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Abstract
We study a new class of matrices called diagonally magic matrices. We prove that
such a matrix has rank at most 2 and that any square submatrix of a diagonally magic
matrix is diagonally magic.
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1 Introduction
For a positive integer n, let Sn be the set of all n! permutations of {, , . . . , n}. We denote
by C

n×n and R
n×n the set of n × n complex matrices and the set of n × n real matrices,

respectively. If A = (ai,j) ∈ C
n×n and σ ∈ Sn, then the sequence a,σ (), a,σ (), . . . , an,σ (n) is

called a transversal of A []. In , Professor Xingzhi Zhan defined the following new
concept at a seminar and suggested studying its properties.

Definition . A matrix A = (ai,j) ∈Cn×n is called diagonally magic if

n∑

i=

ai,σ (i) =
n∑

i=

ai,π (i) ()

for all σ ,π ∈ Sn.

Obviously, the zero matrix n×n and J = []n×n, the matrix of all ones, are diagonally
magic matrices. Denote

Bn =

⎛

⎜⎜⎜⎜⎝

  · · · n
n +  n +  · · · n

...
...

. . .
...

(n – )n +  (n – )n +  · · · n

⎞

⎟⎟⎟⎟⎠
()

and

Cn =

⎛

⎜⎜⎜⎜⎝

  · · · n
  · · · n + 
...

...
. . .

...
n n +  · · · n – 

⎞

⎟⎟⎟⎟⎠
. ()
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We will show that Bn and Cn are diagonally magic matrices. So, there are a lot of diagonally
magic matrices. Cn is a Hankel matrix. Bn and Cn are nonnegative matrices which have
been a hot research area [, ].

For matrix D = (dij) ∈ C
m×n, let the columns of D be d, d, . . . , dn. vec(D) is a vector

defined by vec(D) = (dT
 , dT

 , . . . , dT
n )T , where the superscript T denotes the transpose. The

matrix En
i,j denotes the Type  elementary matrix [], p., which is simply the identity

matrix In of order n, the i, i and j, j entries replaced by  and the i, j entry (respectively
j, i entry) replaced by  (respectively ). Given two matrices A and B, their direct sum is
written as A⊕B. Given a sequence of matrices Ai, for i = , . . . , k, one may write their direct
sum as

A =
k⊕

i=

Ai = diag(A, . . . , Ak).

Each Ai is called a direct summand of A. Let en = (, . . . , ︸ ︷︷ ︸
n

)T and ên = (, . . . , ︸ ︷︷ ︸
n–

, )T .

2 Main results
Let A = (ai,j) ∈C

n×n be a diagonally magic matrix with n ≥ . Assume that the sum of every
transversal is c. From the definition of diagonally magic matrices (), we have a system of
linear equations

Ãn vec
(
AT)

= cen!, ()

where Ãn = (̃a, ã, . . . , ãn ) ∈ R
n!×n is the coefficient matrix. If n = , from the definition

of the diagonally magic matrices and (), the coefficient matrix Ã can be chosen to be the
 ×  matrix

Ã =

(
   
   

)
= (̃a, ã, ã, ã),

and the augmented matrix is

Â =

(
    c
    c

)
. ()

This augmented matrix is the row-reduced echelon form.
Suppose n ≥  and that, for n = , . . . , k, we have constructed the coefficient matrix

Ãk = (̃a, ã, . . . , ãk ).

Let n = k + . We use the following method to construct the coefficient matrix Ãk+. Firstly,
let

Ck+
, = (ek!, k!×k),

Ck+
,m+ = (k!×, ã(m–)k+, ã(m–)k+, . . . , ãmk)
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for  ≤ m ≤ k. Secondly, construct

Ck+
i,j = Ck+

i–,jE
k+
i–,i

for i = , , . . . , k + , j = , , , . . . , k + , where En
i,j denotes the Type  elementary matrix

[], p., which is simply the identity matrix In of order n, the i, i and j, j entries replaced
by  and the i, j entry (respectively j, i entry) replaced by  (respectively ). Then we get
the coefficient matrix

Ãk+ =

⎛

⎜⎜⎜⎜⎝

Ck+
, Ck+

, · · · Ck+
,k+

Ck+
, Ck+

, · · · Ck+
,k+

...
...

. . .
...

Ck+
k+, Ck+

k+, · · · Ck+
k+,k+

⎞

⎟⎟⎟⎟⎠
.

For example, if n = , according to the constructing method and Ã, we have

Ã =

⎛

⎜⎝
C

, C
, C

,

C
, C

, C
,

C
, C

, C
,

⎞

⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

        
        
        
        
        
        

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (̃a, ã, ã, ã, ã, ã, ã, ã, ã).

Assume

Cj =
(
Ck+

j, , Ck+
j, , . . . , Ck+

j,k+, cek!
)

for j = , , . . . , k + . Consequently, the augmented matrix of Ãk+ is

(
CT

 , CT
 , . . . , CT

k+
)T .

Let

Dn =

⎛

⎜⎜⎜⎜⎝

 · · ·  
...

. . .
...

...
 · · ·  
 · · ·  

⎞

⎟⎟⎟⎟⎠
∈R

n×n,

F(n–)×n = (In– –en–) ∈R
(n–)×n,



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:318 Page 4 of 9

Gn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

  · · ·   – n
  · · ·   – n
...

...
. . .

...
...

  · · ·   – n
  · · ·   – n

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈R
n×n.

We claim that the row-reduced echelon form of the augmented matrix in the system of
linear equations () has the following form:

(n–)n︷ ︸︸ ︷

Ân =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In Dn Dn · · · Dn Gn cen

F(n–)×n  · · ·  –F(n–)×n 
F(n–)×n · · ·  –F(n–)×n 

. . .
...

...
...

F(n–)×n –F(n–)×n 
 

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
()

We prove this by induction on n. For example, (Ã, ce!) is row-equivalent to

Â =

(
    c
    c

)
.

The row-reduced echelon form of the augmented matrix (Ã, ce!) has the following form:

Â =

⎛

⎜⎝
I D G ce

× F× –F× ×

× × × 

⎞

⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

         
         
        – 
     – –   
     –  –  
         

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Obviously, if n = , Â in () has the form (). Suppose n ≥  and that, for n = , . . . , k,
the assertion has been proved for n!-by-n matrix Ãn. Let n = k + ,

Hk×(k+) = (ek , k×k), Jk×(k+) = (k×, Ik),

D̃k×(k+) = (k×, Dk), G̃k×(k+) = (k×, Gk),

F̃(k–)×(k+) = (k×, F(k–)×k).
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By the inductive hypothesis, we can obtain the following matrix after a sequence of ele-
mentary operations for C:

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Hk×(k+) Jk×(k+) D̃k×(k+) D̃k×(k+) · · · D̃k×(k+) G̃k×(k+) cek
F̃(k–)×(k+)  · · ·  –F̃(k–)×(k+) 

F̃(k–)×(k+) · · ·  –F̃(k–)×(k+) 
. . .

...
...

...
F̃(k–)×(k+) –F̃(k–)×(k+) 

 

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛

⎜⎜⎜⎜⎜⎜⎝

P,
P,
P,

...
P,k–



⎞

⎟⎟⎟⎟⎟⎟⎠
,

where

P, =
(

Hk×(k+) Jk×(k+) D̃k×(k+) D̃k×(k+) · · · D̃k×(k+) G̃k×(k+) cek

)
,

(k–i–)(k+) columns︷ ︸︸ ︷

P,i =
(

 · · ·  F̃(k–)×(k+)  · · ·  –F̃(k–)×(k+) 
)

∈R
(k–)×((k+)+)

for i = , , . . . , k – . Cj is row-equivalent to

Pj = Pj–

(( k+⊕

i=

Ek+
j–,j

)
⊕ 

)
=

(
PT

j,, . . . , PT
j,k–, T)T

for j = , . . . , k + . Pj, ∈R
k×((k+)+) is the first k rows of Pj. Pj,i ∈R

(k–)×((k+)+) is the rows
of Pj from (k +(i–)(k –)+)th to (k +(i–)(k –))th row, i = , . . . , k –. In P,, multiplying
row k by the scalar – and adding to row j, for j = , . . . , k – , then P, is row-equivalent to

P̂, = (Ĥk×(k+),̂ Jk×(k+), ̂̃Dk×(k+), ̂̃Dk×(k+), . . . , ̂̃Dk×(k+), ̂̃Gk×(k+), ĉek),

where

Ĥk×(k+) =

(
 (k–)×k

 

)
, Ĵk×(k+) =

(
 Ik– –ek–

  

)
,

̂̃Dk×(k+) =

(
(k–)×k 

 

)
, ̂̃Gk×(k+) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

 –  · · ·  
  – · · ·  
...

...
...

. . .
...

...
   · · · – 
   · · ·   – k

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying this method to Pj,, j = , . . . , k + , then Pj, is row-equivalent to

P̂j, = P̂j–,

(( k+⊕

i=

Ek+
j–,j

)
⊕ 

)
.
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Multiplying row k –  of P̂, by the scalar – and adding to row k of P̂k+,, and multiplying
row k –  of P,i by the scalar – and adding to row k of P̂k+, for i = , , . . . , k – , then row
k of P̂k+, changes to

(
êT

k+, . . . , êT
k+︸ ︷︷ ︸

k(k+)

, , . . . , ︸ ︷︷ ︸
k

,  – k, c
)
. ()

Picking row k of P̂j,, j = , , . . . , k, and (), we have

(Ik+, Dk+, Dk+, . . . , Dk+︸ ︷︷ ︸
(k–)(k+)

, Gk+, cek+). ()

Combining row  of P̂, and row i of P̂,, for i = , . . . , k – , we have

(k×(k+), Fk×(k+), k×(k+), . . . , k×(k+)︸ ︷︷ ︸
(k–)(k+)

, –Fk×(k+), ). ()

Combining row  of P,i and row j of P,i, for i, j = , , . . . , k – , we get

⎛

⎜⎜⎜⎜⎝

k×(k+) k×(k+) Fk×(k+) k×(k+) · · · k×(k+) –Fk×(k+) 
k×(k+) k×(k+) k×(k+) Fk×(k+) · · · k×(k+) –Fk×(k+) 

. . .
...

...
...

Fk×(k+) –Fk×(k+) 

⎞

⎟⎟⎟⎟⎠
. ()

Combining (), () and (), we have

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ik+ Dk+ Dk+ · · · Dk+ Gk+ cek+

Fk×(k+)  · · ·  –Fk×(k+) 
Fk×(k+) · · ·  –Fk×(k+) 

. . .
...

...
...

Fk×(k+) –Fk×(k+) 

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The other rows depend linearly on some rows of the above matrix. From the row-reduced
echelon form (), we get rank(Ãn) = n – n + . aj,n, an,i, for  ≤ j ≤ n,  ≤ i ≤ n – , are free
variables. The other entries of matrix A = (ai,j) ∈ C

n×n are the pivot variables. The pivot
variables are completely determined in terms of free variables.

Theorem . Let A ∈C
n×n be a diagonally magic matrix. Then rank(A) ≤ .

Proof Let A = (ai,j) ∈ Cn×n be a diagonally magic matrix. If n = , the conclusion is trivial.
Next, we prove that it is true for n ≥ . Assume unknowns aj,n, an,i, for  ≤ j ≤ n,  ≤ i ≤
n – , are free variables. According to (), we have

a,i = –
n–∑

j=

aj,n –
n–∑

j �=i

an,j + (n – )an,n + c
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for i = , . . . , n – , and

a,n = –
n–∑

j=

aj,n –
n–∑

j=

an,j + (n – )an,n + c.

We also have

ai,j = ai,n + an,j – an,n

for  ≤ i, j ≤ n – . That is,

A =

⎛

⎜⎝
–

∑n–
j= aj,n –

∑n–
j �= an,j + (n – )an,n + c · · · –

∑n–
j= aj,n –

∑n–
j= an,j + (n – )an,n + c

...
. . .

...
an, · · · an,n

⎞

⎟⎠ .

()

Using row elementary operations, A is row-equivalent to

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c –
∑n

j= an,j c –
∑n

j= an,j · · · c –
∑n

j= an,j c –
∑n

j= an,j

a,n – an,n a,n – an,n · · · a,n – an,n a,n – an,n
...

...
. . .

...
...

an–,n – an,n an–,n – an,n · · · an–,n – an,n an–,n – an,n

an, an, · · · an,n– an,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. ()

From (), we can easily get

rank(A) ≤ .

This completes the proof. �

According to (), we know that the matrices Bn in () and Cn in () are diagonally magic
matrices. It is easy to verify that Bn is row-equivalent to

Bn −→

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

   · · · n
   · · · n – 
   · · · 
...

...
...

. . .
...

   · · · 

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Cn is row-equivalent to

Cn −→

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

   · · · n
   · · · n – 
   · · · 
...

...
...

. . .
...

   · · · 

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now it is clear that there are diagonally magic matrices of ranks , , . Indeed,
rank(n×n) = , rank([]n×n) = , and rank(Bn) = rank(Cn) = .

Theorem . If the diagonally magic matrix A ∈ C
n×n has a form (), then the charac-

teristic polynomial of A is

pA(λ) = λn–(λ – cλ + d
)
, ()

where d = (
∑n

j= an,j – c)
∑n

j=(an, – an,j) – n
∑n–

j= (an,n – aj,n)(an, – an,j).

From (), we can see that the algebraic multiplicity of the eigenvalue  of the diagonally
magic matrix A is at least n – .

Theorem . Let A and B be diagonally magic matrices of the same order. Then A ± B,
kA, PAQ and A∗ are diagonally magic matrices, where k is a constant, P and Q are the
square matrices every row and every column of which has at most one nonzero entry, and
A∗ denotes the conjugate transpose of A.

Proof This can be easily checked from the definition. �

Let A ∈ C
n×n,  ≤ i ≤ i ≤ · · · ≤ ik ≤ n,  ≤ j ≤ j ≤ · · · ≤ js ≤ n. We denote by

A[i, i, . . . , ik|j, j, . . . , js] the k × s submatrix of A that lies in the rows i, i, . . . , ik and
columns j, j, . . . , js. Denote by A(i, i, . . . , ik|j, j, . . . , js) the (n – k) × (n – s) submatrix of
A obtained by deleting the rows i, i, . . . , ik and columns j, j, . . . , js.

Theorem . Any square submatrix of a diagonally magic matrix is diagonally magic.

Proof Let B be a k × k submatrix of a diagonally magic matrix A = (ai,j). Then there
are row and column indices α = (i, i, . . . , ik) and β = (j, j, . . . , jk) such that B = A[α|β].
Note that the union of a transversal of B and a transversal of A(α|β) is a transversal of A.
Choose an arbitrary but fixed transversal T of the square matrix A(α|β). For any σ ,π ∈ Sk ,
ai,jσ () , . . . , aik ,jσ (k) and the entries in T constitute a transversal of A, while ai,jπ () , . . . , aik ,jπ (k)

and the entries in T also constitute a transversal of A. Let b be the sum of the entries in T .
Since A is diagonally magic, we have

k∑

t=

ait ,jσ (t) + b =
k∑

t=

ait ,jπ (t) + b,

which yields

k∑

t=

ait ,jσ (t) =
k∑

t=

ait ,jπ (t) .

This shows that B is diagonally magic. �
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