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1 Introduction and preliminaries
Let (X, d) be a metric space. We denote by CB(X) the family of all non-empty closed
bounded subsets of X. Let H(·, ·) be the Hausdorff metric, i.e.,

H(A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(A, b)
}

,

for A, B ∈ CB(X), where

d(x, B) = inf
y∈B

d(x, y).

(i) Let T be a self-mapping on X . Then T is called a Banach contraction mapping if
there exists r ∈ [, ) such that

d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X .
(ii) T is called a Kannan mapping if there exists a ∈ [, 

 ) such that

d(Tx, Ty) ≤ ad(x, Tx) + ad(y, Ty)

for all x, y ∈ X .
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(iii) If T is a mapping such that

d(Tx, Ty) ≤ r max
{

d(x, Tx), d(y, Ty)
}

,

such that r ∈ [, ) and all x, y ∈ X , then T is called a generalized Kannan mapping.
In , Hardy and Rogers [] introduced a condition as follows:
(iv) Let x, y ∈ X . Then there exists ai ≥  such that

d(Tx, Ty) ≤ ad(x, y) + ad(x, Tx) + ad(y, Ty) + ad(x, Ty) + ad(y, Tx),

where
∑

i= ai < .
(v) Ciric [] defined the following condition which generalizes the Banach contraction

and Kannan mapping, that is,

d(Tx, Ty) ≤ r max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

,

such that r ∈ [, ) and all x, y ∈ X .
If X is complete and at least one of (i), (ii), (iii), (iv), and (v) holds, then T has a unique

fixed point (see [–]).
In , Suzuki [] introduced the condition C as follows. T is said to satisfy condition

C if




d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y),

for all x, y ∈ C.
In the same year, Kikkawa and Suzuki [] generalized the Kannan mapping resulting in

the following theorem.

Theorem . (Kikkawa and Suzuki []) Let T be a mapping on complete metric space (X, d)
and let ϕ be a non-increasing function from [, ) into ( 

 , ] defined by

ϕ(r) =

⎧⎨
⎩

, if  ≤ r < √
 ,


+r , if √

 ≤ r < 
 .

Let α ∈ [, 
 ) and put r = α

–α
∈ [, ). Suppose that

ϕ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (.)

for all x, y ∈ X. Then T has a unique fixed point z and limn→∞ Tnx = z holds for every x ∈ X.

Theorem . (Kikkawa and Suzuki []) Let T be a mapping on a complete metric space
(X, d) and let θ be a non-increasing function from [, ) into ( 

 , ] defined by

θ (r) =

⎧⎪⎪⎨
⎪⎪⎩

, if  ≤ r < 
 (

√
 – ),

–r
r , if 

 (
√

 – ) ≤ r < √
 ,


r+ , if √

 ≤ r < .
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Suppose that r ∈ [, ) such that

θ (r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r max
{

d(x, Tx), d(y, Ty)
}

(.)

for all x, y ∈ X. Then T has a unique fixed point z and limn→∞ Tnx = z holds for every x ∈ X.

In , Karapinar and Tas [] stated some new conditions which are modifications of
Suzuki’s condition C, as follows. T is said to satisfy condition SCC if




d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ M(x, y)

for all x, y ∈ K , where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty), d(y, Tx), d(x, Ty)
}

.

In , Nadler [] proved a multi-valued extension of the Banach contraction theorem
as follows.

Theorem . (Nadler []) Let (X, d) be a complete metric space and let T be a mapping
from X into CB(X). Assume that there exists r ∈ [, ) such that

H(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Next, the result of Kikkawa and Suzuki [] is a generalization of Nadler.

Theorem . (Kikkawa and Suzuki []) Let (X, d) be a complete metric space and let T be
a mapping from X into CB(X). Define a strictly decreasing function η from [, ) onto ( 

 , ]
by

η(r) =
r

 + r

and assume that there exists r ∈ [, ) such that

η(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

In , Damjanović and Dorić [] generalized the result of Kannan (iii) and Nadler.

Theorem . (Damjanović and Dorić []) Define a non-increasing function ϕ from [, )
into (, ] by

ϕ(r) =

⎧⎨
⎩

, if  ≤ r <
√

–
 ,

 – r, if
√

–
 ≤ r < .
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Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume
that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ r max
{

d(x, Tx), d(y, Ty)
}

(.)

for all x, y ∈ X. Then there exists z ∈ X such that z ∈ Tz.

Corollary . (Damjanović and Dorić []) Let (X, d) be a complete metric space and let
T be a mapping from X into CB(X). Let α ∈ [, 

 ) and put r = α. Suppose that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty) (.)

for all x, y ∈ X, where the function ϕ is defined as in Theorem .. Then there exists z ∈ X
such that z ∈ Tz.

In this paper, we prove a condition of the existence for generalized multi-valued map-
pings under SCC conditions in metric spaces. These results are improved versions of re-
sults of Boško Damjanović and Dragan Dorić [].

2 Main results
Theorem . Define a non-increasing function ϕ from [, 

 ) into (, ] by

ϕ(r) =

⎧⎨
⎩

, if  ≤ r <
√

–√
+

,
–r
–r , if

√
–√
+

≤ r < 
 .

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume
that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ rM(x, y) (.)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, for all x, y ∈ X. Then there
exists z ∈ X such that z ∈ Tz.

Proof Let r be a real number such that  ≤ r < r < 
 . Let u ∈ X and u ∈ Tu be arbitrary.

Since u ∈ Tu, we have d(u, Tu) ≤ H(Tu, Tu) and

ϕ(r)d(u, Tu) ≤ d(u, Tu) ≤ d(u, u).

Thus from the assumption (.),

d(u, Tu) ≤ H(Tu, Tu) ≤ rM(u, u)

where M(u, u) = max{d(u, u), d(u, Tu), d(u, Tu), d(u, Tu), d(u, Tu)}. Consider

d(u, Tu) ≤ r max
{

d(u, u), d(u, Tu), d(u, Tu), d(u, Tu), d(u, Tu)
}

= r max
{

d(u, u), d(u, Tu)
}

.
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If max{d(u, u), d(u, Tu)} = d(u, Tu), then

d(u, Tu) ≤ rd(u, Tu)

≤ rd(u, u) + rd(u, Tu)

and then

d(u, Tu) ≤
(

r
 – r

)
d(u, u).

If max{d(u, u), d(u, Tu)} = d(u, u), then

d(u, Tu) ≤ rd(u, u) ≤
(

r
 – r

)
d(u, u).

So

d(u, Tu) ≤
(

r
 – r

)
d(u, u).

So there exists u ∈ Tu such that d(u, u) ≤ ( r
–r

)d(u, u). Thus, we can construct a
sequence {xn} in X such that un+ ∈ Tun and

d(un+, un+) ≤
(

r

 – r

)
d(un, un+).

Hence, by induction,

d(un, un+) ≤
(

r

 – r

)n–

d(u, u).

Then by the triangle inequality, we have

∞∑
n=

d(un, un+) ≤
∞∑

n=

(
r

 – r

)n–

d(u, u) < ∞.

Hence we conclude that {un} is a Cauchy sequence. Since X is complete, there is some
point z ∈ X such that

lim
n→∞ un = z.

Now, we will show that d(z, Tx) ≤ rd(x, Tx) for all x ∈ X \ {z}.
Let x ∈ X \ {z}. Since un → z, there exists n ∈ N such that d(z, un) ≤ ( 

 )d(z, x) for all
n ≥ n. Then we have

ϕ(r)d(un, Tun) ≤ d(un, Tun)

≤ d(un, un+)

≤ d(un, z) + d(z, un+)
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≤
(




)
d(z, x)

= d(z, x) –



d(z, x)

≤ d(z, x) – d(z, un)

≤ d(x, un). (.)

Then from (.) we have

H(Tun, Tx) ≤ r max
{

d(un, x), d(un, Tun), d(x, Tx), d(un, Tx), d(x, Tun)
}

.

Since un+ ∈ Tun, d(un+, Tx) ≤ H(Tun, Tx), so that

d(un+, Tx) ≤ r max
{

d(un, x), d(un, un+), d(x, Tx), d(un, Tx), d(x, un+)
}

for all n ≥ n. Letting n → ∞, we obtain

d(z, Tx) ≤ r max
{

d(z, x), d(x, Tx), d(z, Tx)
}

.

It follows that

d(z, Tx) ≤
(

r
 – r

)
d(x, Tx) for all x ∈ X \ {z}. (.)

Next, we show that z ∈ Tz. Suppose that z is not an element in Tz.
Case (i):  ≤ r <

√
–√
+

. Let a ∈ Tz. Then a �= z and so by (.), we have

d(z, Ta) ≤
(

r
 – r

)
d(a, Ta).

On the other hand, since ϕ(r)d(z, Tz) = d(z, Tz) ≤ d(z, a), from (.) we have

H(Tz, Ta) ≤ r max
{

d(z, a), d(z, Tz), d(a, Ta), d(z, Ta), d(a, Tz)
}

.

So

d(a, Ta) ≤ H(Tz, Ta) ≤ r max
{

d(z, a), d(z, Tz), d(z, Ta)
}

. (.)

It implies that

d(a, Ta) ≤ r max
{

d(z, a), d(z, Tz), d(z, Ta)
}

.

Since d(z, a) ≤ d(z, Tz) + d(Tz, a) = d(z, Tz), we have

d(a, Ta) ≤
(

r
 – r

)
d(z, Tz). (.)



Klin-eam et al. Journal of Inequalities and Applications  (2015) 2015:343 Page 7 of 23

Using (.), (.), and (.), we have

d(z, Tz) ≤ d(z, Ta) + H(Ta, Tz)

≤
(

r
 – r

)
d(a, Ta) + r max

{
d(z, a), d(z, Tz), d(z, Ta)

}

≤
(

r
 – r

)
d(a, Ta) + r max

{
d(z, a), d(z, Tz),

(
r

 – r

)
d(a, Ta)

}

≤
(

r
 – r

)
d(a, Ta) + r max

{
d(z, a), d(z, Tz)

}

≤
(

r
 – r

)
d(a, Ta) + rd(z, Tz)

≤
(

r
 – r

)

d(z, Tz) + rd(z, Tz)

≤
(

r
 – r

)

d(z, Tz) +
(

r
 – r

)
d(z, Tz)

≤
[(

r
 – r

)

+
(

r
 – r

)]
d(z, Tz)

≤ [
k + k

]
d(z, Tz),

where k = r
–r . Since r <

√
–√
+

, we have k + k <  and so d(z, Tz) < d(z, Tz), a contradiction.
Thus z ∈ Tz.

Case (ii):
√

–√
+

≤ r < 
 . Let x ∈ X. If x = z, then H(Tx, Tz) ≤ r max{d(x, z), d(x, Tx), d(z, Tz),

d(x, Tz), d(z, Tx)} holds. If x �= z, then for all n ∈ N, there exists yn ∈ Tx such that

d(z, yn) ≤ d(z, Tx) +
(


n

)
d(x, z).

We consider

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +
(


n

)
d(x, z)

≤ d(x, z) +
(

r
 – r

)
d(x, Tx) +

(

n

)
d(x, z).

Thus, ( –r
–r )d(x, Tx) ≤ ( + 

n )d(x, z). Take n → ∞, we obtain
(

 – r
 – r

)
d(x, Tx) ≤ d(x, z),

by using (.), implies H(Tx, Tz) ≤ r max{d(x, z), d(x, Tx), d(z, Tz), d(x, Tz), d(z, Tx)}. Hence,
as un+ ∈ Tun, it follows that with x = un

d(z, Tz) = lim
n→∞ d(un+, Tz)

≤ H(Tun, Tz)
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≤ lim
n→∞ r max

{
d(un, z), d(un, Tun), d(z, Tz), d(un, Tz), d(z, Tun)

}

≤ lim
n→∞ r max

{
d(un, z), d(un, un+), d(z, Tz), d(un, Tz), d(z, un+)

}

≤ rd(z, Tz).

Therefore, ( – r)d(z, Tz) ≤ , which implies d(z, Tz) = . Since Tz is closed, we have z ∈ Tz.
This completes the proof. �

Example . Let X = [,∞) be endowed with the usual metric d. Define T : X → CB(X)
by

T(x) =

⎧⎪⎪⎨
⎪⎪⎩

[, x],  ≤ x ≤ 
 ,

[, x
 ], 

 < x < ,

[, log(x)],  ≤ x.

(.)

Proof We show that T satisfies (.). Let x, y ∈ X. We prove by cases.
Case (i): Suppose that x, y ∈ [, 

 ]. Thus, if x ≤ y, then

ϕ

(



)
d(x, Tx) =

∣∣x – x∣∣ ≥ |x – y| = d(x, y).

But if x > y, then

ϕ

(



)
d(x, Tx) =

∣∣x – x∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =
∣∣x – y∣∣

≤ 


∣∣(x) – (y)∣∣

≤ 


∣∣x – y∣∣

≤ 


∣∣x – y∣∣

=



max
{|x – y|, ∣∣x – x∣∣, ∣∣y – y∣∣, ∣∣x – y∣∣, ∣∣y – x∣∣}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (ii): Suppose that x, y ∈ ( 
 , ). Thus, if x

 ≤ y, then

ϕ

(



)
d(x, Tx) =

∣∣∣∣x –
x


∣∣∣∣ ≥ |x – y| = d(x, y).
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But if x
 > y, then

ϕ

(



)
d(x, Tx) =

∣∣∣∣x –
x


∣∣∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =


|x – y|

≤ 


∣∣∣∣x –
y


∣∣∣∣

=



max

{
|x – y|,

∣∣∣∣x –
x


∣∣∣∣,
∣∣∣∣y –

y


∣∣∣∣,
∣∣∣∣x –

y


∣∣∣∣,
∣∣∣∣y –

x


∣∣∣∣
}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (iii): Suppose that x, y ∈ [,∞]. Thus, if log(x) ≤ y, then

ϕ

(



)
d(x, Tx) =

∣∣x – log(x)
∣∣ ≥ |x – y| = d(x, y).

But if log(x) > y, then

ϕ

(



)
d(x, Tx) =

∣∣x – log(x)
∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =
∣∣log(x) – log(y)

∣∣

=


(
 log(x) –  log(y)

)

≤ 

∣∣x – log(y)

∣∣

=



max
{|x – y|, ∣∣x – log(x)

∣∣, ∣∣y – log(y)
∣∣, ∣∣x – log(y)

∣∣, ∣∣y – log(x)
∣∣}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (iv): Suppose that x ∈ [, 
 ] and y ∈ ( 

 , ). Then x < x < y. Thus, ϕ( 
 )d(x, Tx) =

|x – x| ≥ |x – y| = d(x, y). Hence T satisfies (.).
Case (v): Suppose that x ∈ ( 

 , ) and y ∈ [, 
 ]. So x > y. Thus, if x

 ≤ y, then

ϕ

(



)
d(x, Tx) =

∣∣∣∣x –
x


∣∣∣∣ ≥ |x – y| = d(x, y).
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But if x
 > y, then

ϕ

(



)
d(x, Tx) =

∣∣∣∣x –
x


∣∣∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =
∣∣∣∣
x


– y
∣∣∣∣

≤ 

∣∣x – y∣∣

≤ 

∣∣x – y∣∣

=



max

{
|x – y|,

∣∣∣∣x –
x


∣∣∣∣,
∣∣y – y∣∣, ∣∣x – y∣∣,

∣∣∣∣y –
x


∣∣∣∣
}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (vi): Suppose that x ∈ [, 
 ] and y ∈ [,∞].

ϕ

(



)
d(x, Tx) =

∣∣x – x∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =
∣∣x – log(y)

∣∣

=


∣∣x –  log(y)

∣∣ =


∣∣ log(y) – x∣∣

≤ 


max
{∣∣y – log(y)

∣∣, ∣∣y – x∣∣}

=



max
{|x – y|, ∣∣x – x∣∣, ∣∣y – log(y)

∣∣, ∣∣x – log(y)
∣∣, ∣∣y – x∣∣}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (vii): Suppose that x ∈ [,∞] and y ∈ [, 
 ]. Thus, if log(x) ≤ y, then

ϕ

(



)
d(x, Tx) =

∣∣x – log(x)
∣∣ ≥ |x – y| = d(x, y).

But if log(x) > y, then

ϕ

(



)
d(x, Tx) =

∣∣x – log(x)
∣∣ ≤ |x – y| = d(x, y)
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and

H(Tx, Ty) =
∣∣log(x) – y∣∣

=



∣∣ log(x) – y∣∣

≤ 


∣∣x – y∣∣

=



max
{|x – y|, ∣∣x – log(x)

∣∣, ∣∣y – y∣∣, ∣∣x – y∣∣, ∣∣y – log(x)
∣∣}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (viii): Suppose that x ∈ ( 
 , ) and y ∈ [,∞].

ϕ

(



)
d(x, Tx) =

∣∣∣∣x –
x


∣∣∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =
∣∣∣∣
x


– log(y)
∣∣∣∣

=


∣∣x –  log(y)

∣∣ =


∣∣ log(y) – x

∣∣

≤ 


max

{∣∣y – log(y)
∣∣,

∣∣∣∣y –
x


∣∣∣∣
}

=



max

{
|x – y|,

∣∣∣∣x –
x


∣∣∣∣,
∣∣y – log(y)

∣∣, ∣∣x – log(y)
∣∣,

∣∣∣∣y –
x


∣∣∣∣
}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Case (ix): Suppose that x ∈ [,∞] and y ∈ ( 
 , ). Thus, if log(x) ≤ y, then

ϕ

(



)
d(x, Tx) =

∣∣x – log(x)
∣∣ ≥ |x – y| = d(x, y).

But if log(x) > y, then

ϕ

(



)
d(x, Tx) =

∣∣x – log(x)
∣∣ ≤ |x – y| = d(x, y)

and

H(Tx, Ty) =
∣∣∣∣log(x) –

y


∣∣∣∣

=


∣∣ log(x) – y

∣∣



Klin-eam et al. Journal of Inequalities and Applications  (2015) 2015:343 Page 12 of 23

≤ 

|x – y|

=



max

{
|x – y|, ∣∣x – log(x)

∣∣,
∣∣∣∣y –

y


∣∣∣∣,
∣∣∣∣x –

y


∣∣∣∣,
∣∣y – log(x)

∣∣
}

=



max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

= rM(x, y), (.)

where r = 
 . Hence T satisfies (.).

Thus we see that T satisfies condition (.) and satisfies Theorem .. So there exists
z ∈ X such that z ∈ Tz. Moreover,  ∈ T(). �

Theorem . Define a non-increasing function ϕ from [, 
 ) into (, ] by

ϕ(r) =

⎧
⎨
⎩

, if  ≤ r <
√

–
+

√


,
–r
–r , if

√
–

+
√


≤ r < 

 .

Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume
that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ S(x, y) (.)

where S(x, y) = rd(x, y) + rd(x, Tx) + rd(y, Ty) + rd(x, Ty) + rd(y, Tx) for all x, y ∈ X. Then there
exists z ∈ X such that z ∈ Tz.

Proof Let r be a real number such that  ≤ r < r < . Let u ∈ X and u ∈ Tu be arbitrary.
Since u ∈ Tu, we have d(u, Tu) ≤ H(Tu, Tu) and

ϕ(r)d(u, Tu) ≤ d(u, Tu) ≤ d(u, u).

Thus, from the assumption (.),

d(u, Tu) ≤ H(Tu, Tu) ≤ S(u, u)

where S(u, u) = rd(u, u) + rd(u, Tu) + rd(u, Tu) + rd(u, Tu) + rd(u, Tu). Consider

d(u, Tu) ≤ rd(u, u) + rd(u, Tu) + rd(u, Tu) + rd(u, Tu) + rd(u, Tu)

≤ rd(u, u) + rd(u, Tu).

So

d(u, Tu) ≤
(

r
 – r

)
d(u, u).

So there exists u ∈ Tu such that d(u, u) ≤ ( r
–r

)d(u, u). Thus, we can construct a
sequence {xn} in X such that un+ ∈ Tun and

d(un+, un+) ≤
(

r

 – r

)
d(un, un+).
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Hence, by induction,

d(un, un+) ≤
(

r

 – r

)n–

d(u, u).

Then by the triangle inequality, we have

∞∑
n=

d(un, un+) ≤
∞∑

n=

(
r

 – r

)n–

d(u, u) < ∞.

Hence we conclude that {un} is a Cauchy sequence. Since X is complete, there is some
point z ∈ X such that

lim
n→∞ un = z.

Now, we will show that d(z, Tx) ≤ ( r
–r )d(x, Tx) for all x ∈ X \ {z}.

Let x ∈ X \ {z}. Since un → z, there exists n ∈ N such that d(z, un) ≤ ( 
 )d(z, x) for all

n ≥ n. By using (.), we get

ϕ(r)d(un, Tun) ≤ d(x, un).

Then from (.) we have

H(Tun, Tx) ≤ r
[
d(un, x) + d(un, Tun) + d(x, Tx) + d(un, Tx) + d(x, Tun)

]
.

Since un+ ∈ Tun, d(un+, Tx) ≤ H(Tun, Tx), so that

d(un+, Tx) ≤ r
[
d(un, x) + d(un, un+) + d(x, Tx) + d(un, Tx) + d(x, un+)

]

for all n ≥ n. Letting n → ∞, we obtain

d(z, Tx) ≤ r
[
d(z, x) + d(x, Tx) + d(z, Tx)

]

≤ rd(z, x) + rd(z, Tx).

It follows that

d(z, Tx) ≤
(

r
 – r

)
d(x, Tx) for all x ∈ X \ {z}. (.)

Next, we show that z ∈ Tz. Suppose that z is not an element in Tz.
Case (i):  ≤ r <

√
–

+
√


. Let a ∈ Tz. Then a �= z and so by (.), we have

d(z, Ta) ≤
(

r
 – r

)
d(a, Ta).

On the other hand, since ϕ(r)d(z, Tz) = d(z, Tz) ≤ d(z, a), from (.) we have

H(Tz, Ta) ≤ r
[
d(z, a) + d(z, Tz) + d(a, Ta) + d(z, Ta) + d(a, Tz)

]
.
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So

d(a, Ta) ≤ H(Tz, Ta) ≤ r
[
d(z, a) + d(a, Ta) + d(z, Ta)

]

≤ r
[
d(z, a) + d(a, Ta)

]
. (.)

Since d(z, a) ≤ d(z, Tz) + d(Tz, a) = d(z, Tz), we have

d(a, Ta) ≤
(

r
 – r

)
d(z, Tz).

Using (.), (.), and (.), we have

d(z, Tz) ≤ d(z, Ta) + H(Ta, Tz)

≤
(

r
 – r

)
d(a, Ta) + S(a, z)

≤
(

r
 – r

)
d(a, Ta) + r

[
d(z, a) + d(z, Tz) + d(a, Ta) + d(z, Ta) + d(a, Tz)

]

≤
(

r
 – r

)
d(a, Ta) + rd(z, a)

≤
(

r
 – r

)

d(z, Tz) +
(

r
 – r

)
d(z, Tz)

≤ (
k + k

)
d(z, Tz),

where k = r
–r .

Since  ≤ r <
√

–
+

√


, we have  ≤ k + k <  and so, d(z, Tz) < d(z, Tz), a contradiction.
Thus z ∈ Tz.

Case (ii):
√

–
+

√


≤ r < 
 . Let x ∈ X.

If x = z, then H(Tx, Tz) ≤ r[d(x, z) + d(x, Tx) + d(z, Tz) + d(x, Tz) + d(z, Tx)] holds. If x �= z,
then for all n ∈N, there exists yn ∈ Tx such that

d(z, yn) ≤ d(z, Tx) +
(


n

)
d(x, z).

We consider

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +
(


n

)
d(x, z)

≤ d(x, z) +
(

r
 – r

)
d(x, Tx) +

(

n

)
d(x, z).

Thus, ( –r
–r )d(x, Tx) ≤ ( + 

n )d(x, z). Take n → ∞, we obtain

(
 – r
 – r

)
d(x, Tx) ≤ d(x, z),
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by using (.), implies H(Tx, Tz) ≤ S(x, z), where S(x, z) = r[d(x, z) + d(x, Tx) + d(z, Tz) +
d(x, Tz) + d(z, Tx)].

Hence, as un+ ∈ Tun, it follows that with x = un

d(z, Tz) = lim
n→∞ d(un+, Tz)

≤ H(Tun, Tz)

≤ lim
n→∞ r

[
d(un, z) + d(un, Tun) + d(z, Tz) + d(un, Tz) + d(z, Tun)

]

≤ lim
n→∞

[
rd(un, z) + rd(un, un+) + rd(z, Tz) + rd(un, Tz) + rd(z, un+)

]

≤ (r)d(z, Tz). (.)

Using (.), we have ( – r)d(z, Tz) ≤ , which implies d(z, Tz) = . Since Tz is closed, we
have z ∈ Tz. This completes the proof. �

Example . Let X = [, 
 ] with the metric d(x, y) = |x–y|

|x–y|+ for all x, y ∈ X. Define T : X →
CB(X) by

T(x) =
[
, x].

Proof We show that T satisfies (.). Let x, y ∈ X. Thus, if x ≤ y, then

ϕ

(



)
d(x, Tx) =

|x – x|
|x – x| + 

≥ |x – y|
|x – y| + 

= d(x, y).

But if x > y, then

ϕ

(



)
d(x, Tx) =

|x – x|
|x – x| + 

≤ |x – y|
|x – y| + 

= d(x, y)

and

H(Tx, Ty)

=
|x – y|

|x – y| + 

=



|x – y|
|x – y| + 

=



{ |x – y|
|x – y| + 

+
|x – y|

|x – y| + 
+

|x – y|
|x – y| + 

+
|x – y|

|x – y| + 
+

|x – y|
|x – y| + 

}

<



{ |x – y|
|x – y| + 

+
|x – x|

|x – x| + 
+

|y – y|
|y – y| + 

+
|x – y|

|x – y| + 
+

|y – x|
|y – x| + 

}

=



{
d(x, y) + d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)

}

=



S(x, y), (.)
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where r = 
 .

Thus we see that T satisfies condition (.) and satisfies Theorem .. So there exists
z ∈ X such that z ∈ Tz. Moreover,  ∈ T(). �

Theorem . Define a non-increasing function ϕ from [, ) into (, ] by

ϕ(r) =

⎧
⎨
⎩

, if  ≤ r <
√

–
 ,

 – r, if
√

–
 ≤ r < .

Let α ∈ [, 
 ) and r = α

–α
, and let (X, d) be a complete metric space and let T be a mapping

from X into CB(X).
Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ αM(x, y) (.)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, for all x, y ∈ X. Then there
exists z ∈ X such that z ∈ Tz.

Proof Let r be a real number such that  ≤ r < r < 
 . Let u ∈ X and u ∈ Tu be arbitrary.

Since u ∈ Tu, we have d(u, Tu) ≤ H(Tu, Tu) and

ϕ(r)d(u, Tu) ≤ d(u, Tu) ≤ d(u, u).

Thus, from the assumption (.),

d(u, Tu) ≤ H(Tu, Tu) ≤ αM(u, u)

where M(u, u) = max{d(u, u), d(u, Tu), d(u, Tu), d(u, Tu), d(u, Tu)}.
Consider

d(u, Tu) ≤ α max
{

d(u, u), d(u, Tu), d(u, Tu), d(u, Tu), d(u, Tu)
}

= α max
{

d(u, u), d(u, Tu)
}

.

If max{d(u, u), d(u, Tu)} = d(u, Tu), then

d(u, Tu) ≤ αd(u, Tu)

≤ αd(u, u) + αd(u, Tu)

and then

d(u, Tu) ≤
(

α

 – α

)
d(u, u) = rd(u, u),

where r = α
–α

.
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So there exists u ∈ Tu such that d(u, u) ≤ rd(u, u). Thus, we can construct a se-
quence {xn} in X such that un+ ∈ Tun and

d(un+, un+) ≤ rd(un, un+).

Hence, by induction

d(un, un+) ≤ (r)n–d(u, u).

Then by the triangle inequality, we have

∞∑
n=

d(un, un+) ≤
∞∑

n=

(r)n–d(u, u) < ∞.

Hence we conclude that {un} is a Cauchy sequence. Since X is complete, there is some
point z ∈ X such that

lim
n→∞ un = z.

Now, we will show that d(z, Tx) ≤ rd(x, Tx) for all x ∈ X \ {z}.
Let x ∈ X \ {z}. Since un → z, there exists n ∈ N such that d(z, un) ≤ ( 

 )d(z, x) for all
n ≥ n. By using (.), we get

ϕ(r)d(un, Tun) ≤ d(x, un).

Then from (.), we have

H(Tun, Tx) ≤ α max
{

d(un, x), d(un, Tun), d(x, Tx), d(un, Tx), d(x, Tun)
}

.

Since un+ ∈ Tun, we have d(un+, Tx) ≤ H(Tun, Tx), so that

d(un+, Tx) ≤ α max
{

d(un, x), d(un, un+), d(x, Tx), d(un, Tx), d(x, un+)
}

for all n ≥ n. Letting n → ∞, we obtain

d(z, Tx) ≤ α max
{

d(z, x), d(x, Tx), d(z, Tx)
}

.

We obtain

d(z, Tx) ≤
(

α

 – α

)
d(x, Tx) = rd(x, Tx) for all x ∈ X \ {z}. (.)

Next, we show that z ∈ Tz. Suppose that z is not an element in Tz.
Case (i):  ≤ r <

√
–
 . Let a ∈ Tz. Then a �= z and so by (.), we have

d(z, Ta) ≤ rd(a, Ta).
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On the other hand, since ϕ(r)d(z, Tz) = d(z, Tz) ≤ d(z, a), from (.) we have

H(Tz, Ta) ≤ α max
{

d(z, a), d(z, Tz), d(a, Ta), d(z, Ta), d(a, Tz)
}

.

So

d(a, Ta) ≤ H(Tz, Ta) ≤ α max
{

d(z, a), d(z, Tz), d(z, Ta)
}

. (.)

It implies that

d(a, Ta) ≤ α max
{

d(z, a), d(z, Tz), d(z, Ta)
}

.

Since d(z, a) ≤ d(z, Tz) + d(Tz, a) = d(z, Tz), we have

d(a, Ta) ≤ rd(z, Tz). (.)

Using (.), (.), (.), and (.), we have

d(z, Tz) ≤ d(z, Ta) + H(Ta, Tz)

≤ rd(a, Ta) + α max
{

d(z, a), d(z, Tz), d(z, Ta)
}

≤ rd(a, Ta) + α max
{

d(z, a), d(z, Tz), rd(a, Ta)
}

≤ rd(a, Ta) + α max
{

d(z, a), d(z, Tz)
}

≤ rd(a, Ta) + αd(z, Tz)

≤ (r)d(z, Tz) + rd(z, Tz)

≤ (
r + r

)
d(z, Tz),

where r = α
–α

.
Since r <

√
–
 , we have r + r <  and so d(z, Tz) < d(z, Tz), a contradiction. Thus z ∈ Tz.

Case (ii)
√

–
 ≤ r < . Let x ∈ X. If x = z, then H(Tx, Tz) ≤ α max{d(x, z), d(x, Tx), d(z, Tz),

d(x, Tz), d(z, Tx)} holds. If x �= z, then for all n ∈ N, there exists yn ∈ Tx such that

d(z, yn) ≤ d(z, Tx) +
(


n

)
d(x, z).

We consider

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +
(


n

)
d(x, z)

≤ d(x, z) + rd(x, Tx) +
(


n

)
d(x, z).
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Thus, ( – r)d(x, Tx) ≤ ( + 
n )d(x, z). Take n → ∞, we obtain

( – r)d(x, Tx) ≤ d(x, z),

by using (.), this implies H(Tx, Tz) ≤ α max{d(x, z), d(x, Tx), d(z, Tz), d(x, Tz), d(z, Tx)}.
Hence, as un+ ∈ Tun, it follows that with x = un

d(z, Tz) = lim
n→∞ d(un+, Tz)

≤ H(Tun, Tz)

≤ lim
n→∞α max

{
d(un, z), d(un, Tun), d(z, Tz), d(un, Tz), d(z, Tun)

}

≤ lim
n→∞α max

{
d(un, z), d(un, un+), d(z, Tz), d(un, Tz), d(z, un+)

}

≤ αd(z, Tz).

Therefore, ( – α)d(z, Tz) ≤ , which implies d(z, Tz) = . Since Tz is closed, we have
z ∈ Tz. This completes the proof. �

Corollary . Let be (X, d) a complete metric space and let T be a mapping from X into
CB(X). Let α ∈ [, 

 ) and r = α. Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ S(x, y)

where S(x, y) = αd(x, y) + αd(x, Tx) + αd(y, Ty) + αd(x, Ty) + αd(y, Tx) for all x, y ∈ X, where
the function ϕ is defined as Theorem .. Then there exists z ∈ X such that z ∈ Tz.

Remark . We see that Theorem . is a multi-valued mapping generalization of Theo-
rem . of Kikkawa and Suzuki [] and therefore the Kannan fixed point theorem [] for
generalized Kannan mappings.

Theorem . Define a non-increasing function ϕ from [, ) into (, ] by

ϕ(r) =

⎧
⎨
⎩

, if  ≤ r < 
 ,

 – r, if 
 ≤ r < .

Let α ∈ [, 
 ) and r = α

–α
, and let be (X, d) a complete metric space and let T be a mapping

from X into CB(X).
Assume that

ϕ(r)d(x, Tx) ≤ d(x, y) implies H(Tx, Ty) ≤ S(x, y) (.)

where S(x, y) = αd(x, y) + αd(x, Tx) + αd(y, Ty) + αd(x, Ty) + αd(y, Tx) for all x, y ∈ X. Then
there exists z ∈ X such that z ∈ Tz.

Proof Let r be a real number such that  ≤ r < r < . Let u ∈ X and u ∈ Tu be arbitrary.
Since u ∈ Tu, we have d(u, Tu) ≤ H(Tu, Tu) and

ϕ(r)d(u, Tu) ≤ d(u, Tu) ≤ d(u, u).
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Thus, from the assumption (.),

d(u, Tu) ≤ H(Tu, Tu) ≤ S(u, u)

where S(u, u) = αd(u, u) + αd(u, Tu) + αd(u, Tu) + αd(u, Tu) + αd(u, Tu). Con-
sider

d(u, Tu) ≤ αd(u, u) + αd(u, Tu) + αd(u, Tu) + αd(u, Tu) + αd(u, Tu)

≤ αd(u, u) + αd(u, Tu).

Then

d(u, Tu) ≤
(

α

 – α

)
d(u, u) = rd(u, u),

where r = α
–α

.
So there exists u ∈ Tu such that d(u, u) ≤ rd(u, u). Thus, we can construct a se-

quence {xn} in X such that un+ ∈ Tun and

d(un+, un+) ≤ rd(un, un+).

Hence, by induction

d(un, un+) ≤ (r)n–d(u, u).

Then by the triangle inequality, we have

∞∑
n=

d(un, un+) ≤
∞∑

n=

(r)n–d(u, u) < ∞.

Hence we conclude that {un} is a Cauchy sequence. Since X is complete, there is some
point z ∈ X such that

lim
n→∞ un = z.

Now, we will show that d(z, Tx) ≤ rd(x, Tx) for all x ∈ X \ {z}.
Let x ∈ X \ {z}. Since un → z, there exists n ∈ N such that d(z, un) ≤ ( 

 )d(z, x) for all
n ≥ n. By using (.), we get

ϕ(r)d(un, Tun) ≤ d(x, un).

Then from (.), we have

H(Tun, Tx) ≤ α
[
d(un, x) + d(un, Tun) + d(x, Tx) + d(un, Tx) + d(x, Tun)

]
.

Since un+ ∈ Tun, d(un+, Tx) ≤ H(Tun, Tx), so that

d(un+, Tx) ≤ α
[
d(un, x) + d(un, un+) + d(x, Tx) + d(un, Tx) + d(x, un+)

]
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for all n ≥ n. Letting n → ∞, we obtain

d(z, Tx) ≤ α
[
d(z, x) + d(x, Tx) + d(z, Tx)

]

≤ αd(z, x) + αd(z, Tx).

It follows that

d(z, Tx) ≤
(

α

 – α

)
d(x, Tx) = rd(x, Tx) for all x ∈ X \ {z}. (.)

Next, we show that z ∈ Tz. Suppose that z is not element in Tz.
Case (i):  ≤ r < 

 . Let a ∈ Tz. Then a �= z and so by (.), we have

d(z, Ta) ≤ rd(a, Ta).

On the other hand, since ϕ(r)d(z, Tz) = d(z, Tz) ≤ d(z, a), from (.) we have

H(Tz, Ta) ≤ α
[
d(z, a) + d(z, Tz) + d(a, Ta) + d(z, Ta) + d(a, Tz)

]
.

So

d(a, Ta) ≤ H(Tz, Ta) ≤ α
[
d(z, a) + d(a, Ta) + d(z, Ta)

]

≤ α
[
d(z, a) + d(a, Ta)

]
. (.)

Since d(z, a) ≤ d(z, Tz) + d(Tz, a) = d(z, Tz), we have

d(a, Ta) ≤
(

α

 – α

)
d(z, Tz) = rd(z, Tz). (.)

Using (.), (.), and (.), we have

d(z, Tz) ≤ d(z, Ta) + H(Ta, Tz)

≤ rd(a, Ta) + S(a, z)

≤ rd(a, Ta) + α
[
d(z, a) + d(z, Tz) + d(a, Ta) + d(z, Ta) + d(a, Tz)

]

≤ (r + α)d(a, Ta) + αd(z, a)

≤ (r + α)rd(z, Tz) + αd(z, Tz)

≤ (r + r)rd(z, Tz) + rd(z, Tz)

≤ (
r + r

)
d(z, Tz).

Since  ≤ r < 
 , we have  ≤ r + r <  and so, d(z, Tz) < d(z, Tz), a contradiction. Thus

z ∈ Tz.
Case (ii): 

 ≤ r < . Let x ∈ X. If x = z, then H(Tx, Tz) ≤ α[d(x, z) + d(x, Tx) + d(z, Tz) +
d(x, Tz) + d(z, Tx)] holds. If x �= z, then for all n ∈N, there exists yn ∈ Tx such that

d(z, yn) ≤ d(z, Tx) +
(


n

)
d(x, z).
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We consider

d(x, Tx) ≤ d(x, yn)

≤ d(x, z) + d(z, yn)

≤ d(x, z) + d(z, Tx) +
(


n

)
d(x, z)

≤ d(x, z) + rd(x, Tx) +
(


n

)
d(x, z).

Thus, ( – r)d(x, Tx) ≤ ( + 
n )d(x, z). Take n → ∞, we obtain

( – r)d(x, Tx) ≤ d(x, z),

by using (.), this implies H(Tx, Tz) ≤ S(x, z), where S(x, z) = α[d(x, z) + d(x, Tx) +
d(z, Tz) + d(x, Tz) + d(z, Tx)]. Hence, as un+ ∈ Tun, it follows that with x = un

d(z, Tz) = lim
n→∞ d(un+, Tz)

≤ H(Tun, Tz)

≤ lim
n→∞α

[
d(un, z) + d(un, Tun) + d(z, Tz) + d(un, Tz) + d(z, Tun)

]

≤ lim
n→∞

[
αd(un, z) + αd(un, un+) + αd(z, Tz) + αd(un, Tz) + αd(z, un+)

]

≤ (α)d(z, Tz). (.)

Therefore, ( – α)d(z, Tz) ≤ , which implies d(z, Tz) = . Since Tz is closed, we have
z ∈ Tz. This completes the proof. �
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