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1 Introduction
If p > , 

p + 
q = , am, bn ≥ , a = {am}∞m= ∈ lp, b = {bn}∞n= ∈ lq, ‖a‖p = (

∑∞
m= ap

m)

p > ,

‖b‖q > , then we have the following well-known Hardy-Hilbert’s inequality with the best
possible constant factor π

sin(π/p) (cf. [], Theorem ):

∞∑

m=

∞∑

n=

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q. ()

Also we have the following Mulholland’s inequality similar to () with the same best pos-
sible constant factor π

sin(π/p) (cf. [] or [], Theorem , replacing am
n , bn

n by am, bn):

∞∑

m=

∞∑

n=

ambn

ln mn
<

π

sin(π/p)

( ∞∑

m=

ap
m

m–p

) 
p
( ∞∑

n=

bq
n

n–q

) 
q

. ()

Inequalities () and () are important in analysis and its applications (cf. [, –]).
In , Gao and Yang [] gave a strengthened version of () as follows:

∞∑

m=

∞∑

n=

ambn

m + n
<

{ ∞∑

m=

[
π

sin(π/p)
–

 – γ

m/p

]

ap
m

} 
p

×
{ ∞∑

n=

[
π

sin(π/p)
–

 – γ

n/q

]

bq
n

} 
q

, ()

where  – γ = .+ (γ is Euler constant).
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Suppose that μi,υj >  (i, j ∈ N = {, , . . .}),

Um :=
m∑

i=

μi, Vn :=
n∑

j=

υj (m, n ∈ N), ()

we have the following Hardy-Hilbert-type inequality (cf. [], Theorem ):

∞∑

m=

∞∑

n=

μ
/q
m υ

/p
n ambn

Um + Vn
<

π

sin(π/p)
‖a‖p‖b‖q. ()

For μi = υj =  (i, j ∈ N), inequality () reduces to (). Replacing μ
/q
m am and υ

/p
n bn by am

and bn in (), respectively, we obtain the equivalent form of () as follows:

∞∑

m=

∞∑

n=

ambn

Um + Vn
<

π

sin( π
p )

( ∞∑

m=

ap
m

μ
p–
m

) 
p
( ∞∑

n=

bq
n

υ
q–
n

) 
q

. ()

In , Yang [] gave an extension of () as follows: For  < λ,λ ≤ , λ + λ = λ, we
have

∞∑

m=

∞∑

n=

ambn

(Um + Vn)λ

< B(λ,λ)

[ ∞∑

m=

Up(–λ)–
m ap

m

μ
p–
m

] 
p
[ ∞∑

n=

V q(–λ–)
n bq

n

υ
q–
n

] 
q

, ()

where B(u, v) is the beta function indicated by (cf. [])

B(u, v) :=
∫ ∞



tu–

( + t)u+v dt (u, v > ). ()

In this paper, by using the way of weight coefficients, the technique of real analysis, and
Hermite-Hadamard’s inequality, a Mulholland-type inequality with the best possible con-
stant factor π

sin(π/p) is given as follows: For μ = υ = , {μm}∞m= and {υn}∞n= are decreasing,
and U∞ = V∞ = ∞, we have

∞∑

m=

∞∑

n=

ambn

ln UmVn

<
π

sin(π/p)

[ ∞∑

m=

(
Um

μm+

)p–

ap
m

] 
p
[ ∞∑

n=

(
Vn

υn+

)q–

bq
n

] 
q

, ()

which is an extension of () (Note: the series on the right-hand side of () are positive).
Moreover, a strengthened version of () and some extended Mulholland-type inequali-
ties with multi-parameters are obtained. The equivalent forms, the reverses, the operator
expressions and a few particular cases are considered.
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2 Some lemmas
In the following, we make appointment that p �= , , 

p + 
q = ,  < λ,λ ≤ , λ + λ = λ,

μi,υj >  (i, j ∈ N), with μ = υ = , Um and Vn are defined by (), am, bn ≥ , ‖a‖p,�λ
:=

(
∑∞

m= �λ(m)ap
m)


p and ‖b‖q,�λ

:= (
∑∞

n= �λ(n)bq
n)


q , where

�λ(m) :=
(ln Um)p(–λ)–

U–p
m μ

p–
m+

,

�λ(n) :=
(ln Vn)q(–λ)–

V –q
n υ

q–
n+

(
m, n ∈ N\{}).

()

Lemma  If a ∈ R, f (x) is continuous in [a – 
 , a + 

 ], f ′(x) is strictly increasing in (a – 
 , a)

and (a, a + 
 ), respectively, and

lim
x→a–

f ′(x) = f ′(a – ) ≤ f ′(a + ) = lim
x→a+

f ′(x),

then we have the following Hermite-Hadamard’s inequality (cf. []):

f (a) <
∫ a+ 



a– 


f (x) dx. ()

Proof Since f ′(a – ) (≤ f ′(a + )) is finite, we set a function g(x) as follows:

g(x) := f ′(a – )(x – a) + f (a), x ∈
[

a –



, a +



]

.

In view of f ′(x) being strictly increasing in (a – 
 , a), then for x ∈ (a – 

 , a), (f (x) – g(x))′ =
f ′(x) – f ′(a – ) < . Since f (a) – g(a) = , it follows that f (x) – g(x) > , x ∈ (a – 

 , a). In the
same way, we can obtain f (x) – g(x) > , x ∈ (a, a + 

 ). Hence, we find

∫ a+ 


a– 


f (x) dx >
∫ a+ 



a– 


g(x) dx = f (a),

namely () follows. �

Example  If {μm}∞m= and {υn}∞n= are also decreasing, we set μ(t) := μm, t ∈ (m – , m]
(m ∈ N); υ(t) := υn, t ∈ (n – , n] (n ∈ N),

U(x) :=
∫ x


μ(t) dt (x ≥ ), V (y) :=

∫ y


υ(t) dt (y ≥ ). ()

Then it follows that U(m) = Um, V (n) = Vn (m, n ∈ N), U(∞) = U∞, V (∞) = V∞ and

U ′(x) = μ(x) = μm
(
x ∈ (m – , m)

)
,

V ′(y) = υ(y) = υn
(
y ∈ (n – , n)

)
.

For fixed m, n ∈ N\{}, we also set a function f (x) as follows:

f (x) =
lnλ– V (x)

V (x)(ln Um + ln V (x))λ
, x ∈

[

n –



, n +



]

.
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Then f (x) in continuous in [n – 
 , n + 

 ]. For x ∈ (n – 
 , n) (n ∈ N\{}), we find

f ′(x) = –
[

lnλ– V (x)
V (x)

+
λ lnλ– V (x)

ln Um + ln V (x)
+

 – λ

V –λ (x)

]

× υn

V (x)(ln Um + ln V (x))λ
.

Since  – λ ≥ , it follows that f ′(x) (< ) is strictly increasing in (n – 
 , n) and

lim
x→n–

f ′(x) = f ′(n – )

= –
[

lnλ– Vn

Vn
+

λ lnλ– Vn

ln Um + ln Vn
+

 – λ

V –λ
n

]

× υn

Vn(ln Um + ln Vn)λ
.

In the same way, for x ∈ (n, n + 
 ), we find

f ′(x) = –
[

lnλ– V (x)
V (x)

+
λ lnλ– V (x)

ln Um + ln V (x)
+

 – λ

V –λ (x)

]

× υn+

V (x)(ln Um + ln V (x))λ
,

f ′(x) (< ) is strictly increasing in (n, n + 
 ). In view of υn+ ≤ υn, it follows that

limx→n+ f ′(x) = f ′(n + ) ≥ f ′(n – ). Then by () we have

f (n) <
∫ n+ 



n– 


f (x) dx =
∫ n+ 



n– 


lnλ– V (x)
V (x)(ln Um + ln V (x))λ

dx. ()

Definition  Define the following weight coefficients:

ω(λ, m) :=
∞∑

n=


lnλ(UmVn)

υn+ lnλ Um

Vn ln–λ Vn
, m ∈ N\{}, ()

	 (λ, n) :=
∞∑

m=


lnλ(UmVn)

μm+ lnλ Vn

Um ln–λ Um
, n ∈ N\{}. ()

Lemma  If {μm}∞m= and {υn}∞n= are decreasing, and U∞ = V∞ = ∞, then we have the
following inequalities:

ω(λ, m) < B(λ,λ)
(

 –
θ

lnλ Um

)

(
 < λ ≤ ,λ > ; m ∈ N\{}), ()

	 (λ, n) < B(λ,λ)
(

 –
θ

lnλ Vn

)

(
 < λ ≤ ,λ > ; n ∈ N\{}), ()
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where

θ :=


B(λ,λ)
lnλ ( + υ/)

λ[ + ln(+υ/)
ln(+μ/) ]λ

, ()

θ :=


B(λ,λ)
lnλ ( + μ/)

λ[ + ln(+μ/)
ln(+υ/) ]λ

. ()

Proof Since for x ∈ (n – 
 , n + 

 )\{n}, υn+ ≤ V ′(x), by () we find

ω(λ, m) <
∞∑

n=

υn+

∫ n+ 


n– 


lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

dx

≤
∞∑

n=

∫ n+ 


n– 


lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx

=
∫ ∞




lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx

=
∫ ∞



lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx

–
∫ 





lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx.

Setting t = ln V (x)
ln Um

, we obtain V ′(x)
V (x) dx = ln Um dt and

ω(λ, m) <
∫ ∞




( + t)λ

tλ– dt –
∫ 





lnλ Um

(ln Um + ln V (x))λ
lnλ– V (x)

V (x)
V ′(x) dx

= B(λ,λ)
(
 – θ (m)

)
, ()

where

θ (m) :=


B(λ,λ)

∫ 




lnλ Um

(ln Um + ln V (x))λ
lnλ– V (x)

V (x)
V ′(x) dx. ()

We find

θ (m) ≥ 
B(λ,λ)

lnλ Um

(ln Um + ln V ( 
 ))λ

∫ 




lnλ– V (x)
V (x)

V ′(x) dx

=


B(λ,λ)
lnλ Um

λ(ln Um + ln V ( 
 ))λ

lnλ V
(




)

=


B(λ,λ)
lnλ ( + υ/)

λ( + ln(+υ/)
ln Um

)λ


lnλ Um

≥ 
B(λ,λ)

lnλ ( + υ/)
λ( + ln(+υ/)

ln U
)λ


lnλ Um

=
θ

lnλ Um
.

Hence, by (), we have () and (). In the same way, we obtain () and (). �

Note For example, μn,υn = 
nσ ( ≤ σ ≤ ) are satisfied the assumptions of Lemma .
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Lemma  With the assumptions of Lemma , (i) for m, n ∈ N\{}, we have

B(λ,λ)
(
 – θ (λ, m)

)
< ω(λ, m) ( < λ ≤ ,λ > ), ()

B(λ,λ)
(
 – ϑ(λ, n)

)
< 	 (λ, n) ( < λ ≤ ,λ > ), ()

where

θ (λ, m) =


B(λ,λ)
lnλ ( + υ)

λ[ + ln(+θ (m)υ)
ln Um

]λ


lnλ Um

= O
(


lnλ Um

)

∈ (, )
(
θ (m) ∈ (, )

)
, ()

ϑ(λ, n) =


B(λ,λ)
lnλ ( + μ)

λ[ + ln(+ϑ(n)μ)
ln Vn

]λ


lnλ Vn

= O
(


lnλ Vn

)

∈ (, )
(
ϑ(n) ∈ (, )

)
; ()

(ii) for any a > , we have

∞∑

m=

μm+

Um ln+a Um
=


a

[


lna( + μ)
+ aO()

]

, ()

∞∑

n=

υn+

Vn ln+a Vn
=


a

[


lna( + υ)
+ aÕ()

]

. ()

Proof Since by Example , f (x) is strictly decreasing in [n, n + ], then we find

ω(λ, m) >
∞∑

n=

∫ n+

n
υn+

lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

dx

=
∫ ∞



lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx

=
∫ ∞



lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx

–
∫ 



lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

V ′(x) dx

= B(λ,λ)
(
 – θ (λ, m)

)
,

where

θ (λ, m) :=


B(λ,λ)

∫ 



V ′(x) lnλ Um lnλ– V (x)
V (x)(ln Um + ln V (x))λ

dx ∈ (, ).

There exists θ (m) ∈ (, ) such that

θ (λ, m) =


B(λ,λ)
lnλ Um

[ln Um + ln V ( + θ (m))]λ

×
∫ 



lnλ– V (x)
V (x)

V ′(x) dx
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=


B(λ,λ)
lnλ Um lnλ ( + υ)

λ[ln Um + ln V ( + θ (m))]λ

=


B(λ,λ)
lnλ ( + υ)

λ[ + ln(+θ (m)υ)
ln Um

]λ


lnλ Um
.

Since we obtain

 < θ (λ, m) ≤ lnλ ( + υ)
λB(λ,λ)


lnλ Um

,

namely θ (λ, m) = O( 
lnλ Um

), we have (). In the same way, we obtain ().
For a > , we find

∞∑

m=

μm+

Um ln+a Um
≤

∞∑

m=

μm

Um ln+a Um

=
μ

U ln+a U
+

∞∑

m=

μm

Um ln+a Um

=
μ

U ln+a U
+

∞∑

m=

∫ m

m–

U ′(x)
Um ln+a Um

dx

<
μ

U ln+a U
+

∞∑

m=

∫ m

m–

U ′(x)
U(x) ln+a U(x)

dx

=
μ

U ln+a U
+

∫ ∞



U ′(x)
U(x) ln+a U(x)

dx

=
μ

( + μ) ln+a( + μ)
+


a lna( + μ)

=

a

(


lna( + μ)
+

aμ

( + μ) ln+a( + μ)

)

,

∞∑

m=

μm+

Um ln+a Um
=

∞∑

m=

∫ m+

m

U ′(x) dx
Um ln+a Um

>
∞∑

m=

∫ m+

m

U ′(x)
U(x) ln+a U(x)

dx

=
∫ ∞



U ′(x) dx
U(x) ln+a U(x)

=


a lna( + μ)
.

Hence we have (). In the same way, we have (). �

3 Main results and operator expressions
We also set

�̃λ(m) := ω(λ, m)
(ln Um)p(–λ)–

U–p
m μ

p–
m+

,

�̃λ(n) := 	 (λ, n)
(ln Vn)q(–λ)–

V –q
n υ

q–
n+

(
m, n ∈ N\{}).

()
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Theorem  (i) For p > , we have the following equivalent inequalities:

I :=
∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
≤ ‖a‖p,�̃λ

‖b‖q,�̃λ
, ()

J :=

{ ∞∑

n=

υn+ lnpλ– Vn

(	 (λ, n))p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

≤ ‖a‖p,�̃λ
. ()

(ii) For  < p <  (or p < ), we have the equivalent reverses of () and ().

Proof (i) By Hölder’s inequality with weight (cf. []) and (), we have

[ ∞∑

m=

am

lnλ(UmVn)

]p

=

[ ∞∑

m=


lnλ(UmVn)

(
U/q

m (ln Um)(–λ)/qυ
/p
n+

(ln Vn)(–λ)/pμ
/q
m+

am

)

×
(

(ln Vn)(–λ)/pμ
/q
m+

U/q
m (ln Um)(–λ)/qυ

/p
n+

)]p

≤
∞∑

m=


lnλ(UmVn)

Up–
m (ln Um)(–λ)p/qυn+

(ln Vn)–λμ
p/q
m+

ap
m

×
[ ∞∑

m=


lnλ(UmVn)

(ln Vn)(–λ)(q–)μm+

Um(ln Um)–λυ
q–
n+

]p–

=
(	 (λ, n))p–Vn

(ln Vn)pλ–υn+

∞∑

m=

υn+Up–
m (ln Um)(–λ)(p–)ap

m

lnλ(UmVn)Vn(ln Vn)–λμ
p–
m+

. ()

Then by () we find

J ≤
[ ∞∑

n=

∞∑

m=

υn+

lnλ(UmVn)
Up–

m (ln Um)(–λ)(p–)

Vn(ln Vn)–λμ
p–
m+

ap
m

] 
p

=

[ ∞∑

m=

∞∑

n=

υn+(ln Um)λ

lnλ(UmVn)
Up–

m (ln Um)p(–λ)–

Vn(ln Vn)–λμ
p–
m+

ap
m

] 
p

=

[ ∞∑

m=

ω(λ, m)
(ln Um)p(–λ)–

U–p
m μ

p–
m+

ap
m

] 
p

, ()

and then () follows.
By Hölder’s inequality (cf. []), we have

I =
∞∑

n=

[
(ln Vn)λ– 

p υ
/p
n+

(	 (λ, n))

q V


p

n

∞∑

m=

am

lnλ(UmVn)

]

×
[
(
	 (λ, n)

) 
q (ln Vn)


p –λ

V
–
p

n υ

p

n+

bn

]

≤ J‖b‖q,�̃λ
. ()

Then by () we have ().
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On the other hand, assuming that () is valid, we set

bn :=
(ln Vn)pλ–υn+

(	 (λ, n))p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p–

, n ∈ N\{}. ()

Then we find Jp = ‖b‖q
q,�̃λ

. If J = , then () is trivially valid; if J = ∞, then, by (), ()
takes the form of equality. Suppose that  < J < ∞. By (), it follows that

‖b‖q
q,�̃λ

= Jp = I ≤ ‖a‖p,�̃λ
‖b‖q,�̃λ

, ()

‖b‖q–
q,�̃λ

= J ≤ ‖a‖p,�̃λ
, ()

and then () follows, which is equivalent to ().
(ii) For  < p <  (or p < ), by the reverse Hölder’s inequality with weight (cf. []) and

(), we obtain the reverse of () (or ()), then we have the reverse of (), and then the
reverse of () follows. By Hölder’s inequality (cf. []), we have the reverse of () and
then by the reverse of (), the reverse of () follows.

On the other hand, assuming that the reverse of () is valid, we set bn as (). Then
we find Jp = ‖b‖q

q,�̃λ
. If J = ∞, then the reverse of () is trivially valid; if J = , then, by

the reverse of (), () takes the form of equality (= ). Suppose that  < J < ∞. By the
reverse of (), it follows that the reverses of () and () are valid, and then the reverse
of () follows, which is equivalent to the reverse of (). �

Setting

λ(m) :=
(

 –
θ

lnλ Um

)
(ln Um)p(–λ)–

U–p
m μ

p–
m+

,

�λ(n) :=
(

 –
θ

lnλ Vn

)
(ln Vn)q(–λ)–

V –q
n υ

q–
n+

(
m, n ∈ N\{}),

()

we have the following.

Theorem  If p > , {μm}∞m= and {υn}∞n= are decreasing, U∞ = V∞ = ∞, ‖a‖p,�λ
∈ R+ and

‖b‖q,�λ
∈ R+, then we have the following equivalent inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
< B(λ,λ)‖a‖p,λ

‖b‖q,�λ
, ()

J :=

{ ∞∑

n=

υn+ lnpλ– Vn

( – θ
lnλ Vn

)p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

< B(λ,λ)‖a‖p,λ
, ()

where the constant factor B(λ,λ) is the best possible.

Proof Using () and () in () and (), since

(
ω(λ, m)

) 
p <

(
B(λ,λ)

) 
p

(

 –
θ

lnλ Um

) 
p

(p > ),

(
	 (λ, n)

) 
q <

(
B(λ,λ)

) 
q

(

 –
θ

lnλ Vn

) 
q

(q > )
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and


(B(λ,λ))p–( – θ

lnλ Vn
)p–

<


(	 (λ, n))p– (p > ),

we obtain equivalent inequalities () and ().
For ε ∈ (, pλ), we set λ̃ = λ – ε

p (∈ (, )), λ̃ = λ + ε
p (> ), and

ãm :=
μm+

Um
lnλ̃– Um =

μm+

Um
lnλ– ε

p – Um,

b̃n =
υn+

Vn
lnλ̃–ε– Vn =

υn+

Vn
lnλ– ε

q – Vn.
()

Then, by (), () and (), we have

‖̃a‖p,λ
‖̃b‖q,�λ

≤ ‖̃a‖p,�λ
‖̃b‖q,�λ

=

( ∞∑

m=

μm+

Um ln+ε Um

) 
p
( ∞∑

n=

υn+

Vn ln+ε Vn

) 
q

=

ε

[


lnε( + μ)
+ εO()

] 
p
[


lnε( + υ)

+ εÕ()
] 

q
,

Ĩ :=
∞∑

n=

∞∑

m=

ãmb̃n

lnλ(UmVn)

=
∞∑

n=

[ ∞∑

m=


lnλ(UmVn)

μm+ lnλ̃ Vn

Um ln–̃λ Um

]
υn+

Vn lnε+ Vn

=
∞∑

n=

	 (̃λ, n)
υn+

Vn lnε+ Vn

≥ B(̃λ, λ̃)
∞∑

n=

(

 – O
(


lnλ̃ Vn

))
υn+

Vn lnε+ Vn

= B(̃λ, λ̃)

[ ∞∑

n=

υn+

Vn lnε+ Vn
–

∞∑

n=

O
(

υn+

Vn(ln Vn)( ε
q +λ)+

)]

=

ε

B(̃λ, λ̃)
[


lnε( + υ)

+ ε
(
Õ() – O()

)
]

.

If there exists a positive constant K ≤ B(λ,λ) such that () is valid when replacing
B(λ,λ) by K , then, in particular, we have ε̃I < εK ‖̃a‖p,λ

‖̃b‖q,�λ
, namely

B(̃λ, λ̃)
[


lnε( + υ)

+ ε
(
Õ() – O()

)
]

< K
[


lnε( + μ)

+ εO()
] 

p
[


lnε( + υ)

+ εÕ()
] 

q
.
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It follows that B(λ,λ) ≤ K (ε → +). Hence, K = B(λ,λ) is the best possible constant
factor of ().

Similarly to (), we still can find that

I ≤ J‖b‖q,�λ
. ()

Hence, we can prove that the constant factor B(λ,λ) in () is the best possible. Other-
wise, we would reach a contradiction by () that the constant factor in () is not the best
possible. �

Remark  (i) It is evident that () and () are strengthened versions of the following
equivalent Mulholland-type inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
< B(λ,λ)‖a‖p,�λ

‖b‖q,�λ
, ()

{ ∞∑

n=

υn+

Vn
lnpλ– Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

< B(λ,λ)‖a‖p,�λ
, ()

where the constant factor B(λ,λ) is still the best possible.
(ii) For λ = , λ = 

q , λ = 
p ,

θ = ϑ :=
p sin(π/p) ln/p( + υ/)

π [ + ln(+υ/)
ln(+μ/) ]

,

θ = ϑ :=
q sin(π/p) ln/q( + μ/)

π [ + ln(+μ/)
ln(+υ/) ]

,

() reduces to the strengthened version of () as follows:

∞∑

m=

∞∑

n=

ambn

ln UmVn
<

π

sin(π/p)

[ ∞∑

m=

(

 –
ϑ

ln/p Um

)(
Um

μm+

)p–

ap
m

] 
p

×
[ ∞∑

n=

(

 –
ϑ

ln/q Vn

)(
Vn

υn+

)q–

bq
n

] 
q

. ()

For μi = υj =  (i, j ∈ N), () reduces to the following strengthened Mulholland’s inequal-
ity:

∞∑

m=

∞∑

n=

ambn

ln mn
<

{ ∞∑

m=

[
π

sin(π/p)
–

ln
√

/
ln/p m

]
ap

m

m–p

} 
p

×
{ ∞∑

n=

[
π

sin(π/p)
–

ln
√

/
ln/q m

]
bq

n

n–q

} 
q

, ()

where ln
√

/ = .+.
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For p > , �–p
λ (n) = υn+

Vn
(ln Vn)pλ–, we define the following normed spaces:

lp,�λ
:=

{
a = {am}∞m=;‖a‖p,�λ

< ∞}
,

lq,�λ
:=

{
b = {bn}∞n=;‖b‖q,�λ

< ∞}
,

lp,�–p
λ

:=
{

c = {cn}∞n=;‖c‖p,�–p
λ

< ∞}
.

Assuming that a = {am}∞m= ∈ lp,�λ
, setting

c = {cn}∞n=, cn :=
∞∑

m=

am

lnλ(UmVn)
, n ∈ N,

we can rewrite () as follows:

‖c‖p,�–p
λ

< B(λ,λ)‖a‖p,�λ
< ∞,

namely c ∈ lp,�–p
λ

.

Definition  Define a Mulholland-type operator T : lp,�λ
→ lp,�–p

λ

as follows: For any
a = {am}∞m= ∈ lp,�λ

, there exists a unique representation Ta = c ∈ lp,�–p
λ

. Define the formal
inner product of Ta and b = {bn}∞n= ∈ lq,�λ

as follows:

(Ta, b) :=
∞∑

n=

[ ∞∑

m=

am

lnλ(UmVn)

]

bn. ()

Then we can rewrite () and () as follows:

(Ta, b) < B(λ,λ)‖a‖p,�λ
‖b‖q,�λ

, ()

‖Ta‖p,�–p
λ

< B(λ,λ)‖a‖p,�λ
. ()

Define the norm of operator T as follows:

‖T‖ := sup
a ( �=θ )∈lp,�λ

‖Ta‖p,�–p
λ

‖a‖p,�λ

.

Then by () we find ‖T‖ ≤ B(λ,λ). Since the constant factor in () is the best possible,
we have

‖T‖ = B(λ,λ). ()

4 Some strengthened versions of the reverses
In the following, we also set

̃λ(m) :=
(
 – θ (λ, m)

) (ln Um)p(–λ)–

U–p
m μ

p–
m+

,

�̃λ(n) :=
(
 – ϑ(λ, n)

) (ln Vn)q(–λ)–

V –q
n υ

q–
n+

(
m, n ∈ N\{}).

()
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For  < p <  or p < , we still use the formal symbols ‖a‖p,�λ
, ‖b‖q,�λ

, ‖a‖p,λ
, ‖b‖q,�λ

,
‖a‖p,̃λ

and ‖b‖q,�̃λ
.

Theorem  If  < p < , {μm}∞m= and {υn}∞n= are decreasing, U∞ = V∞ = ∞, ‖a‖p,�λ
∈ R+

and ‖b‖q,�λ
∈ R+, then we have the following equivalent inequalities with the best possible

constant factor B(λ,λ):

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
> B(λ,λ)‖a‖p,̃λ

‖b‖q,�λ
, ()

{ ∞∑

n=

υn+ lnpλ– Vn

( – θ
lnλ Vn

)p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

> B(λ,λ)‖a‖p,̃λ
. ()

Proof Using () and () in the reverses of () and (), since

(
ω(λ, m)

) 
p >

(
B(λ,λ)

) 
p
(
 – θ (λ, m)

) 
p ( < p < ),

(
	 (λ, n)

) 
q >

(
B(λ,λ)

) 
q

(

 –
θ

lnλ Vn

) 
q

(q < )

and


(B(λ,λ))p–( – θ

Vλ
n

)p–
>


(	 (λ, n))p– ( < p < ),

we obtain equivalent inequalities () and ().
For ε ∈ (, pλ), we set λ̃,̃λ, ãm and b̃n as (). Then, by (), () and (), we find

‖a‖p,̃λ
‖b‖q,�λ

≥ ‖a‖p,̃λ
‖b‖q,�λ

=

[ ∞∑

m=

(
 – θ (λ, m)

) μm+

Um ln+ε Um

] 
p
( ∞∑

n=

υn+

Vn ln+ε Vn

) 
q

=

( ∞∑

m=

μm+

Um ln+ε Um
–

∞∑

m=

O
(

μm+

Um ln+λ+ε Um

)) 
p

×
( ∞∑

n=

υn+

Vn ln+ε Vn

) 
q

=

ε

[


lnε( + μ)
+ ε

(
O() – O()

)
] 

p
[


lnε( + υ)

+ εÕ()
] 

q
,

Ĩ :=
∞∑

n=

∞∑

m=

ãmb̃n

lnλ(UmVn)

=
∞∑

n=

[ ∞∑

m=


lnλ(UmVn)

μm+ lnλ̃ Vn

Um ln–̃λ Um

]
υn+

Vn lnε+ Vn
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=
∞∑

n=

	 (̃λ, n)
υn+

Vn lnε+ Vn
≤ B(̃λ, λ̃)

∞∑

n=

υn+

Vn lnε+ Vn

=

ε

B(̃λ, λ̃)
[


lnε( + υ)

+ εÕ()
]

.

If there exists a positive constant K ≥ B(λ,λ) such that () is valid when replacing
B(λ,λ) by K , then, in particular, we have ε̃I > εK ‖̃a‖p,̃λ

‖̃b‖q,�λ
, namely

B(̃λ, λ̃)
[


lnε( + υ)

+ εÕ()
]

> K
[


lnε( + μ)

+ ε
(
O() – O()

)
] 

p
[


lnε( + υ)

+ εÕ()
] 

q
.

It follows that B(λ,λ) ≥ K (ε → +). Hence, K = B(λ,λ) is the best possible constant
factor of ().

The constant factor B(λ,λ) in () is still the best possible. Otherwise, we would reach
a contradiction by the reverse of () that the constant factor in () is not the best possi-
ble. �

Remark  It is evident that () and () are strengthened versions of the following equiv-
alent inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
> B(λ,λ)‖a‖p,̃λ

‖b‖q,�λ
, ()

{ ∞∑

n=

υn+

Vn
lnpλ– Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

> B(λ,λ)‖a‖p,̃λ
, ()

where the constant factor B(λ,λ) is still the best possible.

Theorem  If p < , {μm}∞m= and {υn}∞n= are decreasing, U∞ = V∞ = ∞, ‖a‖p,�λ
∈ R+

and ‖b‖q,�λ
∈ R+, then we have the following equivalent inequalities with the best possible

constant factor B(λ,λ):

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
> B(λ,λ)‖a‖p,λ

‖b‖q,�̃λ
, ()

J :=

{ ∞∑

n=

υn+ lnpλ– Vn

( – ϑ(λ, n))p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

> B(λ,λ)‖a‖p,λ
. ()

Proof Using () and () in the reverses of () and (), since

(
ω(λ, m)

) 
p >

(
B(λ,λ)

) 
p

(

 –
θ

Uλ
m

) 
p

(p < ),

(
	 (λ, n)

) 
q >

(
B(λ,λ)

) 
q
(
 – ϑ(λ, n)

) 
q ( < q < )
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and

[


(B(λ,λ))p–( – ϑ(λ, n))p–

] 
p

>
[


(	 (λ, n))p–

] 
p

(p < ),

we obtain equivalent inequalities () and ().
For ε ∈ (, qλ), we set λ̃ = λ + ε

q (> ), λ̃ = λ – ε
q (∈ (, )), and

ãm :=
μm+

Um
lnλ̃–ε– Um =

μm+

Um
lnλ– ε

p – Um,

b̃n =
υn+

Vn
lnλ̃– Vn =

υn+

Vn
lnλ– ε

q – Vn.

Then, by (), () and (), we have

‖̃a‖p,λ
‖̃b‖q,�̃λ

≥ ‖̃a‖p,�λ
‖̃b‖q,�̃λ

=

( ∞∑

m=

μm+

Um lnε+ Um

) 
p
[ ∞∑

n=

(
 – ϑ(λ, n)

) υn+

Vn lnε+ Vn

] 
q

=

( ∞∑

m=

μm+

Um lnε+ Um

) 
p
[ ∞∑

n=

υn+

Vn lnε+ Vn
–

∞∑

n=

O
(

υn+

Vn ln+(λ+ε) Vn

)] 
q

=

ε

[


lnε( + μ)
+ εO()

] 
p
[


lnε( + υ)

+ ε
(
Õ() – O()

)
] 

q
,

Ĩ =
∞∑

m=

∞∑

n=

ãmb̃n

lnλ(UmVn)

=
∞∑

m=

[ ∞∑

n=

lnλ̃ Um

lnλ(UmVn)
υn+

Vn
lnλ̃– Vn

]
μm+

Um lnε+ Um

=
∞∑

m=

ω(̃λ, m)
μm+

Um lnε+ Um
≤ B(̃λ, λ̃)

∞∑

n=

μm+

Um lnε+ Um

=

ε

B(̃λ, λ̃)
[


lnε( + μ)

+ εO()
]

.

If there exists a positive constant K ≥ B(λ,λ) such that () is valid when replacing
B(λ,λ) by K , then, in particular, we have ε̃I > εK ‖̃a‖p,λ

‖̃b‖q,�̃λ
, namely

B(̃λ, λ̃)
[


lnε( + μ)

+ εO()
]

> K
[


lnε( + μ)

+ εO()
] 

p
[


lnε( + υ)

+ ε
(
Õ() – O()

)
] 

q
.

It follows that B(λ,λ) ≥ K (ε → +). Hence, K = B(λ,λ) is the best possible constant
factor of ().
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Similarly to the reverse of (), we still find that

I ≥ J‖b‖q,�̃λ
. ()

Hence the constant factor B(λ,λ) in () is still the best possible. Otherwise, we would
reach a contradiction by () that the constant factor in () is not the best possible. �

Remark  It is evident that () and () are strengthened versions of the following equiv-
alent inequalities:

∞∑

n=

∞∑

m=

ambn

lnλ(UmVn)
> B(λ,λ)‖a‖p,�λ

‖b‖q,�̃λ
, ()

{ ∞∑

n=

υn+ lnpλ– Vn

( – ϑ(λ, n))p–Vn

[ ∞∑

m=

am

lnλ(UmVn)

]p} 
p

> B(λ,λ)‖a‖p,�λ
, ()

where the constant factor B(λ,λ) is still the best possible.
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