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Abstract
Let S(Gσ ) be the skew-adjacency matrix of the oriented graph Gσ on order n and
λ1,λ2, . . . ,λn be all eigenvalues of S(Gσ ). The skew-spectral radius ρs(Gσ ) of Gσ is
defined as max{|λ1|, |λ2|, . . . , |λn|}. In this paper, we determine all the oriented
bicyclic graphs whose skew-spectral radii do not exceed 2.
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1 Introduction
Let G be a simple graph with n vertices. The adjacency matrix A = A(G) is the symmetric
matrix [aij]n×n, where aij = aji =  if vivj is an edge of G, otherwise aij = aji = . We call
det(λI – A) the characteristic polynomial of G, denoted by φ(G;λ). Since A is symmetric,
its eigenvalues λ(G),λ(G), . . . ,λn(G) are real, and we assume that λ(G) ≥ λ(G) ≥ · · · ≥
λn(G). We call ρ(G) = λ(G) the adjacency spectral radius of G.

The class of all graphs G whose largest (adjacency) eigenvalue λmax(G) is bounded
by  has been completely determined by Smith; see, for example, [, ]. Later, Hoff-
man [], Cvetković et al. [] gave a nearly complete description of all graphs G with
 < λmax(G) <

√
 +

√
 (≈ .). Their description was completed by Brouwer and

Neumaier []. And Belardo et al. [] ordered graphs with spectral radius in the interval
(,

√
 +

√
). Then Woo and Neumaier [] investigated the structure of graphs G with√

 +
√

 < λmax(G) < 


√
 (≈ .), Wang et al. [] investigated the structure of graphs

whose largest eigenvalue is close to 


√
. In the paper [], the first three bicyclic graphs

on order n in terms of their larger spectral radii were determined.
The graph obtained from a simple undirected graph by assigning an orientation to each

of its edges is referred to as the oriented graph. Let Gσ be an oriented graph with a vertex
set {v, v, . . . , vn} and an edge set E(Gσ ). The skew-adjacency matrix S = S(Gσ ) = [sij]n×n

related to Gσ is defined as:

sij =

⎧
⎪⎨

⎪⎩

i if there exists an edge with tail vi and head vj;
–i if there exists an edge with head vi and tail vj;
, otherwise,

where i =
√

– (note that the definition is slightly different from the one of the normal
skew-adjacency matrix given by Adiga et al. []). Since S(Gσ ) is a Hermitian matrix, the
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eigenvalues λ(Gσ ),λ(Gσ ), . . . ,λn(Gσ ) of S(Gσ ) are all real numbers and thus can be ar-
ranged non-increase as

λ
(
Gσ

) ≥ λ
(
Gσ

) ≥ · · · ≥ λn
(
Gσ

)
.

The skew-spectral radius and the skew-characteristic polynomial of Gσ are defined respec-
tively as

ρs
(
Gσ

)
= max

{∣∣λ
(
Gσ

)∣∣,
∣∣λ

(
Gσ

)∣∣, . . . ,
∣∣λn

(
Gσ

)∣∣}

and

φ
(
Gσ ;λ

)
= det

(
λIn – S

(
Gσ

))
.

We denote by D(G) the set of all the oriented graphs obtained from G by giving an ar-
bitrary orientation to each edge. Recently, much attention has been devoted to the skew-
adjacency matrix of an oriented graph. In , Shader and So [] investigated the spectra
of the skew-adjacency matrix of an oriented graph. And in , Adiga et al. [] discussed
the properties of the skew-energy of an oriented graph. In the papers [, ], all the coeffi-
cients of the skew-characteristic polynomial of Gσ in terms of G were interpreted. Cavers
et al. [] discussed the graphs whose skew-adjacency matrices are all cospectral and the
relations between the matchings polynomial of a graph and the characteristic polynomi-
als of its adjacency and skew-adjacency matrices. In [], the author established a relation
between ρs(Gσ ) and ρ(G). Also, the author gave some results on the skew-spectral radii of
Gσ and its oriented subgraphs. In the paper [], the oriented graphs whose skew-spectral
radii do not exceed  were investigated. In , Chen et al. [] ordered all the oriented
unicyclic graphs with n vertices whose skew-spectral radii are bounded by .

A connected graph in which the number of edges equals the number of vertices plus one
is called a bicyclic graph. In this paper, we will determine all the oriented bicyclic graphs
whose skew-spectral radii do not exceed . The rest of the paper is organized as follows.
In Section , we introduce some notations and preliminary results. In Section , we give
some earlier results on the oriented graphs whose skew-spectral radii do not exceed . In
Section , we determine all the oriented bicyclic graphs whose skew-spectral radii do not
exceed .

2 Preliminaries
Let G = (V , E) be a simple graph with a vertex set V = V (G) = {v, v, . . . , vn} and e ∈ E(G).
A graph H is called a subgraph of a graph G if V (H) ∈ V (G) and E(H) ∈ E(G). Further, H
is called an induced subgraph of G if two vertices of V (H) are adjacent in H if and only
if they are adjacent in G. Denote by G – U , where U ∈ V (G), the graph obtained from G
by removing the vertices of U together with all edges incident to them. Denote by G – e
the subgraph obtained from G by deleting the edge e. We refer to [, , ] for more
terminology and notation not defined here. Certainly, each subgraph of an oriented graph
is referred to as an oriented graph and preserves the orientation of each edge.

Recall that the skew-adjacency matrix S(Gσ ) of any oriented graph Gσ is Hermitian,
then the well-known interlacing theorem for Hermitian matrices applies equally well to
oriented graphs; see, for example, Theorem .. of [].
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Lemma . Let Gσ be an arbitrary oriented graph on n vertices and V ′ ⊆ V (G). Suppose
that |V ′| = k. Then

λi
(
Gσ

) ≥ λi
(
Gσ – V ′) ≥ λi+k

(
Gσ

)
for i = , , . . . , n – k.

Let Gσ ∈ D(G) and W = uu · · ·ukuk+ be a walk of G. The sign of W σ in Gσ , denoted
by sgn(W σ ), is defined by

s,s, · · · sk–,ksk,k+.

Let W̄ = uk+uk · · ·uu be the walk by inverting the order of the vertices along the walk W .
Then one can find that

sgn
(
W̄ σ

)
=

{
– sgn(W σ ) if k is odd;
sgn(W σ ) if k is even.

Obviously, for an even closed walk (that is to say uk+ = u), we can simply refer to it as a
positive (or negative) even closed walk according to its sign, regardless of the order of its
vertices. Similarly, we can define a positive (or negative) even cycle.

We now list some results related to this paper.

Lemma . ([], Theorem .) Let Gσ be an arbitrary connected oriented graph. Denote
by ρ(G) the (adjacency) spectral radius of G. Then

ρs
(
Gσ

) ≤ ρ(G)

with equality if and only if G is bipartite and each cycle of Gσ is positive.

Lemma . ([], Theorem ., [], Theorem .) Let Gσ be an oriented graph and
φ(Gσ ,λ) be its skew-characteristic polynomial. Then

(a) φ
(
Gσ ,λ

)
= λφ

(
Gσ – u,λ

)
–

∑

v∈N(u)

φ
(
Gσ – u – v,λ

)
– 

∑

u∈C

sgn
(
Cσ

)
φ
(
Gσ – C,λ

)
,

where the first summation is over all the vertices in N(u) and the second summation is over
all even cycles of G containing the vertex u.

(b) φ
(
Gσ ,λ

)
= φ

(
Gσ – e,λ

)
– φ

(
Gσ – u – v,λ

)
– 

∑

(u,v)∈C

sgn
(
Cσ

)
φ
(
Gσ – C,λ

)
,

where e = uv and the summation is over all even cycles of G containing the edge e, and
sgn(Cσ ) denotes the sign of the even cycle Cσ .

Lemma . ([], A part of Theorem .) Let Gσ be an oriented graph and φ(Gσ ,λ) be its
skew-characteristic polynomial. Then

d
dλ

φ
(
Gσ ,λ

)
=

∑

v∈V (G)

φ
(
Gσ – v,λ

)
,

where d
dλ

φ(Gσ ,λ) denotes the derivative of φ(Gσ ,λ).
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3 Some earlier results on the oriented graphs whose skew-spectral radii do not
exceed 2

Before proving the main theorems, we introduce some earlier results. By Lemmas .
and . or the papers [, ], for a given graph G containing a cycle Cm, we know that
the skew-spectral radius of Gσ is independent of its orientation if m is odd. Therefore we
will briefly write 	G instead of the normal notation Gσ if each cycle of G is odd. If m is even,
then essentially there exist two orientations σ (the sign of the even cycle is positive) and
σ (the sign of the even cycle is negative) such that ρs(Gσ ) 
= ρs(Gσ ). Henceforth we will
briefly write G– (or G+) instead of Gσ if the sign of each even cycle is negative (or positive).
In particular, G will also denote the oriented graph if G is a tree since ρs(Gσ ) = ρ(G) in this
case.

Firstly, we give a class of oriented graphs whose skew-spectral radii do not exceed .
Denote by Pl,l,...,lk a pathlike graph, which is defined as follows: we first draw k (≥ )

paths Pl , Pl , . . . , Plk of orders l, l, . . . , lk respectively along a line and put two isolated
vertices between each pair of those paths, then add edges between the two isolated vertices
and the nearest end vertices of such a pair of paths so that the four newly added edges form
a cycle C, where l, lk ≥  and li ≥  for i = , , . . . , k – . Then Pl,l,...,lk contains

∑k
i= li +

k –  vertices. Notice that if li =  (i = , , . . . , k – ), the two end vertices of the path Pli
are referred to as overlap; if l =  (lk = ), the left (right) of the graph Pl,l,...,lk has only two
pendent vertices. Obviously, P, = K,, the star of order , and P, = C. In general, Pl,l ,
P,l,l , P,l,l, are all unicyclic graphs containing C, where l, l ≥ . Meanwhile, Pl,l,l ,
P,l,l,l , P,l,l,l, are all bicyclic graphs containing C, where l, l, l ≥ .

Then we have the following.

Lemma . ([]) Let Pl,l,...,lk (k ≥ ) be a pathlike graph described as above. Then

ρs
(
P–

l,l,...,lk

) ≤ .

Moreover,  is an eigenvalue of P–
l,l,...,lk with multiplicity k –  and φ(P–

l,l ; ) = .

Now, we introduce more notations. Denote by Tl,l,l the starlike tree with exactly one
vertex v of degree , and Tl,l,l – v = Pl ∪ Pl ∪ Pl , where Pli is the path of order li (i =
, , ).

Due to Smith, all undirected graphs whose (adjacency) spectral radii are bounded by 
are completely determined as follows.

Lemma . ([], or [], Chapter ..) All undirected graphs whose spectral radii do not
exceed  are Cm, P,n–,, T,,, T,,, T,, and their subgraphs, where m ≥  and n ≥ .

Consequently, combining with Lemma ., the skew-spectral radius of each oriented
graph whose underlying graph is described as Lemma ., regardless of the orientation of
the oriented cycle Cσ

m, does not exceed .
Let Cm = vv · · · vmv be a cycle on m vertices and Pl , Pl , . . . , Plm be m paths with ver-

tices l, l, . . . , lm, respectively (perhaps some of them are empty). Denote by Cl,l,...,lm
m the

unicyclic graph obtained from Cm by joining vi to a pendent vertex of Pli for i = , , . . . , m.
For convenience, suppose without loss of generality that l = max{li : i = , , . . . , m}, l ≥ lm

and write Cl,l,...,lj
m instead of the standard Cl,l,...,lj ,,...,

m if lj+ = lj+ = · · · = lm = .
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Denote by θa,b,c the undirected bicyclic graph obtained from paths Pa, Pb, Pc by identi-
fying the three initial vertices and terminal vertices of them, where min{a, b, c} ≥  and at
most one of them is , and by ∞p,q

m (m ≥ , p, q ≥ ) the undirected bicyclic graph obtained
from cycles Cp and Cq joined by a path Pm. A bicyclic graph containing θa,b,c (or ∞p,q

m ) is
called of θ -type (or ∞-type). The set of bicyclic graphs of θ -type (or ∞-type) is denoted
by Gθ (or G∞). Furthermore, the subset of Gθ (or G∞) containing θa,b,c (or ∞p,q

m ) is denoted
by Gθ (a, b, c) (or G∞(p, q; m)).

On C-free oriented graphs, we have the following.

Lemma . ([]) Let Gσ be an oriented graph and ρs(Gσ ) ≤ . Suppose that G is C-free,
then Gσ is one of the graphs Cσ

m, P,n–, (n ≥ ), 	C
 , (C,,,

 )–, (C,,,,
 )–, (C,,,,

 )–, θσ
,,

or their induced oriented subgraphs, where the orientation of Cσ
m is arbitrary. For induced

even cycles Cσ
 , Cσ

 of θσ
,,, they satisfy sgn(Cσ

 ) = – and sgn(Cσ
 ) = .

A connected graph in which the number of edges equals the number of vertices is called
a unicyclic graph. For convenience, we write

U (m) = {G|G is a unicyclic graph containing the cycle Cm}.
On oriented unicyclic graphs, we have the following.

Lemma . ([]) Let Gσ be an oriented unicyclic graph and ρs(Gσ ) ≤ . Then Gσ is one
of the graphs Cσ

m, 	C
 , (C,

 )–, (C,,
 )–, (C,,,

 )–, (C,
 )–, (C,,,

 )–, (C,,,,
 )–, (C,,,,

 )–

and P–
,l,l, or their induced oriented unicyclic subgraphs, where the orientation of Cσ

m is
arbitrary.

4 The oriented bicyclic graphs whose skew-spectral radii do not exceed 2
In this section, we determine all the oriented bicyclic graphs whose skew-spectral radii do
not exceed . Let

B = {Gσ |G is a bicyclic graph and ρs(Gσ ) ≤ },
B = {Gσ |G is a C-free bicyclic graph and ρs(Gσ ) ≤ },
B = {Gσ |G is a bicyclic graph containing C and ρs(Gσ ) ≤ }.

The main purpose of this paper is to determine the set B. Obviously, B = B ∪B. By
Lemma ., we immediately have the following result on the set B.

Theorem . B = {θσ
,,}, where sgn(Cσ

 ) = – and sgn(Cσ
 ) =  for induced even cycles

Cσ
 , Cσ

 of θσ
,,.

Now, we will determine the set B. Let
B∞

 = {Gσ |Gσ ∈ B and contain ∞,q
m (m ≥ , q ≥ )},

Bθ
 = {Gσ |Gσ ∈ B and contain θa,b,c (c ≥ b ≥ a ≥ )}.

Obviously, B = B∞
 ∪Bθ

. On the set B∞
, we have the following.

Theorem . B∞
 = {Gσ |Gσ is P–

,l,l,l, (li ≥ , i = , , ) or its induced oriented bicyclic
subgraphs}.

Proof We will complete the proof by considering following cases.
Case . q = .



Xu and Gong Journal of Inequalities and Applications  (2015) 2015:326 Page 6 of 11

We consider the graph ∞,
m (m ≥ ). Obviously, ∞,

m (m ≥ ) contains a unicyclic graph
U ∈ U (), but U is not C

 or its induced unicyclic graphs. By Lemma ., we know
ρs((∞,

m )σ ) > . Thus ρs(Gσ ) >  for G ∈ G∞(, ; m).
Case . q ≥ .
If q 
= , , then there exists a unicyclic graph U ∈ U (q)–Cq in ∞,q

m (m ≥ ). If q = , then
there exists a unicyclic graph U ∈ U () in ∞,

m (m ≥ ), but U is not any of the graphs
C,,,

 , C,,,,
 or their induced unicyclic graphs. If q = , then there exists a unicyclic

graph U ∈ U () in ∞,
m (m ≥ ) but U is not C,,,,

 or its induced unicyclic graphs.
So, by Lemma ., we also have ρs((∞,q

m )σ ) >  (q ≥ ). Therefore ρs(Gσ ) >  for G ∈
G∞(, q; m) (q ≥ ).

Case . q = .
The sign of each induced cycle Cσ

 of Gσ must be negative. Furthermore, Gσ must be
P–

,l,l,l, or its induced oriented bicyclic subgraphs. Otherwise, G has an induced tree T
such that T contains a proper subgraph P,l,. Hence ρs(Gσ ) > ρs(P,l,) = . �

The rest of this manuscript is to determine the set Bθ
. Firstly, we have the following.

Lemma . If all the three cycles of θσ
a,b,c are even, then there exists a cycle such that its sign

is positive.

Proof Suppose without loss of generality that sgn(θσ
a,b) = sgn(θσ

a,c) = –, we will show
sgn(θσ

b,c) = .
Since

sgn
(
θσ

a,b
)

= sgn(Pa) sgn(P̄b),

sgn
(
θσ

a,c
)

= sgn(Pa) sgn(P̄c).

Thus

sgn
(
θσ

a,b
)

sgn
(
θσ

a,c
)

=
(
sgn(Pa)

)
sgn(P̄b) sgn(P̄c)

= (–)a– sgn(P̄b) sgn(P̄c) = .

So

sgn(P̄b) sgn(P̄c) = (–)a–.

On the other hand,

sgn
(
θσ

b,c
)

= sgn(Pb) sgn(P̄c)

= (–)b– sgn(P̄b) sgn(P̄c)

= (–)a+b–.

But we know a + b is even. Then

sgn
(
θσ

b,c
)

= . �
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Let Gσ be an oriented graph with the property

ρs
(
Gσ

) ≤ . (.)

The property (.) is hereditary because, as a direct consequence of Lemma ., for any
induced subgraph H ⊂ G, Hσ also satisfies (.). The inheritance (hereditary) of property
(.) implies that there are minimal connected oriented graphs that do not obey (.); such
graphs are called forbidden oriented subgraphs.

Let vv · · · vbvb+ · · · vb+c–v (c ≥ b ≥ ) be the longest cycle in θ,b,c and Pb = vv · · · vb,
Pc = vbvb+ · · · vb+c–v. Denoted by θ

l,l,...,lblb+···lb+c–
,b,c is the bicyclic graph obtained from

θ,b,c by joining its vertex vi to a pendent vertex of Pli with vertices li (i = , , . . . , b + c – ),
where li ≥ , l ≥ lb. Moreover, if b = c, we will suppose l ≥ lb+c–.

Lemma . Let F = θ
,,,
,, , F = θ

,,,
,, , F = θ

,,,,
,, , F = θ

,,,,
,, , F = θ

,,,,
,, , F =

θ
,,,,,
,, , F = θ

,,,,,
,, and F = θ

,,,,,,,
,, . Then Fσ

i (i = , , . . . , ) are forbidden ori-
ented subgraphs on the property (.), where each subgraph Cσ

 of Fσ
i (i = , , . . . , ) is neg-

ative. Also the subgraph Cσ
 of Fσ

 is negative.

Proof By Lemma ., it is not difficult to know that

φ
(
θ–

,,;λ
)

= φ
(
C–

 ;λ
)

– λ.

Thus, by Lemma ., φ(θ–
,,; ) = . And then ρs(θ–

,,) = . Moreover, we have

φ
(
Fσ

 ;λ
)

= φ
(
F–

 ;λ
)

= λφ
(
θ–

,,;λ
)

– φ(K,;λ).

Then φ(Fσ
 ; ) = –, and thus ρs(Fσ

 ) > . Also, we have

φ
(
Fσ

 ;λ
)

= φ
(
F–

 ;λ
)

= λφ
(
θ–

,,;λ
)

– φ(	C;λ).

Then φ(Fσ
 ; ) = –, and therefore ρs(Fσ

 ) > .
Similarly, we have ρs(θ–

,,) = ρs((θ ,,,,,
,, )σ ) = ρs((θ,,,,,

,, )σ ) = ρs((θ,,,,,,,
,, )σ ) = 

and ρs(Fσ
i ) >  (i = , , . . . , ). �

In order to determine the set Bθ
, we will first consider the oriented graphs containing

θσ
,, or θσ

,,c (c ≥ ). Combining with Lemma . and the fact that ρs(Gσ ) >  if the oriented
tree Gσ contains an arbitrary tree described in Lemma . as a proper subgraph, we have
the following result.

Lemma . Let G ∈ Gθ (, , ) and G = θ
,,,,,
,, , G = θ

,,,,,
,, , G = θ

,,,,,
,, and

G = θ
,,,,,
,, . If ρs(Gσ ) ≤ , then Gσ is one of the graphs Gσ

i (i = , , , ) or their induced
oriented bicyclic subgraphs, where each subgraph Cσ

 of Gσ
i (i = , , , ) is negative.

Proof Obviously, the sign of Cσ
 in θσ

,, must be positive. If G 
= θ
l,l,...,l
,, , we know

ρs(Gσ ) >  by Lemma ..
Now, let G = θ

l,l,...,l
,, . By Lemma ., we know l ≤ .
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Claim . If l = , then Gσ is one of the graphs Gσ
 , Gσ

 or their induced oriented bicyclic
subgraphs, where each subgraph Cσ

 of Gσ
 and Gσ

 is negative.
Obviously, we have l = l = l = . Otherwise, ρs(Gσ ) >  by Lemma .. Suppose l ≥ l.

Then l ≤ . Otherwise ρs(Gσ ) ≥ ρ(T,,) > . Now, we consider the following two cases.
Case . l =  or .
Then l = . Otherwise ρs(Gσ ) ≥ ρ(T,,) > .
It is not difficult to know that φ(Gσ

 ; ) = . Thus ρs(Gσ
 ) = . Therefore Gσ is Gσ

 or its
induced oriented bicyclic subgraphs in this case.

Case . l = .
We can obtain that ρs(Gσ

 ) = . Therefore Gσ is Gσ
 or its induced oriented bicyclic sub-

graphs in this case.
Claim . If l = . Then Gσ is one of the graphs (θ,,,,,

,, )σ , (θ,,,,,
,, )σ , Gσ

 , Gσ
 or their

induced oriented bicyclic subgraphs, where each subgraph Cσ
 of the mentioned oriented

graphs is negative.
Firstly, we can suppose l = max{l, l, l, l} ≥ . It is easy to see that l ≤ , otherwise

ρs(Gσ ) ≥ ρ(T,,) >  by Lemma .. Now, we consider the following three cases.
Case . l = .
Then l = l = l = . Otherwise ρs(Gσ ) >  by Lemma .. On the other hand,

ρs((θ,,,,,
,, )σ ) = . Therefore Gσ is (θ,,,,,

,, )σ or its induced oriented bicyclic subgraphs
in this case. Obviously, θ,,,,,

,, is an induced subgraph of G.
Case . l = .
Then l = l =  and l ≤  by Lemma .. Moreover, by Lemma ., we know l ≤ .

Since ρs(Gσ
 ) = . Therefore Gσ is Gσ

 or its induced oriented bicyclic subgraphs in this
case.

Case . l = .
Subcase .. l = .
Then l = l = . Since ρs((θ,,,,,

,, )σ ) = . Therefore Gσ is (θ,,,,,
,, )σ or its induced

oriented bicyclic subgraphs in this case. Obviously, θ,,,,,
,, is an induced subgraph of G.

Subcase .. l = .
Then l ≤  and l ≤ . But we have ρs(Gσ

 ) = . Therefore Gσ is Gσ
 or its induced ori-

ented bicyclic subgraphs in this case.
Hence, we have completed the proof of this theorem. �

Now, we consider the oriented bicyclic graphs containing θσ
,,c (c ≥ ). For the graph

θa,b,c = θ,,c, we suppose Pa = uuu, Pb = vvv, Pc = ww · · ·wc and u = v = w, u =
v = wc. Also, in θσ

,,c, we suppose that the cycle Cσ
 is negative if c is even and only the

cycle vvvwc– · · ·wv is positive if c is odd. Furthermore, let T,,l – v = P ∪ P ∪ Pl and
Pl = xx · · ·xl (l ≥ ). Denoted by G is the graph obtained from θ,, by identifying u

with xl (or v if l = ) of T,,l . Suppose that G is the graph obtained from θ,, by joining
u to a pendent vertex of P, and G is the graph obtained from θ,, by joining u to an
isolated vertex.

Lemma . Let G ∈ Gθ (, , c) (c ≥ ) and ρs(Gσ ) ≤ . Then Gσ is one of the graphs θσ
,,c

(c ≥ , c 
= , ), Gσ
i (i = , , ) or the induced oriented bicyclic subgraphs of Gσ

i (i = , , ),
where the cycle Cσ

 is negative if c is even and only one cycle Cc+ in each θσ
,,c is positive if

c is odd.
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Proof We will complete the proof by proving the following five claims.
Claim . ρs(θσ

,,c) =  (c ≥ ).
By Lemma ., we have

φ
(
θσ

,,c;λ
)

= λφ
(
P–

c–,;λ
)

– φ
(
P–

c–,;λ
)

– φ
(
P–

c–,;λ
)
.

Thus φ(θσ
,,c; ) =  because of φ(P–

l,l ; ) =  (l, l ≥ ). And then ρs(θσ
,,c) =  (c ≥ ).

Claim . If c 
= , , , then Gσ is one of the graphs θσ
,,c (c ≥ , c 
= , , ).

Suppose that H is the graph obtained from θ,,c by joining its one vertex to a pendent
vertex. Then we know Hσ has an induced subgraph (C

k)σ , where k = ,  or k ≥ . Thus
ρs(Hσ ) >  and the result holds.

Claim . If c = , then Gσ is Gσ
 or its induced oriented bicyclic subgraphs.

If c = , then Gσ must be some oriented graph by joining a tree T to the vertex u of θ,,.
By Lemma ., we know Gσ can only be Gσ

 or its induced oriented bicyclic subgraphs.
Now we will show ρs(Gσ

 ) = .
Let θ l

,, be the graph obtained from G by deleting its two pendent vertices. We show
by induction on l that ρs((θ l

,,)σ ) = . If l = , then ρs((θo
,,)σ ) = ρs(θσ

,,) = . Suppose
now that l ≥  and the result is true for the order no more than l. Then we have

φ
((

θ l+
,,

)σ ;λ
)

= λφ
((

θ l
,,

)σ ;λ
)

– φ
((

θ l–
,,

)σ ;λ
)
.

So φ((θ l+
,,)σ ; ) =  if l =  because of (θ–

,,)σ = C+
 . Therefore ρs((θ l

,,)σ ) = .
Now, we will prove ρs(Gσ

 ) = . Firstly, we have

φ
(
Gσ

 ;λ
)

= λφ
((

θ l+
,,

)σ ;λ
)

– λφ
((

θ l–
,,

)σ ;λ
)
.

Then  is an eigenvalue of G.
Also, by Lemma ., we have

d
dλ

φ
(
Gσ

 ;λ
)

=
∑

v∈V (G)

φ
(
Gσ

 – v;λ
)
.

Since ρs(Gσ
 – v) =  for each v ∈ V (G), we know  is an eigenvalue of G with multi-

plicity . But λ(G) < , so we can confirm the result holds.
Claim . If C = , then Gσ is Gσ

 or its induced oriented bicyclic subgraphs.
In this case, Gσ must be some oriented graph by joining a path to the vertex u of θσ

,,.
By Lemma ., we know Gσ can only be Gσ

 or its induced oriented bicyclic subgraphs. To
confirm the result holds, we only need to show ρs(Gσ

 ) = . In fact, similar to the proof of
Claim , we can show  is an eigenvalue of G with multiplicity . And thus ρs(Gσ

 ) = .
Claim . If c = , then Gσ is Gσ

 or its induced oriented bicyclic subgraphs.
Similarly, we know the result holds. �

Theorem . Bθ
 = {θσ

,,, θσ
,,, (θ,,,,,,,

,, )σ , θσ
,,c (c ≥ , c 
= , ), Gσ

i (i = , , . . . , )
or their induced oriented bicyclic subgraphs}, where the cycle Cσ

 is negative if c is even and
only one cycle Cc+ in each θσ

,,c is positive if c is odd.
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Proof Firstly, since  ≤ a ≤ b ≤ c and Gσ containing C, we know  ≤ a ≤ ,  ≤ b ≤ .
Furthermore, the radius of each graph mentioned in this theorem is . The discussion is
divided into three parts according to different cases of a and b.

Case . a = , b = .
Subcase .. c =  or c = .
By Lemma ., we know Gσ must be θσ

,, or θσ
,,.

Subcase .. c ≥ .
Then ρs(Gσ ) ≥ ρs((C,

 )σ ) > .
Case . a = , b = .
By Lemma . and Lemma ., we know c =  or c = .
Subcase .. c = .
By Lemma ., Gσ must be one of the graphs Gσ

i (i = , , , ) or their induced oriented
bicyclic subgraphs.

Subcase .. c = .
By Lemma ., Gσ must be (θ,,,,,,,

,, )σ or its induced oriented bicyclic subgraph.
Case . a = .
Then b = , otherwise Gσ does not contain C. By Lemma ., Gσ must be θσ

,,c (c ≥ ,
c 
= , , ), Gσ

i (i = , , ) or their induced oriented bicyclic subgraphs. �

Combining with Theorem ., Theorem . and Theorem ., we have the following
main result.

Theorem . B = {θσ
,,, P–

,l,l,l,, θσ
,,, θσ

,,, (θ,,,,,,,
,, )σ , θσ

,,c (c ≥ , c 
= , ), Gσ
i (i =

, , . . . , ) or their induced oriented bicyclic subgraphs}, where the cycle Cσ
 is negative if c

is even and only one cycle Cc+ in each θσ
,,c is positive if c is odd.

By this theorem, we have the following.

Theorem . Let Gσ be an oriented bicyclic graph and ρs(Gσ ) < . Then Gσ is one of the
graphs (θ,,,,,

,, )σ , (θ,,,,,
,, )σ , θσ

,, or their induced oriented bicyclic subgraphs.

Proof Of course, the radius of each graph mentioned in this theorem is less than . Obvi-
ously, by Theorem ., G must contain θ,, or θ,, if ρs(Gσ ) < . Firstly, by taking some
direct calculations, we know φ(θσ

,,; ) = , and then ρs(θσ
,,) < .

Now suppose that G contains θ,,. By taking some direct calculations, we know
ρs((θ ,,,,,

,, )σ ) = . Thus l = l = . Similarly, we have ρs((θ,,,,,
,, )σ ) = . Thus l =

max{l, l, l, l} ≤ .
Case . l = .
Since ρs((θ,,,,,

,, )σ ) > , ρs((θ,,,,,
,, )σ ) >  and ρs((θ,,,,,

,, )σ ) = . Thus Gσ must be
(θ,,,,,

,, )σ or its induced oriented bicyclic subgraphs in this case.
Case . l = .
Since ρs((θ,,,,,

,, )σ ) =  and ρs((θ,,,,,
,, )σ ) = . Thus Gσ must be (θ,,,,,

,, )σ or its
induced oriented bicyclic subgraphs in this case. �

By this theorem, we immediately obtain the following sharp lower bound on the skew-
spectral radii of oriented bicyclic graphs.

Corollary . Let Gσ be an oriented bicyclic graph on order n and n ≥ . Then ρs(Gσ ) ≥ .
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4. Cvetković, D, Doob, M, Gutman, I: On graphs whose spectral radius does not exceed

√
2 +

√
5. Ars Comb. 14, 225-239

(1982)
5. Brouwer, AE, Neumaier, A: The graphs with largest eigenvalue between 2 and

√
2 +

√
5. Linear Algebra Appl.

114/115, 273-276 (1989)
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