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Abstract
It is shown that the following system of difference equations

zn+1 =
zan
wb
n–1

, wn+1 =
wc
n

zdn–1
, n ∈N0,

where a,b, c,d ∈ Z, z–1, z0,w–1,w0 ∈C, is solvable in closed form.
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1 Introduction
Recently there has been a great interest in studying nonlinear difference equations and
systems not stemming from differential ones (see, e.g., [–]). The old area of solving
difference equations and systems has re-attracted recent attention (see, e.g., [–, , ,
–, –]). Recent Stević’s idea of transforming complicated equations and systems
into simpler solvable ones, used for the first time in explaining the solvability of the equa-
tion appearing in [] (an extension of the original result can be found in [], see also []),
was employed in several other papers (see, e.g., [, , , , , , , –, , ] and
the related references therein). Another area of some recent interest, essentially initiated
by Papaschinopoulos and Schinas, is studying symmetric and close to symmetric systems
of difference equations (see, e.g., [, –, , , , , , , –]).

Stević also essentially triggered a systematic study of non-rational concrete difference
equations and systems, from one side those obtained by using the translation operator
(see, e.g., [] and also []) and from the other side those obtained by using max-type
operators (see, e.g., [, , ]), see also the related references cited therein. We would
like to point out that for the equations and systems in [–, ] only long-term behavior
of their positive solutions are studied. For instance, the boundedness of positive solutions
to the system

xn+ = max

{
a,

yp
n

xq
n–

}
, yn+ = max

{
a,

xp
n

yq
n–

}
, n ∈ N, ()
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with min{a, p, q} > , was investigated in []. System () is obviously obtained from the
next product-type one

xn+ =
yp

n

xq
n–

, yn+ =
xp

n

yq
n–

, n ∈N, ()

by acting with the max-type operator ma(t) = max{a, t} onto the right-hand sides of both
equations in () (see also [] and [] for related scalar equations). Note that for the case
of positive initial values, system () can be solved by taking the logarithm to the both sides
of both equations therein, since this transforms the system to a linear second order system
of difference equations with constant coefficients, which is solvable. Note that the method
does not work if initial values are not positive. Let us also mention here that positive so-
lutions to difference equations and systems are often studied since many real-life models
produce such solutions (see, e.g., [, , ]). It is also interesting to note that there are
max-type systems of difference equations which are solvable (see []). Finally, we want
to note that the long-term behavior of solutions to product-type systems and those ob-
tained from them by acting with some ‘reasonable good’ transformations are frequently
closely related, which is another reason for studying these systems.

Hence, a natural problem is to investigate the solvability of product-type difference
equations and systems with real and/or complex initial values. In [], Stević and his col-
laborators started studying the problem with an approach different from the ones in [,
, , ], but which can be regarded as a modification of some of the methods in [–,
]. They showed therein that the system

zn+ =
wa

n

zb
n–

, wn+ =
zc

n

wd
n–

, n ∈N, ()

where a, b, c, d ∈ Z and z–, z, w–, w ∈ C, is solvable in closed form and presented nu-
merous applications of obtained formulas.

In this paper we continue our investigation by studying the solvability of the following
system of difference equations:

zn+ =
za

n

wb
n–

, wn+ =
wc

n

zd
n–

, n ∈N, ()

where a, b, c, d ∈ Z and z–, z, w–, w ∈C.
Let us mention here that although systems () and () are similar in appearance, the

methods used in dealing with them are quite different.
It is easy to see that the domain of undefinable solutions [] to system () is the set

U =
{

(z–, z, w–, w) ∈ C
 : z– =  or z =  or w– =  or w = 

}
.

Hence, from now on we will assume that our initial values belong to the set C \ U .
A solution (zn, wn)n≥– of system () is called periodic (or eventually periodic) with period

p ∈ N if there is n ≥ – such that

(zn+p, wn+p) = (zn, wn) for n ≥ n.



Stević et al. Journal of Inequalities and Applications  (2015) 2015:327 Page 3 of 15

Period p is prime if there is no p̂ ∈N, p̂ < p which is a period of the solution. For p = , the
solution is called eventually constant (see, e.g., []). For some results on the topic, see,
e.g., [, ] and the related references therein. If it is said that a solution of system () is
periodic with period p, it will need not mean that it is prime.

A system of difference equations of the form

zn = f (zn–, . . . , zn–k , wn–, . . . , wn–k)

wn = g(zn–, . . . , zn–k , wn–, . . . , wn–k), n ∈N,

where k ∈ N, is said to be solvable in closed form if its general solution can be found in
terms of initial values z–i, w–i, i = , k, delay k and index n only.

2 Main result
The main result in this paper is proved in this section.

Theorem  Assume that a, b, c, d ∈ Z and z–, z, w–, w ∈ C\ {}. Then system () is solv-
able in closed form.

Proof Case b = . In this case system () becomes

zn+ = za
n, wn+ =

wc
n

zd
n–

, n ∈N. ()

From the first equation in () we easily obtain

zn = zan
 , n ∈N. ()

Employing () into the second equation in (), we get

wn =
wc

n–

zdan–


()

for n ≥ .
Hence, by using (), we have that

wn =


zdan–


(
wc

n–

zdan–


)c

=
wc

n–

zdan–+dcan–


=


zdan–+dcan–


(
wc

n–

zdan–


)c

=
wc

n–

zdan–+dcan–+dcan–


for n ≥ .
Assume that we have proved

wn =
wck

n–k

zdan–+dcan–+dcan–+···+dck–an–k–


()

for n ≥ k + .
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Then, by using () with n → n – k into (), we get

wn =


zdan–+dcan–+dcan–+···+dck–an–k–


(
wc

n–k–

zdan–k–


)ck

=
wck+

n–k–

zdan–+dcan–+dcan–+···+dck–an–k–+dck an–k–


()

for n ≥ k + .
From (), () and the method of induction we see that () holds for every k such that

 ≤ k ≤ n – .
By taking k = n –  into () we get

wn =
wcn–



zdan–+dcan–+dcan–+···+dcn–


()

for n ≥ .
Now we have two subcases to consider.
Subcase a �= c. In this case from () we get

wn =
wcn–



zd an––cn–
a–c



, n ≥ . ()

Using the next relation

w =
wc



zd
–

()

in () we get

wn =
wcn



zd an––cn–
a–c

 zdcn–
–

, n ∈N. ()

Subcase a = c. In this case from () we get

wn =
wan–



zd(n–)an–


()

for n ≥ .
Using () with a = c into (), we get

wn =
wan



zd(n–)an–
 zdan–

–

, n ∈N. ()

Case d = . In this case system () becomes

zn+ =
za

n

wb
n–

, wn+ = wc
n, n ∈N. ()
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From the second equation in () we have that

wn = wcn
 , n ∈N. ()

Employing () into the first equation in (), we get

zn =
za

n–

wbcn–


()

for n ≥ .
Hence, by using (), we have

zn =


wbcn–


(
za

n–

wbcn–


)a

=
za

n–

wbcn–+bacn–


=


wbcn–+bacn–


(
za

n–

wbcn–


)a

=
za

n–

wbcn–+bacn–+bacn–


for n ≥ .
Assume that we have proved

zn =
zak

n–k

wbcn–+bacn–+bacn–+···+bak–cn–k–


()

for n ≥ k + .
Then, by using () with n → n – k into (), we get

zn =


wbcn–+bacn–+bacn–+···+bak–cn–k–


(
za

n–k–

wbcn–k–


)ak

=
zak+

n–k–

wbcn–+bacn–+bacn–+···+bak–cn–k–+bak cn–k–


()

for n ≥ k + .
From (), () and the method of induction we see that () holds for every k such that

 ≤ k ≤ n – .
By taking k = n –  into () we get

zn =
zan–



wbcn–+bacn–+bacn–+···+bcan–+ban–


()

for n ≥ .
Now we have two subcases to consider.
Subcase a �= c. In this case from () we get

zn =
zan–



wb an––cn–
a–c



, n ≥ . ()
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Using the next relation

z =
za



wb
–

()

in () we get

zn =
zan



wb an––cn–
a–c

 wban–
–

, n ∈ N. ()

Subcase a = c. In this case from () we get

zn =
zan–



wb(n–)an–


()

for n ≥ .
Using () into () we get

zn =
zan



wb(n–)an–
 wban–

–

, n ∈N. ()

Case bd �= . First note that from the first equation in (), for every well-defined solution,
we have that

wb
n– =

za
n

zn+
, n ∈ N, ()

while from the second one it follows that

wb
n+ =

wbc
n

zbd
n–

, n ∈ N. ()

Using () into () we obtain

za
n+

zn+
=

zac
n+

zc
n+zbd

n–
, n ∈N,

which can be written as

zn+ = za+c
n+z–ac

n+zbd
n–, n ∈N, ()

which is a fourth order product-type difference equation.
Note also that

z =
za



wb
–

and z =
za



wb


=
za



wb
wab

–
. ()

Let

a = a + c, b = –ac, c = , d = bd. ()
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Then equation () can be written as

zn+ = za
n+zb

n+zc
n zd

n–, n ∈N. ()

From () with n → n –  we get

zn+ = za
n+zb

n zc
n–zd

n–, n ∈N. ()

Employing () into () we get

zn+ =
(
za

n+zb
n zc

n–zd
n–

)a zb
n+zc

n zd
n–

= zaa+b
n+ zab+c

n zac+d
n– zad

n–

= za
n+zb

n zc
n–zd

n– ()

for n ∈N, where

a := aa + b, b := ab + c, c := ac + d, d := ad. ()

From () with n → n –  we get

zn+ = za
n zb

n–zc
n–zd

n– ()

for n ≥ .
Employing () into () we get

zn+ =
(
za

n zb
n–zc

n–zd
n–

)a zb
n zc

n–zd
n–

= zaa+b
n zba+c

n– zca+d
n– zda

n–

= za
n zb

n–zc
n–zd

n– ()

for n ≥ , where

a := aa + b, b := ba + c, c := ca + d, d := da. ()

Assume that for some  ≤ k ≤ n, we have proved that

zn+ = zak
n+–kzbk

n+–kzck
n+–kzdk

n–k ()

for n ≥ k – , and that

ak = aak– + bk–, bk = bak– + ck–,

ck = cak– + dk–, dk = dak–.
()

Then, by using the relation

zn+–k = za
n+–kzb

n+–kzc
n–kzd

n––k ,
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for n ≥ k, into () we obtain

zn+ =
(
za

n+–kzb
n+–kzc

n–kzd
n––k

)ak zbk
n+–kzck

n+–kzdk
n–k

= zaak +bk
n+–k zbak +ck

n+–k zcak +dk
n–k zdak

n––k

= zak+
n+–kzbk+

n+–kzck+
n–k zdk+

n––k ()

for n ≥ k, where

ak+ := aak + bk , bk+ := bak + ck ,

ck+ := cak + dk , dk+ := dak .
()

This along with (), () and the method of induction shows that () and () hold for
every  ≤ k ≤ n + .

Hence, for k = n + , we have

zn+ = zan+
 zbn+

 zcn+
 zdn+

–

=
(

za


wb
wab

–

)an+( za


wb
–

)bn+

zcn+
 zdn+

–

= zaan++abn++cn+
 zdn+

– w–ban+
 w–aban+–bbn+

– , n ∈N. ()

From the recurrent relations () we easily obtain that the sequence (ak)k≥ satisfies the
difference equation

ak = aak– + bak– + cak– + dak–. ()

Since bk– = ak – aak– and equation () is linear, we have that the sequence (bk)k∈N is
also a solution to equation (). From this, the linearity of equation () and since ck– =
bk – bak–, we have that the sequence (ck)k∈N is also a solution to equation (). Finally,
since dk = dak–, the linearity of equation () shows that (dk)k∈N is also a solution to the
equation.

Now, we show that these four sequences can be prolonged for some negative indices of
use. This enables easier getting formulas for solutions to system ().

From () with k =  we get

a = aa + b, b = ba + c, c = ca + d, d = da. ()

Since bd = d �= , from the last equation in () we get a = . Using this fact in the first
three equalities in (), we get b = c = d = .

From this and by () with k = – we get

 = a = aa– + b–,  = b = ba– + c–,

 = c = ca– + d–,  = d = da–.
()

Since d �= , from the last equation in () we get a– = . Using this fact in other three
equalities in (), we get b– = , c– = d– = .
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From this and by () with k = – we get

 = a– = aa– + b–,  = b– = ba– + c–,

 = c– = ca– + d–,  = d– = da–.
()

Since d �= , from the last equation in () we get a– = . Using this fact in other three
equalities in (), we get b– = , c– =  and d– = .

From this and by () with k = – we get

 = a– = aa– + b–,  = b– = ba– + c–,

 = c– = ca– + d–,  = d– = da–.
()

Since d �= , from the last equation in () we get a– = . Using this fact in other three
equalities in (), we get b– = , c– =  and d– = .

Hence, sequences (ak)k≥–, (bk)k≥–, (ck)k≥– and (dk)k≥– are solutions to linear differ-
ence equation () satisfying the following initial conditions:

a– = , a– = , a– = , a = ;

b– = , b– = , b– = , b = ;

c– = , c– = , c– = , c = ;

d– = , d– = , d– = , d = ,

()

respectively.
Since difference equation () is solvable, it follows that closed form formulas for

(ak)k≥–, (bk)k≥–, (ck)k≥– and (dk)k≥– can be found. From this fact and () we see that
equation () is solvable too.

From the second equation in (), for every well-defined solution, we have that

zd
n– =

wc
n

wn+
, n ∈ N, ()

while from the first one it follows that

zd
n+ =

zad
n

wbd
n–

, n ∈ N. ()

Using () into () we obtain

wc
n+

wn+
=

wac
n+

wa
n+wbd

n–
, n ∈N,

which can be written as

wn+ = wa+c
n+w–ac

n+wbd
n–, n ∈N, ()
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which is nothing but difference equation (). However, the sequence (wn)n≥– satisfies
the following initial conditions:

w =
wc



zd
–

and w =
wc



zd


=
wc



zd
zcd

–
. ()

Hence, the above presented procedure can be repeated, and it can be obtained that for
 ≤ k ≤ n + ,

wn+ = wak
n+–kwbk

n+–kwck
n+–kwdk

n–k , n ∈N, ()

where (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N satisfy recurrent relations () with initial con-
ditions ().

From () with k = n +  and by using () we get

wn+ = wan+
 wbn+

 wcn+
 wdn+

–

=
(

wc


zd
zcd

–

)an+( wc


zd
–

)bn+

wcn+
 wdn+

–

= wcan++cbn++cn+
 wdn+

– z–dan+
 z–cdan+–dbn+

– , n ∈N. ()

Also the sequences (ak)k∈N, (bk)k∈N, (ck)k∈N and (dk)k∈N satisfy the difference equation
() with initial conditions in (), respectively.

As above the solvability of equation () shows that closed form formulas for (ak)k≥–,
(bk)k≥–, (ck)k≥– and (dk)k≥– can be found. This fact along with () implies that equa-
tion () is solvable too. A direct calculation shows that the sequences (zn)n≥– in () and
(wn)n≥– in () are solutions to system () with initial values z–, z, that is, w–, w respec-
tively. Hence, system () is also solvable in this case, finishing the proof of the theorem.

�

Remark  Note that difference equation () is not only theoretically but also practically
solvable since the characteristic polynomial

p(λ) = λ – aλ
 – bλ

 – cλ – d ()

associated to the difference equation is of fourth order, which means that we can explicitly
find its roots.

Remark  Since we are interested in those initial values z–, z, w–, w ∈Cwhich uniquely
define solutions to system (), to avoid multi-valued solutions to the system, we posed the
condition a, b, c, d ∈ Z.

From the proof of Theorem  we obtain the following corollary.

Corollary  Consider system () with a, b, c, d ∈ Z. Assume that z–, z, w–, w ∈ C \ {}.
Then the following statements are true.

(a) If b =  and a �= c, then the general solution to system () is given by () and ().
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(b) If b =  and a = c, then the general solution to system () is given by () and ().
(c) If d =  and a �= c, then the general solution to system () is given by () and ().
(d) If d =  and a = c, then the general solution to system () is given by () and ().
(e) If bd �= , then the general solution to system () is given by () and ().

Let λi, i = , , be the roots of the characteristic polynomial () of difference equation
(). If they satisfy the condition

λi �= λj for i �= j,

then it is known that a general solution to equation () has the following form:

un = αλ
n
 + αλ

n
 + αλ

n
 + αλ

n
, n ∈N, ()

where αi, i = , , are arbitrary constants. Since for the case d �=  the solution can be
prolonged for nonpositive indices, then we may assume that formula () holds also for
n ≥ – (or n ≥ – if necessary).

In order to find, in this case, a general solution to system () in closed form, we will need
the following known lemma. We give a proof of it for the completeness and benefit of the
reader.

Lemma  Assume that λj, j = , k, are pairwise different zeros of the polynomial

P(z) = αkzk + αk–zk– + · · · + αz + α.

Then

k∑
j=

λl
j

P′(λj)
= 

for l = , k – , and

k∑
j=

λk–
j

P′(λj)
=


αk

.

Proof The functions

fl(z) =
zl

P(z)
, l ∈N,

are meromorphic on the Riemann sphere. Hence, by the residue theorem, we have that

k∑
j=

Resz=λj fl(z) + Resz=∞ fl(z) =  ()

for every l ∈N.



Stević et al. Journal of Inequalities and Applications  (2015) 2015:327 Page 12 of 15

Now note that the Laurent expansion of fl at zero is

fl(z) =
zl

αk
∏k

j=(z – λj)
=

zl–k

αk
∏k

j=( – λj/z)
=


αk

zl–k +
∞∑
s=

b–szl–k–s

for some complex numbers b–s, s ∈ N.
On the other hand, since λj, j = , k, are simple poles of fl , we have that

Resz=λj fl(z) =
λl

j

P′(λj)
, j = , k.

From this and since Resz=∞ fl(z) is equal to the negative value of the coefficient at /z in
the Laurent expansion, it follows that Resz=∞ fl(z) =  when l = , k –  and Resz=∞ fk–(z) =
–/αk . Using these facts in () the lemma follows. �

If we apply Lemma  to polynomial p in (), and since p(t) =
∏

l=(t – λj) (note that
α = ), we have

∑
j=

λl
j

p′
(λj)

= 

for l = , , and

∑
j=

λ
j

p′
(λj)

= .

From this, since from () we have a– = a– = a– =  and a = , and a general solution
of () has the form in (), we obtain

an =
∑

j=

λn+
j

p′
(λj)

=
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

+
λn+


(λ – λ)(λ – λ)(λ – λ)

()

for n ≥ –.
On the other hand, from () we get

bn = an+ – aan, ()

cn = bn+ – ban, ()

dn = dan– ()

for n ≥ –.
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By using () into () we get

bn =
∑

j=

λj – a

p′
(λj)

λn+
j ()

for n ≥ –.
By using () and () into () we get

cn =
∑

j=

(λj – a)λj – b

p′
(λj)

λn+
j ()

for n ≥ –.
By using () into () we get

dn =
∑

j=

d

p′
(λj)

λn+
j ()

for n ≥ –, where we have used the fact that () also holds for n = – (in fact, we may
assume that equality () holds for every n ≥ –s, for any fixed s ∈ N, since due to the
assumption d �= , any solution of equation () can be prolonged for any nonpositive
value of index n).

By using (), (), () and () into () and (), we get formulas for general solutions
to system () in closed form.

Formulas obtained in this section can be used in describing the long-term behavior of
solutions to system () in many cases. We will formulate and prove here only one result,
just as an example. The formulations and proofs of other results, which are similar and
whose proofs use standard techniques, we leave to the reader as some exercises.

Theorem  Assume that b = c =  and a, d ∈ Z. Then the following statements hold:
(a) If a = , then every solution to system () is eventually constant.
(b) If a = , then zn = wn = , n ≥ .
(c) If a = –, then every solution to system () is two-periodic.
(d) If a >  and |z| < , then zn →  as n → ∞.
(e) If a >  and |z| > , then |zn| → ∞ as n → ∞.
(f ) If a >  and |zd

| < , then |wn| → ∞ as n → ∞.
(g) If a >  and |zd

| > , then wn →  as n → ∞.
(h) If a < – and |z| < , then zn →  as n → ∞ and |zn+| → ∞ as n → ∞.
(i) If a < – and |z| > , then zn+ →  as n → ∞ and |zn| → ∞ as n → ∞.
(j) If a < – and |zd

| > , then wn →  as n → ∞ and |wn+| → ∞ as n → ∞.
(k) If a < – and |zd

| < , then wn+ →  as n → ∞ and |wn| → ∞ as n → ∞.

Proof (a) If we replace a =  and c =  in () and (), we obtain zn = z and wn+ = /zd
,

n ∈N, from which the statement follows.
(b) By replacing a =  and c =  in () and (), we get zn = , n ∈ N and wn = , n ≥ ,

from which the statement follows.
(c) By replacing a = – and c =  in () and (), we get zn = z, zn+ = 

z
, wn = /zd

 and
wn+ = zd

, n ∈N, from which the statement follows.
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(d)-(k) From () and () with c =  we get

zn = zan
 , wn =


zdan–


, n ≥ . ()

Using the formulas in () all these statements easily follow. �
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