In 1969, Nadler [9] proved a multi-valued extension of the Banach contraction theorem as follows.

Theorem 1.3 (Nadler [10]) Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Assume that there exists $r \in[0,1)$ such that

$$
H(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

Next, the result of Kikkawa and Suzuki [9] is a generalization of Nadler.

Theorem 1.4 (Kikkawa and Suzuki [9]) Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Define a strictly decreasing function $\eta$ from $[0,1)$ onto $\left(\frac{1}{2}, 1\right]$ by

$$
\eta(r)=\frac{r}{1+r}
$$

and assume that there exists $r \in[0,1)$ such that

$$
\eta(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

In 2011, Damjanović and Dorić [11] generalized the result of Kannan (iii) and Nadler.

Theorem 1.5 (Damjanović and Dorić [11]) Define a non-increasing function $\varphi$ from $[0,1)$ into $(0,1]$ by

$$
\varphi(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{\sqrt{5}-1}{2} \\ 1-r, & \text { if } \frac{\sqrt{5}-1}{2} \leq r<1\end{cases}
$$

Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Assume that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq r \max \{d(x, T x), d(y, T y)\} \tag{1.3}
\end{equation*}
$$

for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

Corollary 1.6 (Damjanović and Dorić [11]) Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Let $\alpha \in\left[0, \frac{1}{2}\right)$ and put $r=2 \alpha$. Suppose that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq \alpha d(x, T x)+\alpha d(y, T y) \tag{1.4}
\end{equation*}
$$

for all $x, y \in X$, where the function $\varphi$ is defined as in Theorem 1.5. Then there exists $z \in X$ such that $z \in T z$.

In this paper, we prove a condition of the existence for generalized multi-valued mappings under SCC conditions in metric spaces. These results are improved versions of results of Boško Damjanović and Dragan Dorić [11].

## 2 Main results

Theorem 2.1 Define a non-increasing function $\varphi$ from $\left[0, \frac{1}{2}\right)$ into $(0,1]$ by

$$
\varphi(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{\sqrt{5}-1}{\sqrt{5}+1} \\ \frac{1-2 r}{1-r}, & \text { if } \frac{\sqrt{5}-1}{\sqrt{5}+1} \leq r<\frac{1}{2}\end{cases}
$$

Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Assume that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq r M(x, y) \tag{2.1}
\end{equation*}
$$

where $M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}$, for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

Proof Let $r_{1}$ be a real number such that $0 \leq r<r_{1}<\frac{1}{2}$. Let $u_{1} \in X$ and $u_{2} \in T u_{1}$ be arbitrary. Since $u_{2} \in T u_{1}$, we have $d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right)$ and

$$
\varphi(r) d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, u_{2}\right) .
$$

Thus from the assumption (2.1),

$$
d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right) \leq r M\left(u_{1}, u_{2}\right)
$$

where $M\left(u_{1}, u_{2}\right)=\max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{1}\right), d\left(u_{2}, T u_{2}\right), d\left(u_{1}, T u_{2}\right), d\left(u_{2}, T u_{1}\right)\right\}$. Consider

$$
\begin{aligned}
d\left(u_{2}, T u_{2}\right) & \leq r \max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{1}\right), d\left(u_{2}, T u_{2}\right), d\left(u_{1}, T u_{2}\right), d\left(u_{2}, T u_{1}\right)\right\} \\
& =r \max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{2}\right)\right\} .
\end{aligned}
$$

If $\max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{2}\right)\right\}=d\left(u_{1}, T u_{2}\right)$, then

$$
\begin{aligned}
d\left(u_{2}, T u_{2}\right) & \leq r d\left(u_{1}, T u_{2}\right) \\
& \leq r d\left(u_{1}, u_{2}\right)+r d\left(u_{2}, T u_{2}\right)
\end{aligned}
$$

and then

$$
d\left(u_{2}, T u_{2}\right) \leq\left(\frac{r}{1-r}\right) d\left(u_{1}, u_{2}\right)
$$

If $\max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{2}\right)\right\}=d\left(u_{1}, u_{2}\right)$, then

$$
d\left(u_{2}, T u_{2}\right) \leq r d\left(u_{1}, u_{2}\right) \leq\left(\frac{r}{1-r}\right) d\left(u_{1}, u_{2}\right)
$$

So

$$
d\left(u_{2}, T u_{2}\right) \leq\left(\frac{r}{1-r}\right) d\left(u_{1}, u_{2}\right)
$$

So there exists $u_{3} \in T u_{2}$ such that $d\left(u_{2}, u_{3}\right) \leq\left(\frac{r_{1}}{1-r_{1}}\right) d\left(u_{1}, u_{2}\right)$. Thus, we can construct a sequence $\left\{x_{n}\right\}$ in $X$ such that $u_{n+1} \in T u_{n}$ and

$$
d\left(u_{n+1}, u_{n+2}\right) \leq\left(\frac{r_{1}}{1-r_{1}}\right) d\left(u_{n}, u_{n+1}\right)
$$

Hence, by induction,

$$
d\left(u_{n}, u_{n+1}\right) \leq\left(\frac{r_{1}}{1-r_{1}}\right)^{n-1} d\left(u_{1}, u_{2}\right)
$$

Then by the triangle inequality, we have

$$
\sum_{n=1}^{\infty} d\left(u_{n}, u_{n+1}\right) \leq \sum_{n=1}^{\infty}\left(\frac{r_{1}}{1-r_{1}}\right)^{n-1} d\left(u_{1}, u_{2}\right)<\infty
$$

Hence we conclude that $\left\{u_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there is some point $z \in X$ such that

$$
\lim _{n \rightarrow \infty} u_{n}=z
$$

Now, we will show that $d(z, T x) \leq r d(x, T x)$ for all $x \in X \backslash\{z\}$.
Let $x \in X \backslash\{z\}$. Since $u_{n} \rightarrow z$, there exists $n_{0} \in N$ such that $d\left(z, u_{n}\right) \leq\left(\frac{1}{3}\right) d(z, x)$ for all $n \geq n_{0}$. Then we have

$$
\begin{aligned}
\varphi(r) d\left(u_{n}, T u_{n}\right) & \leq d\left(u_{n}, T u_{n}\right) \\
& \leq d\left(u_{n}, u_{n+1}\right) \\
& \leq d\left(u_{n}, z\right)+d\left(z, u_{n+1}\right)
\end{aligned}
$$

$$
\begin{align*}
& \leq\left(\frac{2}{3}\right) d(z, x) \\
& =d(z, x)-\frac{1}{3} d(z, x) \\
& \leq d(z, x)-d\left(z, u_{n}\right) \\
& \leq d\left(x, u_{n}\right) \tag{2.2}
\end{align*}
$$

Then from (2.1) we have

$$
H\left(T u_{n}, T x\right) \leq r \max \left\{d\left(u_{n}, x\right), d\left(u_{n}, T u_{n}\right), d(x, T x), d\left(u_{n}, T x\right), d\left(x, T u_{n}\right)\right\}
$$

Since $u_{n+1} \in T u_{n}, d\left(u_{n+1}, T x\right) \leq H\left(T u_{n}, T x\right)$, so that

$$
d\left(u_{n+1}, T x\right) \leq r \max \left\{d\left(u_{n}, x\right), d\left(u_{n}, u_{n+1}\right), d(x, T x), d\left(u_{n}, T x\right), d\left(x, u_{n+1}\right)\right\}
$$

for all $n \geq n_{0}$. Letting $n \rightarrow \infty$, we obtain

$$
d(z, T x) \leq r \max \{d(z, x), d(x, T x), d(z, T x)\} .
$$

It follows that

$$
\begin{equation*}
d(z, T x) \leq\left(\frac{r}{1-r}\right) d(x, T x) \quad \text { for all } x \in X \backslash\{z\} \tag{2.3}
\end{equation*}
$$

Next, we show that $z \in T z$. Suppose that $z$ is not an element in $T z$.
Case (i): $0 \leq r<\frac{\sqrt{5}-1}{\sqrt{5}+1}$. Let $a \in T z$. Then $a \neq z$ and so by (2.3), we have

$$
d(z, T a) \leq\left(\frac{r}{1-r}\right) d(a, T a) .
$$

On the other hand, since $\varphi(r) d(z, T z)=d(z, T z) \leq d(z, a)$, from (2.1) we have

$$
H(T z, T a) \leq r \max \{d(z, a), d(z, T z), d(a, T a), d(z, T a), d(a, T z)\} .
$$

So

$$
\begin{equation*}
d(a, T a) \leq H(T z, T a) \leq r \max \{d(z, a), d(z, T z), d(z, T a)\} \tag{2.4}
\end{equation*}
$$

It implies that

$$
d(a, T a) \leq r \max \{d(z, a), d(z, T z), d(z, T a)\}
$$

Since $d(z, a) \leq d(z, T z)+d(T z, a)=d(z, T z)$, we have

$$
\begin{equation*}
d(a, T a) \leq\left(\frac{r}{1-r}\right) d(z, T z) \tag{2.5}
\end{equation*}
$$

Using (2.3), (2.4), and (2.5), we have

$$
\begin{aligned}
d(z, T z) & \leq d(z, T a)+H(T a, T z) \\
& \leq\left(\frac{r}{1-r}\right) d(a, T a)+r \max \{d(z, a), d(z, T z), d(z, T a)\} \\
& \leq\left(\frac{r}{1-r}\right) d(a, T a)+r \max \left\{d(z, a), d(z, T z),\left(\frac{r}{1-r}\right) d(a, T a)\right\} \\
& \leq\left(\frac{r}{1-r}\right) d(a, T a)+r \max \{d(z, a), d(z, T z)\} \\
& \leq\left(\frac{r}{1-r}\right) d(a, T a)+r d(z, T z) \\
& \leq\left(\frac{r}{1-r}\right)^{2} d(z, T z)+r d(z, T z) \\
& \leq\left(\frac{r}{1-r}\right)^{2} d(z, T z)+\left(\frac{r}{1-r}\right) d(z, T z) \\
& \leq\left[\left(\frac{r}{1-r}\right)^{2}+\left(\frac{r}{1-r}\right)\right] d(z, T z) \\
& \leq\left[k^{2}+k\right] d(z, T z)
\end{aligned}
$$

where $k=\frac{r}{1-r}$. Since $r<\frac{\sqrt{5}-1}{\sqrt{5}+1}$, we have $k^{2}+k<1$ and so $d(z, T z)<d(z, T z)$, a contradiction. Thus $z \in T z$.

Case (ii): $\frac{\sqrt{5}-1}{\sqrt{5}+1} \leq r<\frac{1}{2}$. Let $x \in X$. If $x=z$, then $H(T x, T z) \leq r \max \{d(x, z), d(x, T x), d(z, T z)$, $d(x, T z), d(z, T x)\}$ holds. If $x \neq z$, then for all $n \in \mathbb{N}$, there exists $y_{n} \in T x$ such that

$$
d\left(z, y_{n}\right) \leq d(z, T x)+\left(\frac{1}{n}\right) d(x, z)
$$

We consider

$$
\begin{aligned}
d(x, T x) & \leq d\left(x, y_{n}\right) \\
& \leq d(x, z)+d\left(z, y_{n}\right) \\
& \leq d(x, z)+d(z, T x)+\left(\frac{1}{n}\right) d(x, z) \\
& \leq d(x, z)+\left(\frac{r}{1-r}\right) d(x, T x)+\left(\frac{1}{n}\right) d(x, z) .
\end{aligned}
$$

Thus, $\left(\frac{1-2 r}{1-r}\right) d(x, T x) \leq\left(1+\frac{1}{n}\right) d(x, z)$. Take $n \rightarrow \infty$, we obtain

$$
\left(\frac{1-2 r}{1-r}\right) d(x, T x) \leq d(x, z)
$$

by using (2.1), implies $H(T x, T z) \leq r \max \{d(x, z), d(x, T x), d(z, T z), d(x, T z), d(z, T x)\}$. Hence, as $u_{n+1} \in T u_{n}$, it follows that with $x=u_{n}$

$$
\begin{aligned}
d(z, T z) & =\lim _{n \rightarrow \infty} d\left(u_{n+1}, T z\right) \\
& \leq H\left(T u_{n}, T z\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lim _{n \rightarrow \infty} r \max \left\{d\left(u_{n}, z\right), d\left(u_{n}, T u_{n}\right), d(z, T z), d\left(u_{n}, T z\right), d\left(z, T u_{n}\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} r \max \left\{d\left(u_{n}, z\right), d\left(u_{n}, u_{n+1}\right), d(z, T z), d\left(u_{n}, T z\right), d\left(z, u_{n+1}\right)\right\} \\
& \leq r d(z, T z) .
\end{aligned}
$$

Therefore, $(1-r) d(z, T z) \leq 0$, which implies $d(z, T z)=0$. Since $T z$ is closed, we have $z \in T z$. This completes the proof.

Example 2.2 Let $X=[0, \infty)$ be endowed with the usual metric $d$. Define $T: X \rightarrow \mathrm{CB}(X)$ by

$$
T(x)= \begin{cases}{\left[0, x^{2}\right],} & 0 \leq x \leq \frac{1}{2}  \tag{2.6}\\ {\left[0, \frac{x}{3}\right],} & \frac{1}{2}<x<1 \\ {[0, \log (x)],} & 1 \leq x\end{cases}
$$

Proof We show that $T$ satisfies (2.1). Let $x, y \in X$. We prove by cases.
Case (i): Suppose that $x, y \in\left[0, \frac{1}{2}\right]$. Thus, if $x^{2} \leq y$, then

$$
\varphi\left(\frac{1}{4}\right) d(x, T x)=\left|x-x^{2}\right| \geq|x-y|=d(x, y)
$$

But if $x^{2}>y$, then

$$
\varphi\left(\frac{1}{4}\right) d(x, T x)=\left|x-x^{2}\right| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =\left|x^{2}-y^{2}\right| \\
& \leq \frac{1}{4}\left|(2 x)^{2}-(2 y)^{2}\right| \\
& \leq \frac{1}{4}\left|x-2 y^{2}\right| \\
& \leq \frac{1}{4}\left|x-y^{2}\right| \\
& =\frac{1}{4} \max \left\{|x-y|,\left|x-x^{2}\right|,\left|y-y^{2}\right|,\left|x-y^{2}\right|,\left|y-x^{2}\right|\right\} \\
& =\frac{1}{4} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y), \tag{2.7}
\end{align*}
$$

where $r=\frac{1}{4}$. Hence $T$ satisfies (2.1).
Case (ii): Suppose that $x, y \in\left(\frac{1}{2}, 1\right)$. Thus, if $\frac{x}{3} \leq y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=\left|x-\frac{x}{3}\right| \geq|x-y|=d(x, y)
$$

But if $\frac{x}{3}>y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=\left|x-\frac{x}{3}\right| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =\frac{1}{3}|x-y| \\
& \leq \frac{1}{3}\left|x-\frac{y}{3}\right| \\
& =\frac{1}{3} \max \left\{|x-y|,\left|x-\frac{x}{3}\right|,\left|y-\frac{y}{3}\right|,\left|x-\frac{y}{3}\right|,\left|y-\frac{x}{3}\right|\right\} \\
& =\frac{1}{3} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y), \tag{2.8}
\end{align*}
$$

where $r=\frac{1}{3}$. Hence $T$ satisfies (2.1).
Case (iii): Suppose that $x, y \in[1, \infty]$. Thus, if $\log (x) \leq y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=|x-\log (x)| \geq|x-y|=d(x, y)
$$

But if $\log (x)>y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=|x-\log (x)| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =|\log (x)-\log (y)| \\
& =\frac{1}{3}(3 \log (x)-3 \log (y)) \\
& \leq \frac{1}{3}|x-\log (y)| \\
& =\frac{1}{3} \max \{|x-y|,|x-\log (x)|,|y-\log (y)|,|x-\log (y)|,|y-\log (x)|\} \\
& =\frac{1}{3} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y), \tag{2.9}
\end{align*}
$$

where $r=\frac{1}{3}$. Hence $T$ satisfies (2.1).
Case (iv): Suppose that $x \in\left[0, \frac{1}{2}\right]$ and $y \in\left(\frac{1}{2}, 1\right)$. Then $x^{2}<x<y$. Thus, $\varphi\left(\frac{1}{3}\right) d(x, T x)=$ $\left|x-x^{2}\right| \geq|x-y|=d(x, y)$. Hence $T$ satisfies (2.1).

Case (v): Suppose that $x \in\left(\frac{1}{2}, 1\right)$ and $y \in\left[0, \frac{1}{2}\right]$. So $x>y$. Thus, if $\frac{x}{3} \leq y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=\left|x-\frac{x}{3}\right| \geq|x-y|=d(x, y)
$$

But if $\frac{x}{3}>y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=\left|x-\frac{x}{3}\right| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =\left|\frac{x}{3}-y^{2}\right| \\
& \leq \frac{1}{3}\left|x-3 y^{2}\right| \\
& \leq \frac{1}{3}\left|x-y^{2}\right| \\
& =\frac{1}{3} \max \left\{|x-y|,\left|x-\frac{x}{3}\right|,\left|y-y^{2}\right|,\left|x-y^{2}\right|,\left|y-\frac{x}{3}\right|\right\} \\
& =\frac{1}{3} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y), \tag{2.10}
\end{align*}
$$

where $r=\frac{1}{3}$. Hence $T$ satisfies (2.1).
Case (vi): Suppose that $x \in\left[0, \frac{1}{2}\right]$ and $y \in[1, \infty]$.

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=\left|x-x^{2}\right| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =\left|x^{2}-\log (y)\right| \\
& =\frac{1}{3}\left|3 x^{2}-3 \log (y)\right|=\frac{1}{3}\left|3 \log (y)-3 x^{2}\right| \\
& \leq \frac{1}{3} \max \left\{|y-\log (y)|,\left|y-x^{2}\right|\right\} \\
& =\frac{1}{3} \max \left\{|x-y|,\left|x-x^{2}\right|,|y-\log (y)|,|x-\log (y)|,\left|y-x^{2}\right|\right\} \\
& =\frac{1}{3} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y), \tag{2.11}
\end{align*}
$$

where $r=\frac{1}{3}$. Hence $T$ satisfies (2.1).
Case (vii): Suppose that $x \in[1, \infty]$ and $y \in\left[0, \frac{1}{2}\right]$. Thus, if $\log (x) \leq y$, then

$$
\varphi\left(\frac{1}{4}\right) d(x, T x)=|x-\log (x)| \geq|x-y|=d(x, y)
$$

But if $\log (x)>y$, then

$$
\varphi\left(\frac{1}{4}\right) d(x, T x)=|x-\log (x)| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =\left|\log (x)-y^{2}\right| \\
& =\frac{1}{4}\left|4 \log (x)-4 y^{2}\right| \\
& \leq \frac{1}{4}\left|x-y^{2}\right| \\
& =\frac{1}{4} \max \left\{|x-y|,|x-\log (x)|,\left|y-y^{2}\right|,\left|x-y^{2}\right|,|y-\log (x)|\right\} \\
& =\frac{1}{4} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y), \tag{2.12}
\end{align*}
$$

where $r=\frac{1}{4}$. Hence $T$ satisfies (2.1).
Case (viii): Suppose that $x \in\left(\frac{1}{2}, 1\right)$ and $y \in[1, \infty]$.

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=\left|x-\frac{x}{3}\right| \leq|x-y|=d(x, y)
$$

and

$$
\begin{align*}
H(T x, T y) & =\left|\frac{x}{3}-\log (y)\right| \\
& =\frac{1}{3}|x-3 \log (y)|=\frac{1}{3}|3 \log (y)-x| \\
& \leq \frac{1}{3} \max \left\{|y-\log (y)|,\left|y-\frac{x}{3}\right|\right\} \\
& =\frac{1}{3} \max \left\{|x-y|,\left|x-\frac{x}{3}\right|,|y-\log (y)|,|x-\log (y)|,\left|y-\frac{x}{3}\right|\right\} \\
& =\frac{1}{3} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y) \tag{2.13}
\end{align*}
$$

where $r=\frac{1}{3}$. Hence $T$ satisfies (2.1).
Case (ix): Suppose that $x \in[1, \infty]$ and $y \in\left(\frac{1}{2}, 1\right)$. Thus, if $\log (x) \leq y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=|x-\log (x)| \geq|x-y|=d(x, y)
$$

But if $\log (x)>y$, then

$$
\varphi\left(\frac{1}{3}\right) d(x, T x)=|x-\log (x)| \leq|x-y|=d(x, y)
$$

and

$$
\begin{aligned}
H(T x, T y) & =\left|\log (x)-\frac{y}{3}\right| \\
& =\frac{1}{3}|3 \log (x)-y|
\end{aligned}
$$

$$
\begin{align*}
& \leq \frac{1}{3}|x-y| \\
& =\frac{1}{3} \max \left\{|x-y|,|x-\log (x)|,\left|y-\frac{y}{3}\right|,\left|x-\frac{y}{3}\right|,|y-\log (x)|\right\} \\
& =\frac{1}{3} \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\} \\
& =r M(x, y) \tag{2.14}
\end{align*}
$$

where $r=\frac{1}{3}$. Hence $T$ satisfies (2.1).
Thus we see that $T$ satisfies condition (2.1) and satisfies Theorem 2.1. So there exists $z \in X$ such that $z \in T z$. Moreover, $0 \in T(0)$.

Theorem 2.3 Define a non-increasing function $\varphi$ from $\left[0, \frac{1}{5}\right.$ ) into $(0,1]$ by

$$
\varphi(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{\sqrt{5}-1}{4+2 \sqrt{5}} \\ \frac{1-5 r}{1-2 r}, & \text { if } \frac{\sqrt{5}-1}{4+2 \sqrt{5}} \leq r<\frac{1}{5}\end{cases}
$$

Let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Assume that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq S(x, y) \tag{2.15}
\end{equation*}
$$

where $S(x, y)=r d(x, y)+r d(x, T x)+r d(y, T y)+r d(x, T y)+r d(y, T x)$ for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

Proof Let $r_{1}$ be a real number such that $0 \leq r<r_{1}<1$. Let $u_{1} \in X$ and $u_{2} \in T u_{1}$ be arbitrary. Since $u_{2} \in T u_{1}$, we have $d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right)$ and

$$
\varphi(r) d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, u_{2}\right) .
$$

Thus, from the assumption (2.15),

$$
d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right) \leq S\left(u_{1}, u_{2}\right)
$$

where $S\left(u_{1}, u_{2}\right)=r d\left(u_{1}, u_{2}\right)+r d\left(u_{1}, T u_{1}\right)+r d\left(u_{2}, T u_{2}\right)+r d\left(u_{1}, T u_{2}\right)+r d\left(u_{2}, T u_{1}\right)$. Consider

$$
\begin{aligned}
d\left(u_{2}, T u_{2}\right) & \leq r d\left(u_{1}, u_{2}\right)+r d\left(u_{1}, T u_{1}\right)+r d\left(u_{2}, T u_{2}\right)+r d\left(u_{1}, T u_{2}\right)+r d\left(u_{2}, T u_{1}\right) \\
& \leq 3 r d\left(u_{1}, u_{2}\right)+2 r d\left(u_{2}, T u_{2}\right)
\end{aligned}
$$

So

$$
d\left(u_{2}, T u_{2}\right) \leq\left(\frac{3 r}{1-2 r}\right) d\left(u_{1}, u_{2}\right)
$$

So there exists $u_{3} \in T u_{2}$ such that $d\left(u_{2}, u_{3}\right) \leq\left(\frac{3 r_{1}}{1-2 r_{1}}\right) d\left(u_{1}, u_{2}\right)$. Thus, we can construct a sequence $\left\{x_{n}\right\}$ in $X$ such that $u_{n+1} \in T u_{n}$ and

$$
d\left(u_{n+1}, u_{n+2}\right) \leq\left(\frac{3 r_{1}}{1-2 r_{1}}\right) d\left(u_{n}, u_{n+1}\right) .
$$

Hence, by induction,

$$
d\left(u_{n}, u_{n+1}\right) \leq\left(\frac{3 r_{1}}{1-2 r_{1}}\right)^{n-1} d\left(u_{1}, u_{2}\right) .
$$

Then by the triangle inequality, we have

$$
\sum_{n=1}^{\infty} d\left(u_{n}, u_{n+1}\right) \leq \sum_{n=1}^{\infty}\left(\frac{3 r_{1}}{1-2 r_{1}}\right)^{n-1} d\left(u_{1}, u_{2}\right)<\infty
$$

Hence we conclude that $\left\{u_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there is some point $z \in X$ such that

$$
\lim _{n \rightarrow \infty} u_{n}=z
$$

Now, we will show that $d(z, T x) \leq\left(\frac{3 r}{1-2 r}\right) d(x, T x)$ for all $x \in X \backslash\{z\}$.
Let $x \in X \backslash\{z\}$. Since $u_{n} \rightarrow z$, there exists $n_{0} \in N$ such that $d\left(z, u_{n}\right) \leq\left(\frac{1}{3}\right) d(z, x)$ for all $n \geq n_{0}$. By using (2.2), we get

$$
\varphi(r) d\left(u_{n}, T u_{n}\right) \leq d\left(x, u_{n}\right) .
$$

Then from (2.15) we have

$$
H\left(T u_{n}, T x\right) \leq r\left[d\left(u_{n}, x\right)+d\left(u_{n}, T u_{n}\right)+d(x, T x)+d\left(u_{n}, T x\right)+d\left(x, T u_{n}\right)\right] .
$$

Since $u_{n+1} \in T u_{n}, d\left(u_{n+1}, T x\right) \leq H\left(T u_{n}, T x\right)$, so that

$$
d\left(u_{n+1}, T x\right) \leq r\left[d\left(u_{n}, x\right)+d\left(u_{n}, u_{n+1}\right)+d(x, T x)+d\left(u_{n}, T x\right)+d\left(x, u_{n+1}\right)\right]
$$

for all $n \geq n_{0}$. Letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
d(z, T x) & \leq r[2 d(z, x)+d(x, T x)+d(z, T x)] \\
& \leq r 3 d(z, x)+r 2 d(z, T x)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
d(z, T x) \leq\left(\frac{3 r}{1-2 r}\right) d(x, T x) \quad \text { for all } x \in X \backslash\{z\} \tag{2.16}
\end{equation*}
$$

Next, we show that $z \in T z$. Suppose that $z$ is not an element in $T z$.
Case (i): $0 \leq r<\frac{\sqrt{5}-1}{4+2 \sqrt{5}}$. Let $a \in T z$. Then $a \neq z$ and so by (2.16), we have

$$
d(z, T a) \leq\left(\frac{3 r}{1-2 r}\right) d(a, T a)
$$

On the other hand, since $\varphi(r) d(z, T z)=d(z, T z) \leq d(z, a)$, from (2.15) we have

$$
H(T z, T a) \leq r[d(z, a)+d(z, T z)+d(a, T a)+d(z, T a)+d(a, T z)] .
$$

So

$$
\begin{align*}
d(a, T a) & \leq H(T z, T a) \leq r[2 d(z, a)+d(a, T a)+d(z, T a)] \\
& \leq r[3 d(z, a)+2 d(a, T a)] . \tag{2.17}
\end{align*}
$$

Since $d(z, a) \leq d(z, T z)+d(T z, a)=d(z, T z)$, we have

$$
d(a, T a) \leq\left(\frac{3 r}{1-2 r}\right) d(z, T z)
$$

Using (2.15), (2.16), and (2.17), we have

$$
\begin{aligned}
d(z, T z) & \leq d(z, T a)+H(T a, T z) \\
& \leq\left(\frac{3 r}{1-2 r}\right) d(a, T a)+S(a, z) \\
& \leq\left(\frac{3 r}{1-2 r}\right) d(a, T a)+r[d(z, a)+d(z, T z)+d(a, T a)+d(z, T a)+d(a, T z)] \\
& \leq\left(\frac{3 r}{1-2 r}\right) d(a, T a)+3 r d(z, a) \\
& \leq\left(\frac{3 r}{1-2 r}\right)^{2} d(z, T z)+\left(\frac{3 r}{1-2 r}\right) d(z, T z) \\
& \leq\left(k^{2}+k\right) d(z, T z),
\end{aligned}
$$

where $k=\frac{3 r}{1-2 r}$.
Since $0 \leq r<\frac{\sqrt{5}-1}{4+2 \sqrt{5}}$, we have $0 \leq k^{2}+k<1$ and so, $d(z, T z)<d(z, T z)$, a contradiction. Thus $z \in T z$.

Case (ii): $\frac{\sqrt{5}-1}{4+2 \sqrt{5}} \leq r<\frac{1}{5}$. Let $x \in X$.
If $x=z$, then $H(T x, T z) \leq r[d(x, z)+d(x, T x)+d(z, T z)+d(x, T z)+d(z, T x)]$ holds. If $x \neq z$, then for all $n \in \mathbb{N}$, there exists $y_{n} \in T x$ such that

$$
d\left(z, y_{n}\right) \leq d(z, T x)+\left(\frac{1}{n}\right) d(x, z)
$$

We consider

$$
\begin{aligned}
d(x, T x) & \leq d\left(x, y_{n}\right) \\
& \leq d(x, z)+d\left(z, y_{n}\right) \\
& \leq d(x, z)+d(z, T x)+\left(\frac{1}{n}\right) d(x, z) \\
& \leq d(x, z)+\left(\frac{3 r}{1-2 r}\right) d(x, T x)+\left(\frac{1}{n}\right) d(x, z)
\end{aligned}
$$

Thus, $\left(\frac{1-5 r}{1-2 r}\right) d(x, T x) \leq\left(1+\frac{1}{n}\right) d(x, z)$. Take $n \rightarrow \infty$, we obtain

$$
\left(\frac{1-5 r}{1-2 r}\right) d(x, T x) \leq d(x, z)
$$

by using (2.15), implies $H(T x, T z) \leq S(x, z)$, where $S(x, z)=r[d(x, z)+d(x, T x)+d(z, T z)+$ $d(x, T z)+d(z, T x)]$.

Hence, as $u_{n+1} \in T u_{n}$, it follows that with $x=u_{n}$

$$
\begin{align*}
d(z, T z) & =\lim _{n \rightarrow \infty} d\left(u_{n+1}, T z\right) \\
& \leq H\left(T u_{n}, T z\right) \\
& \left.\leq \lim _{n \rightarrow \infty} r d\left(u_{n}, z\right)+d\left(u_{n}, T u_{n}\right)+d(z, T z)+d\left(u_{n}, T z\right)+d\left(z, T u_{n}\right)\right] \\
& \leq \lim _{n \rightarrow \infty}\left[r d\left(u_{n}, z\right)+r d\left(u_{n}, u_{n+1}\right)+r d(z, T z)+r d\left(u_{n}, T z\right)+r d\left(z, u_{n+1}\right)\right] \\
& \leq(2 r) d(z, T z) . \tag{2.18}
\end{align*}
$$

Using (2.18), we have ( $1-2 r) d(z, T z) \leq 0$, which implies $d(z, T z)=0$. Since $T z$ is closed, we have $z \in T z$. This completes the proof.

Example 2.4 Let $X=\left[0, \frac{1}{2}\right]$ with the metric $d(x, y)=\frac{|x-y|}{|x-y|+1}$ for all $x, y \in X$. Define $T: X \rightarrow$ $\mathrm{CB}(X)$ by

$$
T(x)=\left[0, x^{2}\right] .
$$

Proof We show that $T$ satisfies (2.15). Let $x, y \in X$. Thus, if $x^{2} \leq y$, then

$$
\varphi\left(\frac{1}{6}\right) d(x, T x)=\frac{\left|x-x^{2}\right|}{\left|x-x^{2}\right|+1} \geq \frac{|x-y|}{|x-y|+1}=d(x, y)
$$

But if $x^{2}>y$, then

$$
\varphi\left(\frac{1}{6}\right) d(x, T x)=\frac{\left|x-x^{2}\right|}{\left|x-x^{2}\right|+1} \leq \frac{|x-y|}{|x-y|+1}=d(x, y)
$$

and

$$
\begin{align*}
H & (T x, T y) \\
& =\frac{\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1} \\
& =\frac{1}{6} \frac{6\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1} \\
& =\frac{1}{6}\left\{\frac{\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1}+\frac{\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1}+\frac{\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1}+\frac{2\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1}+\frac{\left|x^{2}-y^{2}\right|}{\left|x^{2}-y^{2}\right|+1}\right\} \\
& <\frac{1}{6}\left\{\frac{|x-y|}{|x-y|+1}+\frac{\left|x-x^{2}\right|}{\left|x-x^{2}\right|+1}+\frac{\left|y-y^{2}\right|}{\left|y-y^{2}\right|+1}+\frac{\left|x-y^{2}\right|}{\left|x-y^{2}\right|+1}+\frac{\left|y-x^{2}\right|}{\left|y-x^{2}\right|+1}\right\} \\
& =\frac{1}{6}\{d(x, y)+d(x, T x)+d(y, T y)+d(x, T y)+d(y, T x)\} \\
& =\frac{1}{6} S(x, y), \tag{2.19}
\end{align*}
$$

where $r=\frac{1}{6}$.
Thus we see that $T$ satisfies condition (2.15) and satisfies Theorem 2.3. So there exists $z \in X$ such that $z \in T z$. Moreover, $0 \in T(0)$.

Theorem 2.5 Define a non-increasing function $\varphi$ from $[0,1)$ into $(0,1]$ by

$$
\varphi(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{\sqrt{5}-1}{2} \\ 1-r, & \text { if } \frac{\sqrt{5}-1}{2} \leq r<1\end{cases}
$$

Let $\alpha \in\left[0, \frac{1}{2}\right)$ and $r=\frac{\alpha}{1-\alpha}$, and let $(X, d)$ be a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$.

Assume that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq \alpha M(x, y) \tag{2.20}
\end{equation*}
$$

where $M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y), d(x, T y), d(y, T x)\}$, for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

Proof Let $r_{1}$ be a real number such that $0 \leq r<r_{1}<\frac{1}{2}$. Let $u_{1} \in X$ and $u_{2} \in T u_{1}$ be arbitrary. Since $u_{2} \in T u_{1}$, we have $d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right)$ and

$$
\varphi(r) d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, u_{2}\right)
$$

Thus, from the assumption (2.20),

$$
d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right) \leq \alpha M\left(u_{1}, u_{2}\right)
$$

where $M\left(u_{1}, u_{2}\right)=\max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{1}\right), d\left(u_{2}, T u_{2}\right), d\left(u_{1}, T u_{2}\right), d\left(u_{2}, T u_{1}\right)\right\}$.
Consider

$$
\begin{aligned}
d\left(u_{2}, T u_{2}\right) & \leq \alpha \max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{1}\right), d\left(u_{2}, T u_{2}\right), d\left(u_{1}, T u_{2}\right), d\left(u_{2}, T u_{1}\right)\right\} \\
& =\alpha \max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{2}\right)\right\} .
\end{aligned}
$$

If $\max \left\{d\left(u_{1}, u_{2}\right), d\left(u_{1}, T u_{2}\right)\right\}=d\left(u_{1}, T u_{2}\right)$, then

$$
\begin{aligned}
d\left(u_{2}, T u_{2}\right) & \leq \alpha d\left(u_{1}, T u_{2}\right) \\
& \leq \alpha d\left(u_{1}, u_{2}\right)+\alpha d\left(u_{2}, T u_{2}\right)
\end{aligned}
$$

and then

$$
d\left(u_{2}, T u_{2}\right) \leq\left(\frac{\alpha}{1-\alpha}\right) d\left(u_{1}, u_{2}\right)=r d\left(u_{1}, u_{2}\right),
$$

where $r=\frac{\alpha}{1-\alpha}$.

So there exists $u_{3} \in T u_{2}$ such that $d\left(u_{2}, u_{3}\right) \leq r_{1} d\left(u_{1}, u_{2}\right)$. Thus, we can construct a sequence $\left\{x_{n}\right\}$ in $X$ such that $u_{n+1} \in T u_{n}$ and

$$
d\left(u_{n+1}, u_{n+2}\right) \leq r_{1} d\left(u_{n}, u_{n+1}\right)
$$

Hence, by induction

$$
d\left(u_{n}, u_{n+1}\right) \leq\left(r_{1}\right)^{n-1} d\left(u_{1}, u_{2}\right) .
$$

Then by the triangle inequality, we have

$$
\sum_{n=1}^{\infty} d\left(u_{n}, u_{n+1}\right) \leq \sum_{n=1}^{\infty}\left(r_{1}\right)^{n-1} d\left(u_{1}, u_{2}\right)<\infty
$$

Hence we conclude that $\left\{u_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there is some point $z \in X$ such that

$$
\lim _{n \rightarrow \infty} u_{n}=z
$$

Now, we will show that $d(z, T x) \leq r d(x, T x)$ for all $x \in X \backslash\{z\}$.
Let $x \in X \backslash\{z\}$. Since $u_{n} \rightarrow z$, there exists $n_{0} \in N$ such that $d\left(z, u_{n}\right) \leq\left(\frac{1}{3}\right) d(z, x)$ for all $n \geq n_{0}$. By using (2.2), we get

$$
\varphi(r) d\left(u_{n}, T u_{n}\right) \leq d\left(x, u_{n}\right) .
$$

Then from (2.20), we have

$$
H\left(T u_{n}, T_{x}\right) \leq \alpha \max \left\{d\left(u_{n}, x\right), d\left(u_{n}, T u_{n}\right), d(x, T x), d\left(u_{n}, T x\right), d\left(x, T u_{n}\right)\right\}
$$

Since $u_{n+1} \in T u_{n}$, we have $d\left(u_{n+1}, T_{x}\right) \leq H\left(T u_{n}, T_{x}\right)$, so that

$$
d\left(u_{n+1}, T x\right) \leq \alpha \max \left\{d\left(u_{n}, x\right), d\left(u_{n}, u_{n+1}\right), d(x, T x), d\left(u_{n}, T x\right), d\left(x, u_{n+1}\right)\right\}
$$

for all $n \geq n_{0}$. Letting $n \rightarrow \infty$, we obtain

$$
d(z, T x) \leq \alpha \max \{d(z, x), d(x, T x), d(z, T x)\}
$$

We obtain

$$
\begin{equation*}
d(z, T x) \leq\left(\frac{\alpha}{1-\alpha}\right) d(x, T x)=r d(x, T x) \quad \text { for all } x \in X \backslash\{z\} \tag{2.21}
\end{equation*}
$$

Next, we show that $z \in T z$. Suppose that $z$ is not an element in $T z$.
Case (i): $0 \leq r<\frac{\sqrt{5}-1}{2}$. Let $a \in T z$. Then $a \neq z$ and so by (2.21), we have

$$
d(z, T a) \leq r d(a, T a)
$$

On the other hand, since $\varphi(r) d(z, T z)=d(z, T z) \leq d(z, a)$, from (2.20) we have

$$
H(T z, T a) \leq \alpha \max \{d(z, a), d(z, T z), d(a, T a), d(z, T a), d(a, T z)\} .
$$

So

$$
\begin{equation*}
d(a, T a) \leq H(T z, T a) \leq \alpha \max \{d(z, a), d(z, T z), d(z, T a)\} . \tag{2.22}
\end{equation*}
$$

It implies that

$$
d(a, T a) \leq \alpha \max \{d(z, a), d(z, T z), d(z, T a)\} .
$$

Since $d(z, a) \leq d(z, T z)+d(T z, a)=d(z, T z)$, we have

$$
\begin{equation*}
d(a, T a) \leq r d(z, T z) \tag{2.23}
\end{equation*}
$$

Using (2.20), (2.21), (2.22), and (2.23), we have

$$
\begin{aligned}
d(z, T z) & \leq d(z, T a)+H(T a, T z) \\
& \leq r d(a, T a)+\alpha \max \{d(z, a), d(z, T z), d(z, T a)\} \\
& \leq r d(a, T a)+\alpha \max \{d(z, a), d(z, T z), r d(a, T a)\} \\
& \leq r d(a, T a)+\alpha \max \{d(z, a), d(z, T z)\} \\
& \leq r d(a, T a)+\alpha d(z, T z) \\
& \leq(r)^{2} d(z, T z)+r d(z, T z) \\
& \leq\left(r^{2}+r\right) d(z, T z),
\end{aligned}
$$

where $r=\frac{\alpha}{1-\alpha}$.
Since $r<\frac{\sqrt{5}-1}{2}$, we have $r^{2}+r<1$ and so $d(z, T z)<d(z, T z)$, a contradiction. Thus $z \in T z$.
Case (ii) $\frac{\sqrt{5}-1}{2} \leq r<1$. Let $x \in X$. If $x=z$, then $H(T x, T z) \leq \alpha \max \{d(x, z), d(x, T x), d(z, T z)$, $d(x, T z), d(z, T x)\}$ holds. If $x \neq z$, then for all $n \in \mathbb{N}$, there exists $y_{n} \in T x$ such that

$$
d\left(z, y_{n}\right) \leq d(z, T x)+\left(\frac{1}{n}\right) d(x, z)
$$

We consider

$$
\begin{aligned}
d(x, T x) & \leq d\left(x, y_{n}\right) \\
& \leq d(x, z)+d\left(z, y_{n}\right) \\
& \leq d(x, z)+d(z, T x)+\left(\frac{1}{n}\right) d(x, z) \\
& \leq d(x, z)+r d(x, T x)+\left(\frac{1}{n}\right) d(x, z) .
\end{aligned}
$$

Thus, $(1-r) d(x, T x) \leq\left(1+\frac{1}{n}\right) d(x, z)$. Take $n \rightarrow \infty$, we obtain

$$
(1-r) d(x, T x) \leq d(x, z)
$$

by using (2.20), this implies $H(T x, T z) \leq \alpha \max \{d(x, z), d(x, T x), d(z, T z), d(x, T z), d(z, T x)\}$. Hence, as $u_{n+1} \in T u_{n}$, it follows that with $x=u_{n}$

$$
\begin{aligned}
d(z, T z) & =\lim _{n \rightarrow \infty} d\left(u_{n+1}, T z\right) \\
& \leq H\left(T u_{n}, T z\right) \\
& \leq \lim _{n \rightarrow \infty} \alpha \max \left\{d\left(u_{n}, z\right), d\left(u_{n}, T u_{n}\right), d(z, T z), d\left(u_{n}, T z\right), d\left(z, T u_{n}\right)\right\} \\
& \leq \lim _{n \rightarrow \infty} \alpha \max \left\{d\left(u_{n}, z\right), d\left(u_{n}, u_{n+1}\right), d(z, T z), d\left(u_{n}, T z\right), d\left(z, u_{n+1}\right)\right\} \\
& \leq \alpha d(z, T z) .
\end{aligned}
$$

Therefore, $(1-\alpha) d(z, T z) \leq 0$, which implies $d(z, T z)=0$. Since $T z$ is closed, we have $z \in T z$. This completes the proof.

Corollary 2.6 Let be $(X, d)$ a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$. Let $\alpha \in\left[0, \frac{1}{5}\right)$ and $r=5 \alpha$. Assume that

$$
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq S(x, y)
$$

where $S(x, y)=\alpha d(x, y)+\alpha d(x, T x)+\alpha d(y, T y)+\alpha d(x, T y)+\alpha d(y, T x)$ for all $x, y \in X$, where the function $\varphi$ is defined as Theorem 2.5. Then there exists $z \in X$ such that $z \in T z$.

Remark 2.7 We see that Theorem 2.5 is a multi-valued mapping generalization of Theorem 2.3 of Kikkawa and Suzuki [7] and therefore the Kannan fixed point theorem [6] for generalized Kannan mappings.

Theorem 2.8 Define a non-increasing function $\varphi$ from $[0,1)$ into $(0,1]$ by

$$
\varphi(r)= \begin{cases}1, & \text { if } 0 \leq r<\frac{1}{2} \\ 1-r, & \text { if } \frac{1}{2} \leq r<1\end{cases}
$$

Let $\alpha \in\left[0, \frac{1}{5}\right)$ and $r=\frac{3 \alpha}{1-2 \alpha}$, and let be $(X, d)$ a complete metric space and let $T$ be a mapping from $X$ into $\mathrm{CB}(X)$.

Assume that

$$
\begin{equation*}
\varphi(r) d(x, T x) \leq d(x, y) \quad \text { implies } \quad H(T x, T y) \leq S(x, y) \tag{2.24}
\end{equation*}
$$

where $S(x, y)=\alpha d(x, y)+\alpha d(x, T x)+\alpha d(y, T y)+\alpha d(x, T y)+\alpha d(y, T x)$ for all $x, y \in X$. Then there exists $z \in X$ such that $z \in T z$.

Proof Let $r_{1}$ be a real number such that $0 \leq r<r_{1}<1$. Let $u_{1} \in X$ and $u_{2} \in T u_{1}$ be arbitrary. Since $u_{2} \in T u_{1}$, we have $d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right)$ and

$$
\varphi(r) d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, T u_{1}\right) \leq d\left(u_{1}, u_{2}\right) .
$$

Thus, from the assumption (2.24),

$$
d\left(u_{2}, T u_{2}\right) \leq H\left(T u_{1}, T u_{2}\right) \leq S\left(u_{1}, u_{2}\right)
$$

where $S\left(u_{1}, u_{2}\right)=\alpha d\left(u_{1}, u_{2}\right)+\alpha d\left(u_{1}, T u_{1}\right)+\alpha d\left(u_{2}, T u_{2}\right)+\alpha d\left(u_{1}, T u_{2}\right)+\alpha d\left(u_{2}, T u_{1}\right)$. Consider

$$
\begin{aligned}
d\left(u_{2}, T u_{2}\right) & \leq \alpha d\left(u_{1}, u_{2}\right)+\alpha d\left(u_{1}, T u_{1}\right)+\alpha d\left(u_{2}, T u_{2}\right)+\alpha d\left(u_{1}, T u_{2}\right)+\alpha d\left(u_{2}, T u_{1}\right) \\
& \leq 3 \alpha d\left(u_{1}, u_{2}\right)+2 \alpha d\left(u_{2}, T u_{2}\right)
\end{aligned}
$$

Then

$$
d\left(u_{2}, T u_{2}\right) \leq\left(\frac{3 \alpha}{1-2 \alpha}\right) d\left(u_{1}, u_{2}\right)=r d\left(u_{1}, u_{2}\right)
$$

where $r=\frac{3 \alpha}{1-2 \alpha}$.
So there exists $u_{3} \in T u_{2}$ such that $d\left(u_{2}, u_{3}\right) \leq r_{1} d\left(u_{1}, u_{2}\right)$. Thus, we can construct a sequence $\left\{x_{n}\right\}$ in $X$ such that $u_{n+1} \in T u_{n}$ and

$$
d\left(u_{n+1}, u_{n+2}\right) \leq r_{1} d\left(u_{n}, u_{n+1}\right) .
$$

Hence, by induction

$$
d\left(u_{n}, u_{n+1}\right) \leq\left(r_{1}\right)^{n-1} d\left(u_{1}, u_{2}\right) .
$$

Then by the triangle inequality, we have

$$
\sum_{n=1}^{\infty} d\left(u_{n}, u_{n+1}\right) \leq \sum_{n=1}^{\infty}\left(r_{1}\right)^{n-1} d\left(u_{1}, u_{2}\right)<\infty
$$

Hence we conclude that $\left\{u_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there is some point $z \in X$ such that

$$
\lim _{n \rightarrow \infty} u_{n}=z
$$

Now, we will show that $d(z, T x) \leq r d(x, T x)$ for all $x \in X \backslash\{z\}$.
Let $x \in X \backslash\{z\}$. Since $u_{n} \rightarrow z$, there exists $n_{0} \in N$ such that $d\left(z, u_{n}\right) \leq\left(\frac{1}{3}\right) d(z, x)$ for all $n \geq n_{0}$. By using (2.2), we get

$$
\varphi(r) d\left(u_{n}, T u_{n}\right) \leq d\left(x, u_{n}\right) .
$$

Then from (2.1), we have

$$
H\left(T u_{n}, T_{x}\right) \leq \alpha\left[d\left(u_{n}, x\right)+d\left(u_{n}, T u_{n}\right)+d(x, T x)+d\left(u_{n}, T x\right)+d\left(x, T u_{n}\right)\right] .
$$

Since $u_{n+1} \in T u_{n}, d\left(u_{n+1}, T_{x}\right) \leq H\left(T u_{n}, T_{x}\right)$, so that

$$
d\left(u_{n+1}, T x\right) \leq \alpha\left[d\left(u_{n}, x\right)+d\left(u_{n}, u_{n+1}\right)+d(x, T x)+d\left(u_{n}, T x\right)+d\left(x, u_{n+1}\right)\right]
$$

for all $n \geq n_{0}$. Letting $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
d(z, T x) & \leq \alpha[2 d(z, x)+d(x, T x)+d(z, T x)] \\
& \leq \alpha 3 d(z, x)+\alpha 2 d(z, T x)
\end{aligned}
$$

It follows that

$$
\begin{equation*}
d(z, T x) \leq\left(\frac{3 \alpha}{1-2 \alpha}\right) d(x, T x)=r d(x, T x) \quad \text { for all } x \in X \backslash\{z\} \tag{2.25}
\end{equation*}
$$

Next, we show that $z \in T z$. Suppose that $z$ is not element in $T z$.
Case (i): $0 \leq r<\frac{1}{2}$. Let $a \in T z$. Then $a \neq z$ and so by (2.25), we have

$$
d(z, T a) \leq r d(a, T a)
$$

On the other hand, since $\varphi(r) d(z, T z)=d(z, T z) \leq d(z, a)$, from (2.24) we have

$$
H(T z, T a) \leq \alpha[d(z, a)+d(z, T z)+d(a, T a)+d(z, T a)+d(a, T z)] .
$$

So

$$
\begin{align*}
d(a, T a) & \leq H(T z, T a) \leq \alpha[2 d(z, a)+d(a, T a)+d(z, T a)] \\
& \leq \alpha[3 d(z, a)+2 d(a, T a)] . \tag{2.26}
\end{align*}
$$

Since $d(z, a) \leq d(z, T z)+d(T z, a)=d(z, T z)$, we have

$$
\begin{equation*}
d(a, T a) \leq\left(\frac{3 \alpha}{1-2 \alpha}\right) d(z, T z)=r d(z, T z) \tag{2.27}
\end{equation*}
$$

Using (2.24), (2.26), and (2.27), we have

$$
\begin{aligned}
d(z, T z) & \leq d(z, T a)+H(T a, T z) \\
& \leq r d(a, T a)+S(a, z) \\
& \leq r d(a, T a)+\alpha[d(z, a)+d(z, T z)+d(a, T a)+d(z, T a)+d(a, T z)] \\
& \leq(r+2 \alpha) d(a, T a)+3 \alpha d(z, a) \\
& \leq(r+2 \alpha) r d(z, T z)+3 \alpha d(z, T z) \\
& \leq(r+r) r d(z, T z)+r d(z, T z) \\
& \leq\left(2 r^{2}+r\right) d(z, T z) .
\end{aligned}
$$

Since $0 \leq r<\frac{1}{2}$, we have $0 \leq 2 r^{2}+r<1$ and so, $d(z, T z)<d(z, T z)$, a contradiction. Thus $z \in T z$.

Case (ii): $\frac{1}{2} \leq r<1$. Let $x \in X$. If $x=z$, then $H(T x, T z) \leq \alpha[d(x, z)+d(x, T x)+d(z, T z)+$ $d(x, T z)+d(z, T x)]$ holds. If $x \neq z$, then for all $n \in \mathbb{N}$, there exists $y_{n} \in T x$ such that

$$
d\left(z, y_{n}\right) \leq d(z, T x)+\left(\frac{1}{n}\right) d(x, z)
$$

We consider

$$
\begin{aligned}
d(x, T x) & \leq d\left(x, y_{n}\right) \\
& \leq d(x, z)+d\left(z, y_{n}\right) \\
& \leq d(x, z)+d(z, T x)+\left(\frac{1}{n}\right) d(x, z) \\
& \leq d(x, z)+r d(x, T x)+\left(\frac{1}{n}\right) d(x, z) .
\end{aligned}
$$

Thus, $(1-r) d(x, T x) \leq\left(1+\frac{1}{n}\right) d(x, z)$. Take $n \rightarrow \infty$, we obtain

$$
(1-r) d(x, T x) \leq d(x, z)
$$

by using (2.24), this implies $H(T x, T z) \leq S(x, z)$, where $S(x, z)=\alpha[d(x, z)+d(x, T x)+$ $d(z, T z)+d(x, T z)+d(z, T x)]$. Hence, as $u_{n+1} \in T u_{n}$, it follows that with $x=u_{n}$

$$
\begin{align*}
d(z, T z) & =\lim _{n \rightarrow \infty} d\left(u_{n+1}, T z\right) \\
& \leq H\left(T u_{n}, T z\right) \\
& \leq \lim _{n \rightarrow \infty} \alpha\left[d\left(u_{n}, z\right)+d\left(u_{n}, T u_{n}\right)+d(z, T z)+d\left(u_{n}, T z\right)+d\left(z, T u_{n}\right)\right] \\
& \leq \lim _{n \rightarrow \infty}\left[\alpha d\left(u_{n}, z\right)+\alpha d\left(u_{n}, u_{n+1}\right)+\alpha d(z, T z)+\alpha d\left(u_{n}, T z\right)+\alpha d\left(z, u_{n+1}\right)\right] \\
& \leq(2 \alpha) d(z, T z) . \tag{2.28}
\end{align*}
$$

Therefore, $(1-2 \alpha) d(z, T z) \leq 0$, which implies $d(z, T z)=0$. Since $T z$ is closed, we have $z \in T z$. This completes the proof.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

## Author details

${ }^{1}$ Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand. ${ }^{2}$ Research Center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, 65000, Thailand. ${ }^{3}$ Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

## Acknowledgements

The authors would like to thank the Thailand Research Fund under the project RTA5780007 and Science Achievement Scholarship of Thailand, which provides funding for our research.

Received: 28 April 2015 Accepted: 13 October 2015 Published online: 29 October 2015

## References

1. Hardy, GE, Rogers, TD: A generalization of a fixed point theorem of Reich. Can. Math. Bull. 16, 201-206 (1973)
2. Ciric, LB: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45, 267-273 (1974)
3. Banach, S : Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam Math. 3, 133-181 (1922)
4. Kannan, R: Some results on fixed points-II. Am. Math. Mon. 76, 405-408 (1969)
5. Bianchini, RMT: Su un problem a di S. Reich aguardante la teoria dei punti fissi. Boll. Unione Mat. Ital. 5, 103-108 (1972)
6. Suzuki, T: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 340, 1088-1095 (2008)
7. Kikkawa, M, Suzuki, T: Some similarity between contractions and Kannan mappings. Fixed Point Theory Appl. 2008, Article ID 649749 (2008)
8. Karapinar, E, Tas, K: Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 61, 3370-3380 (2011)
9. Kikkawa, M, Suzuki, T: Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Anal. 69, 2942-2949 (2008)
10. Nadler, SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
11. Damjanović, B, Dorić, D: Multivalued generalizations of the Kannan fixed point theorem. Filomat 25, 125-131 (2011)

## Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

