Boundedness of θ-type Calderón-Zygmund operators on Hardy spaces with non-doubling measures

Chol Ri' ${ }^{1}$ and Zhenqiu Zhang ${ }^{2 *}$ (c)

"Correspondence:
zqzhang@nankai.edu.cn
${ }^{2}$ School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China Full list of author information is available at the end of the article

Abstract

Let μ be a non-negative Radon measure on R^{d} which only satisfies some growth condition. In this paper, we obtain the boundedness of θ-type Calderón-Zygmund operators on the Hardy space $H^{1}(\mu)$.

MSC: 42B20
Keywords: non-doubling measure space; θ-type Calderón-Zygmund operator; Hardy space

1 Introduction and preliminaries

During the last few decades, the theory Calderón-Zygmund operators has played a central part of modern harmonic analysis with lots of extensive applications in the other fields of mathematics. One of the most general settings to which Calderón-Zygmund theory extends naturally is the spaces of homogeneous type in the sense of Coifman and Weiss [1]. Many results from real and harmonic analysis on Euclidean spaces have their natural extensions on these spaces (see, for example, [1-3]). A metric space (X, d) equipped with a non-negative Borel measure μ is called a space of homogeneous type if (X, d, μ) satisfies the measure doubling condition that there exists a positive constant C_{μ}, depending on μ, such that for any ball $B(x, r)=\{y \in X: d(x, y)<r\}$ with $x \in X$ and $r \in(0, \infty)$,

$$
\begin{equation*}
\mu(B(x, 2 r)) \leq C_{\mu} \mu(B(x, r)) \tag{1.1}
\end{equation*}
$$

This definition was introduced by Coifman and Weiss in [1]. The doubling condition (1.1) for measures plays a key role in the classical theory of Calderón-Zygmund operators. However, many results on the classical Calderón-Zygmund theory have been proved still valid if the doubling condition is replaced by some weaker conditions. In recent years, many papers focus on the analysis on R^{d} with non-doubling measure; see [4-8] and their references. Throughout this paper, the Euclidean space R^{d} is endowed with a non-negative Radon measure μ which only satisfies the following growth condition, that is, there exists $C>0$ such that

$$
\begin{equation*}
\mu(B(x, r)) \leq C r^{n} \tag{1.2}
\end{equation*}
$$

for all $x \in R^{d}$ and $r>0$, where $B(x, r)=\left\{y \in R^{d}:|x-y|<r\right\}, n$ is a fixed number satisfying $0<n \leq d$. Such a measure need not satisfy the doubling condition (1.1). In [6], Tolsa established Calderón-Zygmund theory for non-doubling measures.
The definition of θ-type Calderón-Zygmund operator was introduced by Yabuta in [9] as follows.

Definition 1.1 Let θ be a non-negative, non-decreasing function on $R^{+}=(0, \infty)$ satisfying

$$
\begin{equation*}
\int_{0}^{1} \frac{\theta(t)}{t} d t<\infty . \tag{1.3}
\end{equation*}
$$

A kernel $K(\cdot, \cdot) \in L_{\text {loc }}^{1}(X \times X \backslash\{(x, y): x=y\})$ is called a θ-type Calderón-Zygmund kernel if the following conditions hold:

$$
\begin{equation*}
|K(x, y)| \leq C|x-y|^{-n} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|K(x, y)-K\left(x^{\prime}, y\right)\right|+\left|K(y, x)-K\left(y, x^{\prime}\right)\right| \leq C \theta\left(\frac{\left|x-x^{\prime}\right|}{|x-y|}\right)|x-y|^{-n}, \tag{1.5}
\end{equation*}
$$

when $|x-y| \geq 2\left|x-x^{\prime}\right|$.

A linear operator T is called the θ-type Calderón-Zygmund operator with kernel $K(\cdot,$. satisfying (1.4) and (1.5) if for all $f \in L^{\infty}(\mu)$ with bounded support and $x \notin \operatorname{supp} f$,

$$
\begin{equation*}
T f(x)=\int_{R^{d}} K(x, y) f(y) d \mu(y) . \tag{1.6}
\end{equation*}
$$

In [10], the authors proved that the θ-type Calderón-Zygmund operator which is bounded on $L^{2}(\mu)$ is also bounded from $L^{\infty}(\mu)$ into $R B M O(\mu)$ and from $H_{\text {atb }}^{1, \infty}(\mu)$ into $L^{1}(\mu)$ on the Euclidean space with non-doubling measures.
In this paper, we discuss the boundedness of the θ-type Calderón-Zygmund operator T in the Hardy space $H^{1}(\mu)$. In order to state our main result, we recall some necessary notations and the known results. The following grand maximal operator was introduced by Tolsa in [11].

Definition 1.2 Given $f \in L_{\text {loc }}^{1}(\mu)$, we set

$$
M_{\Phi} f(x)=\sup _{\varphi \sim x}\left|\int_{R^{d}} f \varphi d \mu\right|,
$$

where the notation $\varphi \sim x$ means that $\varphi \in L^{1}(\mu) \cap C^{1}\left(R^{d}\right)$ and satisfies
(i) $\|\varphi\|_{L^{1}(\mu)} \leq 1$,
(ii) $0 \leq \varphi(y) \leq|y-x|^{-n}$ for all $y \in R^{d}$, and
(iii) $|\nabla \varphi(y)| \leq|y-x|^{(n+1)}$ for all $y \in R^{d}$, where $\nabla=\left(\partial / \partial x_{1}, \ldots, \partial / \partial x_{d}\right)$.

In [11], Tolsa obtained the following result.

Theorem 1.1 A function f belongs to $H_{\text {atb }}^{1, \infty}(\mu)$ if and only if $f \in L^{1}(\mu), \int f d \mu=0$ and $M_{\Phi} f \in L^{1}(\mu)$. Moreover, in this case

$$
\|f\|_{H_{\text {atb }}^{1, \infty}(\mu)} \approx\|f\|_{L^{1}(\mu)}+\left\|M_{\Phi} f\right\|_{L^{1}(\mu)}
$$

In [12], the authors introduced a new atomic characterization of the Hardy space $H^{1}(\mu)$. Given two cubes $Q \subset R$ in R^{d}, set

$$
K_{Q, R}=1+\sum_{k=1}^{N_{Q, R}} \frac{\mu\left(2^{k} Q\right)}{l\left(2^{k} Q\right)^{n}}
$$

where $N_{Q, R}$ is the smallest positive integer k such that $l\left(2^{k} Q\right) \geq l(R)$; see [6] for some positive of $K_{Q, R}$. The definition of the (p, γ)-atomic block is given as follows.

Definition 1.3 Let $\rho>1,1<p \leq \infty$ and $\gamma \in N$. A function $b \in L_{\mathrm{loc}}^{1}(\mu)$ is called a (p, γ) atomic block if
(1) there exists some cube R such that $\operatorname{supp}(b) \subset R$,
(2) $\int_{R^{d}} b d(\mu)=0$,
(3) there are functions a_{1}, a_{2} supported on cubes $Q_{1}, Q_{2} \subset R$ and numbers $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that $b=\lambda_{1} a_{1}+\lambda_{2} a_{2}$, and

$$
\left\|a_{j}\right\|_{L^{p}(\mu)} \leq\left(\mu\left(\rho Q_{j}\right)\right)^{1 / p-1}\left(K_{Q_{j}, R}\right)^{-\gamma}, \quad j=1,2 .
$$

We denote $|b|_{H_{a t b, \gamma}^{1, p}(\mu)}=\left|\lambda_{1}\right|+\left|\lambda_{2}\right|$. We say that $f \in H_{a t b, \gamma}^{1, p}(\mu)$ if there are (p, γ)-atomic blocks b_{j} such that

$$
\begin{equation*}
f=\sum_{i=1}^{\infty} b_{i} \tag{1.7}
\end{equation*}
$$

with $\sum_{i=1}^{\infty}\left|b_{i}\right|_{H_{a t b, \gamma}^{1, p}(\mu)}<\infty$ (notice that this implies that the sum in (1.7) converges in $\left.L^{1}(\mu)\right)$. The $H_{a t b, \gamma}^{1, p}(\mu)$ norm of f is defined by

$$
\|f\|_{H_{a t b, \gamma}^{1, p}(\mu)}=\inf \sum_{i=1}^{\infty}\left|b_{i}\right|_{H_{a t b, \gamma}^{1, p}(\mu)},
$$

where the infimum is taken over all the possible decompositions of f into (p, γ)-atomic blocks.

We remark that the definition when $\gamma=1$ was introduced by Tolsa in [6]. It was proved in $[6,12]$ that the definition of $H_{a t b, \gamma}^{1, p}(\mu)$ is independent of the chosen constant $\rho>1$, and for any integer $\gamma \geq 1$ and $1<p \leq \infty$, all the atomic Hardy spaces $H_{a t b, \gamma}^{1, p}(\mu)$ are just the Hardy space $H_{a t}^{1, \infty}(\mu)$ with equivalent norms.
Let T^{*} be the transpose of T. As mentioned in [13], we have to assume that $T^{*} 1=0$. Here, by $T^{*} 1=0$, we mean that for any bounded function b with compact support and

$$
\begin{align*}
& \int_{R^{d}} b \mu=0, \\
& \qquad \int_{R^{d}} T b(x) d \mu(x)=0 . \tag{1.8}
\end{align*}
$$

The main result of our paper is given as follows.
Theorem 1.2 Let T be a θ-type Calderón-Zygmund operator defined by (1.6) as above, which is bounded on $L^{2}(\mu)$ and $T^{*} 1=0$ as in (1.8). Then T is bounded on $H^{1}(\mu)$.

Throughout this paper, C always means a positive constant independent of the main parameters involved, but it may be different in different contents.

2 Proof of our main result

The following lemma will be used in the proof of Theorem 1.2.
Lemma 2.1 Let M_{Φ} be as in Definition 1.2 and $1<p<\infty$. Then M_{Φ} is bounded on $L^{p}(\mu)$.

In fact, Tolsa proved that M_{Φ} is bounded from $H^{1}(\mu)$ into $L^{1}(\mu)$; see Lemma 3.1 in [11]. On the other hand, it is obvious that M_{Φ} is bounded on $L^{\infty}(\mu)$ for $1<p<\infty$. By Theorem 7.2 in [6], we obtain that M_{Φ} is bounded on $L^{p}(\mu)$ for $1<p<\infty$.
Now we will prove Theorem 1.2.

Proof of Theorem 1.2 By the standard argument, it suffices to verify that for any atomic block b as in Definition 1.3 with $\rho=4, p=\infty$ and $\gamma=2, T b$ is in $H^{1}(\mu)$ with norm $C|b|_{H_{a t b, 2}^{1, \infty}}$. By Definition 1.3, it follows

$$
\begin{equation*}
\left\|a_{j}\right\|_{L^{\infty}(\mu)} \leq\left(\mu\left(4 Q_{j}\right) K_{Q_{j}, R}^{2}\right)^{-1} \tag{2.1}
\end{equation*}
$$

where $j=1,2$. The assumption that $T^{*} 1=0$ tells us that $\int_{R^{d}} \operatorname{Tbd}(\mu)=0$. Recalling that T is bounded from $H^{1}(\mu)$ into $L^{1}(\mu)$ (see [6]), we obtain

$$
\|T b\|_{L^{1}(\mu)} \leq C|b|_{H_{a t b}^{1, \infty}(\mu)} .
$$

By this and Theorem 1.1, we deduce that the proof of Theorem 1.2 can be reduced to proving that

$$
\begin{equation*}
\left\|M_{\Phi}(T b)\right\|_{L^{1}(\mu)} \leq C|b|_{H_{a t b}^{1, \infty}(\mu)} . \tag{2.2}
\end{equation*}
$$

We can write

$$
\int_{R^{d}} M_{\Phi}(T b)(x) d \mu(x)=\int_{R^{d} \backslash 4 R} M_{\Phi}(T b)(x) d \mu(x)+\int_{4 R} M_{\Phi}(T b)(x) d \mu(x)=I_{1}+I_{2} .
$$

Let us now estimate I_{1}. Let x_{R} be the center of the cube R. From the fact $T^{*} 1=0$, we obtain

$$
\begin{aligned}
I_{1} & =\int_{R^{d} \backslash 4 R} \sup _{\varphi \sim x}\left|\int_{R^{d}} T b(y)\left[\varphi(y)-\varphi\left(x_{R}\right)\right] d \mu(y)\right| d \mu(x) \\
& \leq \int_{R^{d} \backslash 4 R} \sup _{\varphi \sim x}\left|\int_{2 R} T b(y)\left[\varphi(y)-\varphi\left(x_{R}\right)\right] d \mu(y)\right| d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{R^{d} \backslash 4 R} \sup _{\varphi \sim x}\left|\int_{R^{d} \backslash 2 R} \operatorname{Tb}(y)\left[\varphi(y)-\varphi\left(x_{R}\right)\right] d \mu(y)\right| d \mu(x) \\
= & I_{11}+I_{12} .
\end{aligned}
$$

Note that for any $z \in 2 R, x \in 2^{k+1} R \backslash 2^{k} R$, and $k \geq 2$, we have $|x-z| \geq l\left(2^{k-2} R\right)$.
This together with Definition 1.2 and the mean value theorem leads to

$$
\begin{equation*}
\left|\varphi(y)-\varphi\left(x_{R}\right)\right| \leq C \frac{l(R)}{l\left(2^{k-2} R\right)^{n+1}} \tag{2.3}
\end{equation*}
$$

For $j=1,2$, denote $N_{Q_{j}, 2 R}$ simply by N_{j} for $y \in 2 R$. By (2.3), (1.4), Hölder's inequality, the boundedness of T in $L^{2}(\mu)$ and (2.1), we have

$$
\begin{aligned}
I_{11}= & \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \sup _{\varphi \sim x}\left[\int_{2 R \backslash 2 Q_{j}}\left|T a_{j}(y)\right|\left|\varphi(y)-\varphi\left(x_{R}\right)\right| d \mu(y)\right] d \mu(x) \\
& +\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \sup _{\varphi \sim x}\left[\int_{2 Q_{j}}\left|T a_{j}(y)\right|\left|\varphi(y)-\varphi\left(x_{R}\right)\right| d \mu(y)\right] d \mu(x) \\
\leq & C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \frac{l(R)}{l\left(2^{k-2} R\right)^{n+1}} \sum_{l=1}^{N_{j}-1} \int_{2^{l+1} Q_{j} \backslash 2^{l} Q_{j}} \int_{Q_{j}} \frac{\left|a_{j}(z)\right|}{|y-z|^{n}} d \mu(z) d \mu(y) d \mu(x) \\
& +C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{\infty} \int_{2^{k+1} R_{R \backslash 2^{k} R}} \frac{l(R)}{l\left(2^{k-2} R\right)^{n+1}}\left\|\left(T a_{j}\right) \chi_{2 Q_{j}}\right\|_{L^{1}(\mu)} d \mu(x) \\
\leq & C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{\infty} 2^{-k} \sum_{l=1}^{N_{j-1}} \frac{\mu\left(2^{l+1} Q_{j}\right)}{l\left(2^{l+1} Q_{j}\right)^{n}}\left\|a_{j}\right\|_{L^{\infty}(\mu)} \mu\left(Q_{j}\right) \\
& +C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{\infty} 2^{-k}\left\|\left(T a_{j}\right) \chi_{2 Q_{j}}\right\|_{L^{2}(\mu)} \mu\left(2 Q_{j}\right)^{1 / 2} \\
\leq & C \sum_{j=1}^{2}\left|\lambda_{j}\right| K_{Q_{j}, R}\left\|a_{j}\right\|_{L^{\infty}(\mu)} \mu\left(Q_{j}\right)+C \sum_{j=1}^{2}\left|\lambda_{j}\right|\left\|a_{j}\right\|_{L^{2}(\mu)} \mu\left(2 Q_{j}\right)^{1 / 2} \\
\leq & C \sum_{j=1}^{2}\left|\lambda_{j}\right|,
\end{aligned}
$$

where we have used the fact that

$$
K_{Q_{j}, 2 R} \leq C K_{Q_{j}, R}
$$

For I_{12}, we get

$$
\begin{aligned}
I_{12} & =\sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \sup _{\varphi \sim x}\left|\int_{R^{d} \backslash 2 R} \operatorname{Tb}(y)\left[\varphi(y)-\varphi\left(x_{R}\right)\right] d \mu(y)\right| d \mu(x) \\
& \leq \sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} M_{\Phi}\left[|T b| \chi_{2^{k+2} R \backslash 2^{k-1} R}\right](x) d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \sup _{\varphi \sim x}\left[\int_{2^{k+2} R \backslash 2^{k-1} R}|T b(y)| \varphi\left(x_{R}\right) d \mu(y)\right] d \mu(x) \\
& +\sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \sup _{\varphi \sim x}\left[\int_{R^{d} \backslash 2^{k+2} R}|T b(y)|\left(\varphi(y)+\varphi\left(x_{R}\right)\right) d \mu(y)\right] d \mu(x) \\
& +\sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k}{ }_{R}} \sup _{\varphi \sim x}\left[\int_{2^{k-1} R \backslash 2 R}|T b(y)|\left(\varphi(y)+\varphi\left(x_{R}\right)\right) d \mu(y)\right] d \mu(x) \\
& =I_{121}+I_{122}+I_{123}+I_{124} .
\end{aligned}
$$

From Lemma 2.1, the fact that $\int_{R^{d}} b d(\mu)=0$ and (1.5), we can deduce that

$$
\begin{aligned}
I_{121} \leq & \sum_{k=2}^{\infty} \mu\left(2^{k+1} R\right)^{1 / 2}\left\|M_{\Phi}\left[|T b| \chi_{2^{k+2} R \backslash 2^{k-1} R}\right]\right\|_{L^{2}(\mu)} \\
\leq & C \sum_{k=2}^{\infty} \mu\left(2^{k+1} R\right)^{1 / 2}\left(\int_{2^{k+2} R \backslash 2^{k-1} R}\left|\int_{R}\left(K(y, z)-K\left(y, x_{R}\right)\right) b(z) d \mu(z)\right|^{2} d \mu(y)\right)^{1 / 2} \\
\leq & C \sum_{k=2}^{\infty} \mu\left(2^{k+1} R\right)^{1 / 2} \\
& \times\left(\int_{2^{k+2} R \backslash 2^{k-1} R}\left[\int_{R} \theta\left(\frac{\left|z-x_{R}\right|}{\left|y-x_{R}\right|}\right)\left|y-x_{R}\right|^{-n}|b(z)| d \mu(z)\right]^{2} d \mu(y)\right)^{1 / 2} \\
\leq & C \sum_{k=2}^{\infty} \frac{\mu\left(2^{k+1} R\right)}{l\left(2^{k} R\right)^{n}} \theta\left(2^{-k}\right)\|b\|_{L^{1}(\mu)} \leq C \int_{0}^{1} \frac{\theta(t)}{t} d t\|b\|_{L^{1}(\mu)} \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right|
\end{aligned}
$$

where we have used the following inequality:

$$
\int_{0}^{1} \frac{\theta(t)}{t} \geq \sum \int_{2^{k}}^{2^{1-k}} \frac{\theta\left(2^{-k}\right)}{2^{1-k}} \geq C \sum_{k=1}^{\infty} \theta\left(2^{-k}\right)
$$

and the fact

$$
\|b\|_{L^{1}(\mu)} \leq \sum_{j=1}^{2}\left|\lambda_{j}\right|\left\|a_{j}\right\|_{L^{1}(\mu)} \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
$$

An argument similar to the estimate for I_{121} tells us that

$$
I_{122} \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right|
$$

Finally, we estimate I_{123}. By the fact that $\int_{R^{d}} b d \mu=0$, Definition 1.2 and (1.5), we obtain

$$
\begin{aligned}
I_{123} \leq & \sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R} \sum_{l=k+2}^{\infty} \int_{2^{l+1} R \backslash 2^{l} R} \int_{R}\left|K(y, z)-K\left(y, x_{R}\right)\right||b(z)| d \mu(z) \\
& \times\left[\frac{1}{|y-x|^{n}}+\frac{1}{\left|x_{R}-x\right|^{n}}\right] d \mu(y) d \mu(x)
\end{aligned}
$$

$$
\begin{aligned}
\leq & C \sum_{k=2}^{\infty} \int_{2^{k+1} 1_{R \backslash 2^{k} R}} \sum_{l=k+2}^{\infty} \int_{2^{l+1} R \backslash 2^{l} l_{R}} \int_{R} \theta\left(\frac{\left|z-x_{R}\right|}{\left|y-x_{R}\right|}\right)\left|y-x_{R}\right|^{-n}|b(z)| d \mu(z) \\
& \times\left[\frac{1}{|y-x|^{n}}+\frac{1}{\left|x_{R}-x\right|^{n}}\right] d \mu(y) d \mu(x) \\
\leq & C \sum_{k=2}^{\infty} \sum_{l=k+2}^{\infty} \theta\left(2^{-l}\right) \frac{\mu\left(2^{l+1} R\right)}{l\left(2^{l+1} R\right)^{n}} \frac{\mu\left(2^{k+1} R\right)}{l\left(2^{k+1} R\right)^{n}}\|b\|_{L^{1}(\mu)} \\
\leq & C \sum_{j=1}^{2}\left|\lambda_{j}\right|
\end{aligned}
$$

An argument similar to the estimate for I_{123} indicates that

$$
I_{124} \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
$$

Combining the estimate for $I_{121}, I_{122}, I_{123}$ and I_{124}, we obtain the desired estimate for I_{12}. The estimates for I_{11} and I_{12} tell us that

$$
\begin{equation*}
I_{1}=\int_{R^{d} \backslash 4 R} M_{\Phi}(T b)(x) d \mu(x) \leq C|b|_{H_{a t b, 2}^{1, \infty}}(\mu) . \tag{2.4}
\end{equation*}
$$

For I_{2}, by the sublinearity of M_{Φ}, it follows

$$
I_{2} \leq \int_{4 R} M_{\Phi}\left[(T b) \chi_{8 R}\right](x) d \mu(x)+\int_{4 R} M_{\Phi}\left[(T b) \chi_{R^{d} \backslash 8 R}\right](x) d \mu(x)=I_{21}+I_{22}
$$

From $Q_{j} \subset R$, Definition 1.2 and (2.1), we obtain

$$
\begin{aligned}
I_{22} & \leq \int_{4 R} \sup _{\varphi \sim x}\left[\int_{R^{d} \backslash 8 R}|T b(y)| \varphi(y) d \mu(y)\right] d \mu(x) \\
& \leq \sum_{j=1}^{2}\left|\lambda_{j}\right| \int_{4 R} \sum_{k=2}^{\infty} \int_{2^{k+1} R \backslash 2^{k} R}\left|\int_{Q_{j}} K(y, z) a_{j}(z) d \mu(z)\right| \frac{1}{|x-y|^{n}} d \mu(y) d \mu(x) \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=3}^{\infty}\left\|a_{j}\right\|_{L^{\infty}(\mu)} \mu\left(Q_{j}\right) \frac{\mu\left(2^{k+1} R\right)}{l\left(2^{k-2} R\right)^{n}} \frac{\mu(4 R)}{l\left(2^{k-2} R\right)^{n}} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
\end{aligned}
$$

In order to estimate I_{21}, we write

$$
\begin{aligned}
I_{21} \leq & \sum_{j=1}^{2}\left|\lambda_{j}\right| \int_{4 Q_{j}} M_{\Phi}\left[\left(T a_{j}\right) \chi_{8 R}\right](x) d \mu(x)+\sum_{j=1}^{2}\left|\lambda_{j}\right| \int_{4 R \backslash 4 Q_{j}} M_{\Phi}\left[\left(T a_{j}\right) \chi_{2 Q_{j}}\right](x) d \mu(x) \\
& +\sum_{j=1}^{2}\left|\lambda_{j}\right| \int_{4 R \backslash 4 Q_{j}} M_{\Phi}\left[\left(T a_{j}\right) \chi_{8 R \backslash 2 Q_{j}}\right](x) d \mu(x) \\
& =I_{211}+I_{212}+I_{213} .
\end{aligned}
$$

Hölder's inequality, Lemma 2.1, the boundedness of T in $L^{2}(\mu)$ and (2.1) lead to

$$
\begin{aligned}
I_{211} & \leq \sum_{j=1}^{2}\left|\lambda_{j}\right| \mu\left(4 Q_{j}\right)^{1 / 2}\left\|M_{\Phi}\left[\left(T a_{j}\right) \chi_{8 R}\right]\right\|_{L^{2}(\mu)} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \mu\left(4 Q_{j}\right)^{1 / 2}\left\|T a_{j}\right\|_{L^{2}(\mu)} \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \mu\left(4 Q_{j}\right)^{1 / 2}\left\|a_{j}\right\|_{L^{2}(\mu)} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \mu\left(4 Q_{j}\right)\left\|a_{j}\right\|_{L^{\infty}(\mu)} \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
\end{aligned}
$$

By Definition 1.2, Hölder's inequality, the boundedness of T in $L^{2}(\mu)$ and (2.1), we get

$$
\begin{aligned}
I_{212} & \leq \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \mid 2^{k} Q_{j}} \sup _{\varphi \sim x}\left|\int_{2 Q_{j}} T a_{j}(y) \varphi(y) d \mu(y)\right| d \mu(x) \\
& \leq \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \mid 2^{k} Q_{j}} \frac{1}{l\left(2^{k-2} Q_{j}\right)^{n}} d \mu(x) \int_{2 Q_{j}}\left|T a_{j}(y)\right| d \mu(y) \\
& \leq \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \frac{\mu\left(2^{k+1} Q_{j}\right)}{l\left(2^{k-2} Q_{j}\right)^{n}}\left\|T a_{j}\right\|_{L^{2}(\mu)} \mu\left(2 Q_{j}\right)^{1 / 2} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| K_{Q_{j}, R} \mu\left(2 Q_{j}\right)^{1 / 2}\left\|a_{j}\right\|_{L^{2}(\mu)} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right|,
\end{aligned}
$$

where we have used the fact that

$$
\begin{equation*}
K_{Q_{j}, 4 R} \leq C K_{Q_{j}, R} \tag{2.5}
\end{equation*}
$$

For I_{213}, we can write

$$
\begin{aligned}
I_{213}= & \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \mid 2^{k} Q_{j}} M_{\Phi}\left[\left(T a_{j}\right) \chi_{\left.8 R \mid 2 Q_{j}\right]}\right](x) d \mu(x) \\
\leq & \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} 2^{k} Q_{j}} M_{\Phi}\left[\left|T a_{j}\right| \chi_{\left.2^{k+2} Q_{j} \backslash 2^{k-1} Q_{j}\right]}\right](x) d \mu(x) \\
& +\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \mid 2^{k} Q_{j}} M_{\Phi}\left[\left|T a_{j}\right| \chi_{\left.\max \backslash 2^{k+2} Q_{j} ; 8 R \backslash \backslash 2^{k+2} Q_{j}\right](x) d \mu(x)}\right. \\
& +\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \mid 2^{k} Q_{j}} M_{\Phi}\left[\left|T a_{j}\right| X_{\left.2^{k-1} Q_{j} \mid 2 Q_{j}\right]}\right](x) d \mu(x) \\
= & J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

Lemma 2.1, (1.4) and (2.1) imply that

$$
\begin{aligned}
J_{1} & =\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \mu\left(2^{k+1} Q_{j}\right)^{1 / 2}\left\|M_{\Phi}\left[f\left|T a_{j}\right| \chi_{2^{k+2} Q_{j} \backslash 2^{k-1} Q_{j}}\right]\right\|_{L^{2}(\mu)} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \mu\left(2^{k+1} Q_{j}\right)^{1 / 2} \times\left(\int_{2^{k+2} Q_{j} \backslash 2^{k-1} Q_{j}}\left|\int_{Q_{j}} K(y, z) a_{j}(z) d \mu(z)\right|^{2} d \mu(y)\right)^{1 / 2} \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \frac{\mu\left(2^{k+2} Q_{j}\right)}{l\left(2^{k-3} Q_{j}\right)^{n}}\left\|a_{j}\right\|_{L^{\infty}(\mu)} \mu\left(Q_{j}\right) \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
\end{aligned}
$$

By (ii) of Definition 1.2, (1.4), (2.5) and (2.1), we have

$$
\begin{aligned}
J_{2} & =\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \backslash 2^{k} Q_{j}} \sup _{\varphi \sim x}\left[\int_{2^{k-1} Q_{j} \backslash 2 Q_{j}}\left|T_{j}(y)\right| \varphi(y) d \mu(y)\right] d \mu(x) \\
& \leq \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \backslash 2^{k} Q_{j}} \sum_{l=1}^{k-2} \int_{2^{l+1} Q_{j} \backslash 2^{l} Q_{j}}\left|\int_{Q_{j}} K(y, z) a_{j}(z) d \mu(z)\right| \frac{1}{|y-x|^{n}} d \mu(y) d \mu(x) \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \frac{\mu\left(2^{k+1} Q\right)}{l\left(2^{k+1} Q_{j}\right)^{n}} \sum_{l=1}^{k-2} \frac{\mu\left(2^{l+1} Q\right)}{l\left(2^{l+1} Q_{j}\right)^{n}}\left\|a_{j}\right\|_{L^{\infty}(\mu)} \mu\left(Q_{j}\right) \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right|\left(K_{Q_{j}, R}\right)^{2}\left\|a_{j}\right\|_{L^{\infty}(\mu)} \mu\left(Q_{j}\right) \\
& \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
\end{aligned}
$$

With the argument similar to the estimate for J_{2} it follows that

$$
J_{3}=\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \backslash 2^{k} Q_{j}} M_{\Phi}\left[\left|T a_{j}\right| \chi_{2^{k-1} Q_{j} \backslash 2 Q_{j}}\right](x) d \mu(x) \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right| .
$$

Thus

$$
I_{213}=\sum_{j=1}^{2}\left|\lambda_{j}\right| \sum_{k=2}^{N_{Q_{j}, 4 R}} \int_{2^{k+1} Q_{j} \backslash 2^{k} Q_{j}} M_{\Phi}\left[\left(T a_{j}\right) \chi_{8 R \backslash 2 Q_{j}}\right](x) d \mu(x) \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right|
$$

From the estimation of I_{21} and I_{22}, we obtain

$$
\begin{equation*}
I_{2}=\int_{4 R} M_{\Phi}(T b)(x) d \mu(x) \leq C \sum_{j=1}^{2}\left|\lambda_{j}\right|=C|b|_{H_{a t b, 2}^{1, \infty}} . \tag{2.6}
\end{equation*}
$$

The estimates (2.4) and (2.6) lead to (2.2), and this completes the proof of our theorem.

Remark 2.2 It is known that the dual space of $H^{1}(\mu)$ is the space $R B M O(\mu)$, which is introduced in [12]. From Theorem 1.2, the fact that $R B M O(\mu)=\left(H^{1}(\mu)\right)^{*}$ and a standard dual argument, it is easy to deduce the boundedness of the transpose operator of T on the $R B M O(\mu)$ space as below.

Corollary 2.3 Let T be the same as in Theorem 1.2. Then T^{*}, the transpose operator of T, is bounded on $\mathrm{RBMO}(\mu)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript

Author details

Department of Mathematics, Kim Hyong Jik Normal University, Pyong Yang, D.P.R of Korea. ${ }^{2}$ School of Mathematical Sciences and LPMC, Nankai University, Tianjin, 300071, China.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 11271091).
Received: 28 April 2015 Accepted: 28 September 2015 Published online: 09 October 2015

References

1. Coifman, R, Weiss, G: Analyse harmonique non-commutative sur certains espaces homogènes. Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)
2. Coifman, R, Weiss, G: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569-645 (1977)
3. Heinenon, J: Lectures on Analysis on Metric Spaces. Springer, Berlin (2001)
4. Fu, X, Hu, G, Yang, D: A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces. Acta Math. Sin. Engl. Ser. 23, 449-456 (2007)
5. Nazarov, F, Treil, S, Volberg, A: The Tb-theorem on non-homogeneous spaces. Acta Math. 190, 151-239 (2003)
6. Tolsa, $\mathrm{X}: \mathrm{BMO}, H^{1}$ and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319, 89-149 (2001)
7. Tolsa, X: Littlewood-Paley theory and the T (1) theorem with non-doubling measures. Adv. Math. 164, 57-116 (2001)
8. Yang, D, Yang, D, Hu, G: The Hardy Space H^{\prime} with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, vol. 2084. Springer, Berlin (2013)
9. Yabuta, K: Generalization of Calderón-Zygmund operators. Stud. Math. 82, 17-31 (1985)
10. Xie, R, Shu, L: θ-Type Calderón-Zygmund operators with non-doubling measures. Acta Math. Appl. Sinica (Engl. Ser.) 29, 263-280 (2013)
11. Tolsa, X : The space H^{1} for nondoubling measures in terms of a grand maximal operator. Trans. Am. Math. Soc. 355, 315-348 (2003)
12. Hu, G, Meng, Y, Yang, D: New atomic characterization of H^{1} space with non-doubling measures and its applications Math. Proc. Camb. Philos. Soc. 138, 151-171 (2005)
13. Chen, W, Meng, Y, Yang, D: Calderón-Zygmund operators on Hardy space without the doubling condition. Proc. Am. Math. Soc. 133, 2671-2680 (2005)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field

- Retaining the copyright to your article

