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1 Introduction and preliminaries
During the last few decades, the theory Calderón-Zygmund operators has played a central
part of modern harmonic analysis with lots of extensive applications in the other fields of
mathematics. One of the most general settings to which Calderón-Zygmund theory ex-
tends naturally is the spaces of homogeneous type in the sense of Coifman and Weiss [].
Many results from real and harmonic analysis on Euclidean spaces have their natural ex-
tensions on these spaces (see, for example, [–]). A metric space (X, d) equipped with a
non-negative Borel measure μ is called a space of homogeneous type if (X, d,μ) satisfies
the measure doubling condition that there exists a positive constant Cμ, depending on μ,
such that for any ball B(x, r) = {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (,∞),

μ
(
B(x, r)

) ≤ Cμμ
(
B(x, r)

)
. (.)

This definition was introduced by Coifman and Weiss in []. The doubling condition (.)
for measures plays a key role in the classical theory of Calderón-Zygmund operators. How-
ever, many results on the classical Calderón-Zygmund theory have been proved still valid
if the doubling condition is replaced by some weaker conditions. In recent years, many
papers focus on the analysis on Rd with non-doubling measure; see [–] and their ref-
erences. Throughout this paper, the Euclidean space Rd is endowed with a non-negative
Radon measure μ which only satisfies the following growth condition, that is, there exists
C >  such that

μ
(
B(x, r)

) ≤ Crn (.)
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for all x ∈ Rd and r > , where B(x, r) = {y ∈ Rd : |x – y| < r}, n is a fixed number satisfy-
ing  < n ≤ d. Such a measure need not satisfy the doubling condition (.). In [], Tolsa
established Calderón-Zygmund theory for non-doubling measures.

The definition of θ -type Calderón-Zygmund operator was introduced by Yabuta in []
as follows.

Definition . Let θ be a non-negative, non-decreasing function on R+ = (,∞) satisfying

∫ 



θ (t)
t

dt < ∞. (.)

A kernel K(·, ·) ∈ L
loc(X × X\{(x, y) : x = y}) is called a θ -type Calderón-Zygmund kernel if

the following conditions hold:

∣∣K(x, y)
∣∣ ≤ C|x – y|–n (.)

and

∣
∣K(x, y) – K

(
x′, y

)∣∣ +
∣
∣K(y, x) – K

(
y, x′)∣∣ ≤ Cθ

( |x – x′|
|x – y|

)
|x – y|–n, (.)

when |x – y| ≥ |x – x′|.

A linear operator T is called the θ -type Calderón-Zygmund operator with kernel K(·, ·)
satisfying (.) and (.) if for all f ∈ L∞(μ) with bounded support and x /∈ supp f ,

Tf (x) =
∫

Rd
K(x, y)f (y) dμ(y). (.)

In [], the authors proved that the θ -type Calderón-Zygmund operator which is bounded
on L(μ) is also bounded from L∞(μ) into RBMO(μ) and from H,∞

atb (μ) into L(μ) on the
Euclidean space with non-doubling measures.

In this paper, we discuss the boundedness of the θ -type Calderón-Zygmund operator
T in the Hardy space H(μ). In order to state our main result, we recall some necessary
notations and the known results. The following grand maximal operator was introduced
by Tolsa in [].

Definition . Given f ∈ L
loc(μ), we set

M�f (x) = sup
ϕ∼x

∣∣
∣∣

∫

Rd
f ϕ dμ

∣∣
∣∣,

where the notation ϕ ∼ x means that ϕ ∈ L(μ) ∩ C(Rd) and satisfies
(i) ‖ϕ‖L(μ) ≤ ,

(ii)  ≤ ϕ(y) ≤ |y – x|–n for all y ∈ Rd , and
(iii) |∇ϕ(y)| ≤ |y – x|–(n+) for all y ∈ Rd , where ∇ = (∂/∂x, . . . , ∂/∂xd).
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In [], Tolsa obtained the following result.

Theorem . A function f belongs to H,∞
atb (μ) if and only if f ∈ L(μ),

∫
f dμ =  and

M�f ∈ L(μ). Moreover, in this case

‖f ‖H,∞
atb (μ) ≈ ‖f ‖L(μ) + ‖M�f ‖L(μ).

In [], the authors introduced a new atomic characterization of the Hardy space H(μ).
Given two cubes Q ⊂ R in Rd , set

KQ,R =  +
NQ,R∑

k=

μ(kQ)
l(kQ)n ,

where NQ,R is the smallest positive integer k such that l(kQ) ≥ l(R); see [] for some pos-
itive of KQ,R. The definition of the (p,γ )-atomic block is given as follows.

Definition . Let ρ > ,  < p ≤ ∞ and γ ∈ N . A function b ∈ L
loc(μ) is called a (p,γ )-

atomic block if
() there exists some cube R such that supp(b) ⊂ R,
()

∫
Rd b d(μ) = ,

() there are functions a, a supported on cubes Q, Q ⊂ R and numbers λ,λ ∈R

such that b = λa + λa, and

‖aj‖Lp(μ) ≤ (
μ(ρQj)

)/p–(KQj ,R)–γ , j = , .

We denote |b|H,p
atb,γ (μ) = |λ| + |λ|. We say that f ∈ H,p

atb,γ (μ) if there are (p,γ )-atomic
blocks bj such that

f =
∞∑

i=

bi, (.)

with
∑∞

i= |bi|H,p
atb,γ (μ) < ∞ (notice that this implies that the sum in (.) converges in L(μ)).

The H,p
atb,γ (μ) norm of f is defined by

‖f ‖H,p
atb,γ (μ) = inf

∞∑

i=

|bi|H,p
atb,γ (μ),

where the infimum is taken over all the possible decompositions of f into (p,γ )-atomic
blocks.

We remark that the definition when γ =  was introduced by Tolsa in []. It was proved
in [, ] that the definition of H,p

atb,γ (μ) is independent of the chosen constant ρ > , and
for any integer γ ≥  and  < p ≤ ∞, all the atomic Hardy spaces H,p

atb,γ (μ) are just the
Hardy space H,∞

at (μ) with equivalent norms.
Let T∗ be the transpose of T . As mentioned in [], we have to assume that T∗ = .

Here, by T∗ = , we mean that for any bounded function b with compact support and
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∫
Rd bμ = ,

∫

Rd
Tb(x) dμ(x) = . (.)

The main result of our paper is given as follows.

Theorem . Let T be a θ -type Calderón-Zygmund operator defined by (.) as above,
which is bounded on L(μ) and T∗ =  as in (.). Then T is bounded on H(μ).

Throughout this paper, C always means a positive constant independent of the main
parameters involved, but it may be different in different contents.

2 Proof of our main result
The following lemma will be used in the proof of Theorem ..

Lemma . Let M� be as in Definition . and  < p < ∞. Then M� is bounded on Lp(μ).

In fact, Tolsa proved that M� is bounded from H(μ) into L(μ); see Lemma . in [].
On the other hand, it is obvious that M� is bounded on L∞(μ) for  < p < ∞. By Theo-
rem . in [], we obtain that M� is bounded on Lp(μ) for  < p < ∞.

Now we will prove Theorem ..

Proof of Theorem . By the standard argument, it suffices to verify that for any atomic
block b as in Definition . with ρ = , p = ∞ and γ = , Tb is in H(μ) with norm C|b|H,∞

atb,
.

By Definition ., it follows

‖aj‖L∞(μ) ≤ (
μ(Qj)K

Qj ,R
)–, (.)

where j = , . The assumption that T∗ =  tells us that
∫

Rd Tb d(μ) = . Recalling that T
is bounded from H(μ) into L(μ) (see []), we obtain

‖Tb‖L(μ) ≤ C|b|H,∞
atb (μ).

By this and Theorem ., we deduce that the proof of Theorem . can be reduced to
proving that

∥
∥M�(Tb)

∥
∥

L(μ) ≤ C|b|H,∞
atb (μ). (.)

We can write
∫

Rd
M�(Tb)(x) dμ(x) =

∫

Rd\R
M�(Tb)(x) dμ(x) +

∫

R
M�(Tb)(x) dμ(x) = I + I.

Let us now estimate I. Let xR be the center of the cube R. From the fact T∗ = , we obtain

I =
∫

Rd\R
sup
ϕ∼x

∣
∣∣
∣

∫

Rd
Tb(y)

[
ϕ(y) – ϕ(xR)

]
dμ(y)

∣
∣∣
∣dμ(x)

≤
∫

Rd\R
sup
ϕ∼x

∣∣∣
∣

∫

R
Tb(y)

[
ϕ(y) – ϕ(xR)

]
dμ(y)

∣∣∣
∣dμ(x)
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+
∫

Rd\R
sup
ϕ∼x

∣∣
∣∣

∫

Rd\R
Tb(y)

[
ϕ(y) – ϕ(xR)

]
dμ(y)

∣∣
∣∣dμ(x)

= I + I.

Note that for any z ∈ R, x ∈ k+R\kR, and k ≥ , we have |x – z| ≥ l(k–R).
This together with Definition . and the mean value theorem leads to

∣
∣ϕ(y) – ϕ(xR)

∣
∣ ≤ C

l(R)
l(k–R)n+ . (.)

For j = , , denote NQj ,R simply by Nj for y ∈ R. By (.), (.), Hölder’s inequality, the
boundedness of T in L(μ) and (.), we have

I =
∑

j=

|λj|
∞∑

k=

∫

k+R\k R
sup
ϕ∼x

[∫

R\Qj

∣∣Taj(y)
∣∣∣∣ϕ(y) – ϕ(xR)

∣∣dμ(y)
]

dμ(x)

+
∑

j=

|λj|
∞∑

k=

∫

k+R\k R
sup
ϕ∼x

[∫

Qj

∣
∣Taj(y)

∣
∣
∣
∣ϕ(y) – ϕ(xR)

∣
∣dμ(y)

]
dμ(x)

≤ C
∑

j=

|λj|
∞∑

k=

∫

k+R\k R

l(R)
l(k–R)n+

Nj–∑

l=

∫

l+Qj\lQj

∫

Qj

|aj(z)|
|y – z|n dμ(z) dμ(y) dμ(x)

+ C
∑

j=

|λj|
∞∑

k=

∫

k+R\k R

l(R)
l(k–R)n+

∥
∥(Taj)χQj

∥
∥

L(μ) dμ(x)

≤ C
∑

j=

|λj|
∞∑

k=

–k
Nj–∑

l=

μ(l+Qj)
l(l+Qj)n ‖aj‖L∞(μ)μ(Qj)

+ C
∑

j=

|λj|
∞∑

k=

–k∥∥(Taj)χQj

∥∥
L(μ)μ(Qj)/

≤ C
∑

j=

|λj|KQj ,R‖aj‖L∞(μ)μ(Qj) + C
∑

j=

|λj|‖aj‖L(μ)μ(Qj)/

≤ C
∑

j=

|λj|,

where we have used the fact that

KQj ,R ≤ CKQj ,R.

For I, we get

I =
∞∑

k=

∫

k+R\k R
sup
ϕ∼x

∣∣
∣∣

∫

Rd\R
Tb(y)

[
ϕ(y) – ϕ(xR)

]
dμ(y)

∣∣
∣∣dμ(x)

≤
∞∑

k=

∫

k+R\k R
M�

[|Tb|χk+R\k–R
]
(x) dμ(x)
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+
∞∑

k=

∫

k+R\k R
sup
ϕ∼x

[∫

k+R\k–R

∣
∣Tb(y)

∣
∣ϕ(xR) dμ(y)

]
dμ(x)

+
∞∑

k=

∫

k+R\k R
sup
ϕ∼x

[∫

Rd\k+R

∣∣Tb(y)
∣∣(ϕ(y) + ϕ(xR)

)
dμ(y)

]
dμ(x)

+
∞∑

k=

∫

k+R\k R
sup
ϕ∼x

[∫

k–R\R

∣
∣Tb(y)

∣
∣(ϕ(y) + ϕ(xR)

)
dμ(y)

]
dμ(x)

= I + I + I + I.

From Lemma ., the fact that
∫

Rd b d(μ) =  and (.), we can deduce that

I ≤
∞∑

k=

μ
(
k+R

)/∥∥M�

[|Tb|χk+R\k–R
]∥∥

L(μ)

≤ C
∞∑

k=

μ
(
k+R

)/
(∫

k+R\k–R

∣
∣∣
∣

∫

R

(
K(y, z) – K(y, xR)

)
b(z) dμ(z)

∣
∣∣
∣



dμ(y)
)/

≤ C
∞∑

k=

μ
(
k+R

)/

×
(∫

k+R\k–R

[∫

R
θ

( |z – xR|
|y – xR|

)
|y – xR|–n∣∣b(z)

∣∣dμ(z)
]

dμ(y)
)/

≤ C
∞∑

k=

μ(k+R)
l(kR)n θ

(
–k)‖b‖L(μ) ≤ C

∫ 



θ (t)
t

dt‖b‖L(μ) ≤ C
∑

j=

|λj|,

where we have used the following inequality:

∫ 



θ (t)
t

≥
∑∫ –k

k

θ (–k)
–k ≥ C

∞∑

k=

θ
(
–k),

and the fact

‖b‖L(μ) ≤
∑

j=

|λj|‖aj‖L(μ) ≤ C
∑

j=

|λj|.

An argument similar to the estimate for I tells us that

I ≤ C
∑

j=

|λj|.

Finally, we estimate I. By the fact that
∫

Rd b dμ = , Definition . and (.), we obtain

I ≤
∞∑

k=

∫

k+R\k R

∞∑

l=k+

∫

l+R\lR

∫

R

∣∣K(y, z) – K(y, xR)
∣∣∣∣b(z)

∣∣dμ(z)

×
[


|y – x|n +


|xR – x|n

]
dμ(y) dμ(x)
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≤ C
∞∑

k=

∫

k+R\k R

∞∑

l=k+

∫

l+R\lR

∫

R
θ

( |z – xR|
|y – xR|

)
|y – xR|–n∣∣b(z)

∣
∣dμ(z)

×
[


|y – x|n +


|xR – x|n

]
dμ(y) dμ(x)

≤ C
∞∑

k=

∞∑

l=k+

θ
(
–l)μ(l+R)

l(l+R)n
μ(k+R)
l(k+R)n ‖b‖L(μ)

≤ C
∑

j=

|λj|.

An argument similar to the estimate for I indicates that

I ≤ C
∑

j=

|λj|.

Combining the estimate for I, I, I and I, we obtain the desired estimate for I.
The estimates for I and I tell us that

I =
∫

Rd\R
M�(Tb)(x) dμ(x) ≤ C|b|H,∞

atb,
(μ). (.)

For I, by the sublinearity of M�, it follows

I ≤
∫

R
M�

[
(Tb)χR

]
(x) dμ(x) +

∫

R
M�

[
(Tb)χRd\R

]
(x) dμ(x) = I + I.

From Qj ⊂ R, Definition . and (.), we obtain

I ≤
∫

R
sup
ϕ∼x

[∫

Rd\R

∣∣Tb(y)
∣∣ϕ(y) dμ(y)

]
dμ(x)

≤
∑

j=

|λj|
∫

R

∞∑

k=

∫

k+R\k R

∣∣
∣∣

∫

Qj

K(y, z)aj(z) dμ(z)
∣∣
∣∣


|x – y|n dμ(y) dμ(x)

≤ C
∑

j=

|λj|
∞∑

k=

‖aj‖L∞(μ)μ(Qj)
μ(k+R)
l(k–R)n

μ(R)
l(k–R)n

≤ C
∑

j=

|λj|.

In order to estimate I, we write

I ≤
∑

j=

|λj|
∫

Qj

M�

[
(Taj)χR

]
(x) dμ(x) +

∑

j=

|λj|
∫

R\Qj

M�

[
(Taj)χQj

]
(x) dμ(x)

+
∑

j=

|λj|
∫

R\Qj

M�

[
(Taj)χR\Qj

]
(x) dμ(x)

= I + I + I.
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Hölder’s inequality, Lemma ., the boundedness of T in L(μ) and (.) lead to

I ≤
∑

j=

|λj|μ(Qj)/∥∥M�

[
(Taj)χR

]∥∥
L(μ)

≤ C
∑

j=

|λj|μ(Qj)/‖Taj‖L(μ) ≤ C
∑

j=

|λj|μ(Qj)/‖aj‖L(μ)

≤ C
∑

j=

|λj|μ(Qj)‖aj‖L∞(μ) ≤ C
∑

j=

|λj|.

By Definition ., Hölder’s inequality, the boundedness of T in L(μ) and (.), we get

I ≤
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

sup
ϕ∼x

∣∣
∣∣

∫

Qj

Taj(y)ϕ(y) dμ(y)
∣∣
∣∣dμ(x)

≤
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj


l(k–Qj)n dμ(x)

∫

Qj

∣
∣Taj(y)

∣
∣dμ(y)

≤
∑

j=

|λj|
NQj ,R∑

k=

μ(k+Qj)
l(k–Qj)n ‖Taj‖L(μ)μ(Qj)/

≤ C
∑

j=

|λj|KQj ,Rμ(Qj)/‖aj‖L(μ)

≤ C
∑

j=

|λj|,

where we have used the fact that

KQj ,R ≤ CKQj ,R. (.)

For I, we can write

I =
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

M�

[
(Taj)χR\Qj

]
(x) dμ(x)

≤
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

M�

[|Taj|χk+Qj\k–Qj

]
(x) dμ(x)

+
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

M�

[|Taj|χmax{k+Qj ,R}\k+Qj

]
(x) dμ(x)

+
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

M�

[|Taj|χk–Qj\Qj

]
(x) dμ(x)

= J + J + J.
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Lemma ., (.) and (.) imply that

J =
∑

j=

|λj|
NQj ,R∑

k=

μ
(
k+Qj

)/∥∥M�

[
f |Taj|χk+Qj\k–Qj

]∥∥
L(μ)

≤ C
∑

j=

|λj|
NQj ,R∑

k=

μ
(
k+Qj

)/ ×
(∫

k+Qj\k–Qj

∣
∣∣
∣

∫

Qj

K(y, z)aj(z) dμ(z)
∣
∣∣
∣



dμ(y)
)/

≤ C
∑

j=

|λj|
NQj ,R∑

k=

μ(k+Qj)
l(k–Qj)n ‖aj‖L∞(μ)μ(Qj)

≤ C
∑

j=

|λj|.

By (ii) of Definition ., (.), (.) and (.), we have

J =
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

sup
ϕ∼x

[∫

k–Qj\Qj

∣∣Taj(y)
∣∣ϕ(y) dμ(y)

]
dμ(x)

≤
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

k–∑

l=

∫

l+Qj\lQj

∣
∣∣
∣

∫

Qj

K(y, z)aj(z) dμ(z)
∣
∣∣
∣


|y – x|n dμ(y) dμ(x)

≤ C
∑

j=

|λj|
NQj ,R∑

k=

μ(k+Q)
l(k+Qj)n

k–∑

l=

μ(l+Q)
l(l+Qj)n ‖aj‖L∞(μ)μ(Qj)

≤ C
∑

j=

|λj|(KQj ,R)‖aj‖L∞(μ)μ(Qj)

≤ C
∑

j=

|λj|.

With the argument similar to the estimate for J it follows that

J =
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

M�

[|Taj|χk–Qj\Qj

]
(x) dμ(x) ≤ C

∑

j=

|λj|.

Thus

I =
∑

j=

|λj|
NQj ,R∑

k=

∫

k+Qj\k Qj

M�

[
(Taj)χR\Qj

]
(x) dμ(x) ≤ C

∑

j=

|λj|.

From the estimation of I and I, we obtain

I =
∫

R
M�(Tb)(x) dμ(x) ≤ C

∑

j=

|λj| = C|b|H,∞
atb,

. (.)
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The estimates (.) and (.) lead to (.), and this completes the proof of our theo-
rem. �

Remark . It is known that the dual space of H(μ) is the space RBMO(μ), which is
introduced in []. From Theorem ., the fact that RBMO(μ) = (H(μ))∗ and a standard
dual argument, it is easy to deduce the boundedness of the transpose operator of T on the
RBMO(μ) space as below.

Corollary . Let T be the same as in Theorem .. Then T∗, the transpose operator of T ,
is bounded on RBMO(μ).
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