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Abstract
In this paper, we present the sharp bounds of the ratios U(a,b)/L4(a,b), P2(a,b)/U(a,b),
NS(a,b)/P2(a,b) and B(a,b)/NS(a,b) for all a,b > 0 with a �= b, where
L4(a,b) = [(b4 – a4)/(4(logb – loga))]1/4, U(a,b) = (b – a)/[

√
2arctan((b – a)/

√
2ab)],

P2(a,b) = [(b2 – a2)/(2 arcsin((b2 – a2)/(b2 + a2)))]1/2,
NS(a,b) = (b – a)/[2 sinh–1((b – a)/(b + a))], B(a,b) = Q(a,b)eA(a,b)/T (a,b)–1, A(a,b) = (a + b)/2,
Q(a,b) =

√
(a2 + b2)/2, and T (a,b) = (a – b)/[2 arctan((a – b)/(a + b))].
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1 Introduction
For r ∈ R, the rth power mean M(a, b; r) of two distinct positive real numbers a and b is
defined by

M(a, b; r) =

⎧
⎨

⎩

( ar+br

 )/r , r �= ,√
ab, r = .

(.)

It is well known that M(a, b; r) is continuous and strictly increasing with respect to r ∈
R for fixed a, b >  with a �= b. Many classical means are the special cases of the power
mean, for example, M(a, b; –) = ab/(a + b) = H(a, b) is the harmonic mean, M(a, b; ) =√

ab = G(a, b) is the geometric mean, M(a, b; ) = (a+b)/ = A(a, b) is the arithmetic mean,
and M(a, b; ) =

√
(a + b)/ = Q(a, b) is the quadratic mean. The main properties for the

power mean are given in [].
Let

L(a, b) =
a – b

log a – log b
, P(a, b) =

a – b
 arcsin( a–b

a+b )
,

U(a, b) =
a – b√

 arctan( a–b√
ab

)
, NS(a, b) =

a – b
 sinh–( a–b

a+b )
, (.)

T(a, b) =
a – b

 arctan( a–b
a+b )

, B(a, b) = Q(a, b)eA(a,b)/T(a,b)– (.)
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be, respectively, the logarithmic mean, first Seiffert mean [], Yang mean [], Neuman-
Sándor mean [, ], second Seiffert mean [], Sándor-Yang mean [, ] of two distinct
positive real numbers a and b.

Recently, the sharp bounds for certain bivariate means in terms of the power mean have
attracted the attention of many mathematicians.

Radó [] and Lin [], Jagers [] and Hästö [, ] proved that the double inequalities

M(a, b; ) < L(a, b) < M(a, b; /), (.)

M(a, b; log / logπ ) < P(a, b) < M(a, b; /) (.)

hold for all a, b >  and a �= b with the best possible parameters , /, log / logπ , and /.
In [–], the authors proved that the double inequalities

M(a, b;α) < NS(a, b) < M(a, b;β), (.)

M(a, b;λ) < U(a, b) < M(a, b;μ) (.)

hold for all a, b >  and a �= b if and only if α ≤ log / log[ log( +
√

)], β ≥ /, λ ≤
 log /( logπ – log ) and μ ≥ /.

Very recently, Yang and Chu [] presented that p =  log /( +  log  – π ) and q = /
are the best possible parameters such that the double inequality

M(a, b; p) < B(a, b) < M(a, b; q) (.)

holds for all a, b >  and a �= b.
Let

L(a, b) = L/(a, b) =
(

b – a

(log b – log a)

)/

(.)

and

P(a, b) = P/(a, b) =
(

b – a

 arcsin( b–a

b+a )

)/

(.)

be, respectively, the fourth-order logarithmic and second-order first Seiffert means of a
and b.

Then from (.)-(.) we clearly see that M(a, b; /) is the common sharp upper power
mean bound for L(a, b), U(a, b), P(a, b), NS(a, b), and B(a, b). Therefore, it is natural to
ask what are the size relationships among these means? The main purpose of this paper is
to answer this question.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion.

Lemma . (See Lemma  of []) Let {ak}∞k= be a nonnegative real sequence with am > 
and

∑∞
k=m+ ak > , and

P(t) = –
m∑

k=

aktk +
∞∑

k=m+

aktk
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be a convergent power series on the interval (,∞). Then there exists tm+ ∈ (,∞) such
that P(tm+) = , P(t) <  for t ∈ (, tm+) and P(t) >  for t ∈ (tm+,∞).

Lemma . Let n ∈N. Then

(n – )n – n(n – )n + n(n – )n – n(n – ) > 

for all n ≥ .

Proof Let

vn = (n – )n – n(n – )n + n(n – )n – n(n – ), (.)

v∗
n =  ×

(



)n

–
n(n – )

n – 
.

Then we clearly see that

v∗
 =

,,
,

> , (.)

vn ≥ (n – )n – n(n – )n + n(n – ) – n(n – )

= (n – )n – n(n – )n + n(,n – ,)

> (n – )n – n(n – )n

= (n – )n × v∗
n, (.)

v∗
n+ –

(



)

v∗
n =

(n – n + n – )
(n – )(n – )

>  (.)

for n ≥ .
It follows from (.) and (.) that

v∗
n >  (.)

for n ≥ .
Therefore, Lemma . follows easily from (.), (.), and (.). �

Lemma . Let t >  and

g(t) =
√




arctan
(√

 sinh(t)
)

–
t sinh(t)

sinh(t) sinh(t) + t sinh(t)
. (.)

Then there exists a unique t ∈ (,∞) such that g(t) <  for t ∈ (, t), g(t) = , and g(t) >
 for t ∈ (t,∞).

Proof It follows from (.) that

g
(
+)

= , lim
t→∞ g(t) =

√



π > , (.)
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g(t) =
√




arctan
(√

 sinh(t)
)

–
t sinh(t) cosh(t)

sinh(t) + t cosh(t) – t
,

g ′
(t) =

cosh(t)
( +  sinh(t))(sinh(t) + t cosh(t) – t)

g(t), (.)

where

g(t) = t[ cosh(t) sinh(t) –  cosh(t) sinh(t) –  cosh(t) +  sinh(t)

+  sinh(t) + 
]

+ t
[
 sinh(t) cosh(t) –  sinh(t) cosh(t) sinh(t)

+  cosh(t) cosh(t) sinh(t) +  cosh(t) cosh(t) sinh(t)

–  sinh(t) sinh(t) –  sinh(t) sinh(t) –  sinh(t)
]

+ sinh(t) –  cosh(t) sinh(t) sinh(t) –  cosh(t) sinh(t) sinh(t)

= –



cosh(t) + t sinh(t) – t cosh(t) + t sinh(t) + t cosh(t)

– t sinh(t) – t cosh(t) + t sinh(t) + t +



. (.)

Making use of power series formulas, (.) gives

g(t) =
∞∑

n=

vn

 × (n)!
(t)n, (.)

where vn is defined by (.).
Note that

v = v = , v = –,, v = –,. (.)

From Lemma ., (.), (.), and (.) we know that there exists t ∈ (,∞) such that
g(t) is strictly decreasing on (, t] and strictly increasing on [t,∞).

Therefore, Lemma . follows easily from (.) and the piecewise monotonicity of
g(t). �

Lemma . The inequality

–x cos x + sin x cos x + x cos x + x sin x + x – x cos x sin x > 

holds for all x ∈ (,π/).

Proof Simple computations lead to

–x cos x + sin x cos x + x cos x + x sin x + x – x cos x sin x

= x cos(x) – x cos x +



cos x –



cos(x) + x sin x –



x sin(x) + x

=
∞∑

n=

(–)n– n + n(n – )n – n + n – 
 × (n)!

xn. (.)
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Let

ωn =
n + n(n – )n – n + n – 

 × (n)!
xn, (.)

ω∗
n = n + n(n – )n – n + n – . (.)

Then

ω = , ω =
x


> , (.)

ω∗
n > n(n – ) – n + n = n(n – ) >  (n ≥ ), (.)

ω∗
n+ – ω∗

n = –
(
n – n + 

)
n+ + n(n – ) <  (n ≥ ), (.)

ω

ω
=

x


ω∗


ω∗


=

x


× ,

,
=

x


<

π


. (.)

It follows from (.), (.), (.), and (.) that

ωn >  (n ≥ ), (.)

ωn+

ωn
=

x

(n + )(n + )
ω∗

n+
ω∗

n
<

x

(n + )(n + )
<

π


(n ≥ ). (.)

Inequalities (.)-(.) imply that the sequence {ωn} is strictly decreasing for n ≥ ,
limn→∞ ωn =  and

∑∞
n=(–)n–ωn is a Leibniz series. Therefore, Lemma . follows from

(.), (.), and (.). �

Lemma . The inequality

√
 sinh(t) cosh(t) arcsin(tanh(t))

sinh(t) + cosh(t) arcsin(tanh(t))
– arctan

(√
 sinh(t)

)
> 

hold for all t ∈ (,∞).

Proof Let x = arcsin(tanh(t)) ∈ (,π/) and

h(t) =
√

 sinh(t) cosh(t) arcsin(tanh(t))
sinh(t) + cosh(t) arcsin(tanh(t))

– arctan
(√

 sinh(t)
)
. (.)

Then

sinh(t) = tan x, cosh(t) =


cos x
, tanh(t) =

 – cos x
sin x

,

h
(
+)

= , (.)

h(t) =
√

x sin x
x + sin x

cosh(t) – arctan
(√

 sinh(t)
)
,

h′
(t) =

d
dx

(√
x sin x

x + sin x

)
d[arcsin(tanh(t))]

dt
cosh(t) +

√
x sin x

x + sin x
sinh(t) –

√
 cosh(t)

cosh(t)

=
√

 cosh(t)[x cos x – x sin x – x + sin x]
(x + sin x) cosh(t)

+
√

x sin x
x + sin x

sinh(t)
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=
√

 cosh(t)
[

cos x(x cos x – x sin x – x + sin x)
(x + sin x) +

x sin x( – cos x)
sin x(x + sin x)

]

=
√

 cosh(t)[–x cos x + sin x cos x + x cos x + x sin x + x – x cos x sin x]
(x + sin x) . (.)

Therefore, Lemma . follows easily from (.)-(.) and Lemma .. �

3 Main results
Theorem . The double inequality

λL(a, b) ≤ U(a, b) < μL(a, b)

holds for all a, b >  with a �= b if and only if λ ≤ c and μ = ∞, where

c = elog(sinh(t))–log(arctan(
√

 sinh(t)))–log(sinh(t)/t)/+log 

and t ∈ (,∞) is defined by Lemma .. Moreover, numerical computations show that
t = . . . . and c = . . . . .

Proof Since U(a, b) and L(a, b) are symmetric and homogeneous of degree , without loss
of generality, we assume that b > a > . Let t = log

√
b/a > , then (.) and (.) lead to

U(a, b) =
√

ab sinh(t)
arctan(

√
 sinh(t))

, L(a, b) =
√

ab
(

sinh(t)
t

)/

, (.)

log
U(a, b)
L(a, b)

= log
(
sinh(t)

)
– log

(
arctan

(√
 sinh(t)

))

–



log
(
sinh(t)

)
+




log t + log . (.)

Let

g(t) = log
(
sinh(t)

)
– log

(
arctan

(√
 sinh(t)

))

–



log
(
sinh(t)

)
+




log t + log . (.)

Then

g
(
+)

= , lim
t→∞ g(t) = ∞, (.)

g ′(t) =
cosh(t)
sinh(t)

–
√

 cosh(t)
arctan(

√
 sinh(t)) cosh(t)

–
cosh(t)
sinh(t)

+


t

=
sinh(t) sinh(t) + t sinh(t)

t sinh(t) sinh(t)
–

√
 cosh(t)

arctan(
√

 sinh(t)) cosh(t)

=
√

(sinh(t) sinh(t) + t sinh(t))
t sinh(t) sinh(t) arctan(

√
 sinh(t))

g(t), (.)

where g(t) is defined by (.).
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It follows from Lemma . and (.) that there exists a unique t ∈ (,∞) such that
g(t) = , g(t) is strictly decreasing on (, t] and strictly increasing on [t,∞).

Therefore, Theorem . follows from (.)-(.) and the piecewise monotonicity of
g(t). �

Theorem . The double inequality

λU(a, b) < P(a, b) < μU(a, b)

holds for all a, b >  with a �= b if and only if λ ≤  and μ ≥ √
π/ = . . . . .

Proof Since U(a, b) and P(a, b) are symmetric and homogeneous of degree , without loss
of generality, we assume that b > a > . Let t = log

√
b/a > , then (.) and (.) lead to

P(a, b) =
√

ab
(

sinh(t)
arcsin(tanh(t))

)/

, (.)

log
P(a, b)
U(a, b)

= log
(
arctan

(√
 sinh(t)

))

–



log
(
arcsin

(
tanh(t)

))
–




log
(
tanh(t)

)
. (.)

Let

h(t) = log
(
arctan

(√
 sinh(t)

))
–




log
(
arcsin

(
tanh(t)

))
–




log
(
tanh(t)

)
. (.)

Then simple computations lead to

h
(
+)

= , lim
t→∞ h(t) =




(logπ – log ), (.)

h′(t) =
√

 cosh(t)
cosh(t) arctan(

√
 sinh(t))

–


cosh(t) arcsin(tanh(t))
–


sinh(t)

=
sinh(t) + cosh(t) arcsin(tanh(t))

sinh(t) cosh(t) arcsin(tanh(t)) arctan(
√

 sinh(t))

×
[√

 sinh(t) cosh(t) arcsin(tanh(t))
sinh(t) + cosh(t) arcsin(tanh(t))

– arctan
(√

 sinh(t)
)
]

. (.)

It follows from Lemma . and (.) that h(t) is strictly increasing on (,∞). Therefore,
Theorem . follows easily from (.)-(.) and the monotonicity of h(t). �

Remark . Let b > a >  and t = log
√

b/a > . Then

A(a, b) =
√

ab cosh(t), Q(a, b) =
√

ab cosh/(t). (.)

It follows from Lemma . that

√
 sinh(t)

arctan(
√

 sinh(t))
>

sinh(t)
arcsin(tanh(t)) + cosh(t)

 cosh(t)
. (.)
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Equations (.), (.), and (.) together with inequality (.) lead to the conclusion
that the inequality

U(a, b) >
P

(a, b) + Q(a, b)
A(a, b)

G(a, b)

holds for all a, b >  with a �= b.

Theorem . The double inequality

λP(a, b) < NS(a, b)(a, b) < μP(a, b)

holds for all a, b >  with a �= b if and only if λ ≤  and μ ≥ √
π/[ log( + log )] =

. . . . .

Proof Since NS(a, b) and P(a, b) are symmetric and homogeneous of degree , without
loss of generality, we assume that b > a > . Let t = log

√
b/a > , then (.) and (.) lead

to

NS(a, b) =
√

ab
sinh(t)

sinh–(tanh(t))
, (.)

log
NS(a, b)
P(a, b)

=



log
(
tanh(t)

)
– log

(
sinh–(tanh(t)

))

+



log
(
arcsin

(
tanh(t)

))
–




log . (.)

Let

h(t) =



log
(
tanh(t)

)
– log

(
sinh–(tanh(t)

))

+



log
(
arcsin

(
tanh(t)

))
–




log . (.)

Then simple computations lead to

h
(
+)

= , lim
t→∞ h(t) = log

( √
π

 log( +
√

)

)

, (.)

h′
(t) =


sinh(t)

–


cosh(t)
√

cosh(t) sinh–(tanh(t))
+


cosh(t) arcsin(tanh(t))

=
sinh(t) cosh(t) + cosh(t) cosh(t) arcsin(tanh(t))

sinh(t) cosh(t) cosh(t) sinh–(tanh(t)) arcsin(tanh(t))
h(t), (.)

where

h(t) = sinh–(tanh(t)
)

–

√

cosh(t) sinh(t) arcsin(tanh(t))
sinh(t) + cosh(t) arcsin(tanh(t))

, (.)

h
(
+)

= , (.)

h′
(t) =

√
cosh(t)[arcsin(tanh(t)) – tanh(t)][sinh(t) – arcsin(tanh(t))]

cosh(t)[sinh(t) + cosh(t) arcsin(tanh(t))] . (.)
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Let x = arcsin(tanh(t)) ∈ (,π/). Then

arcsin
(
tanh(t)

)
– tanh(t) = x – sin x > , (.)

sinh(t) – arcsin
(
tanh(t)

)
= tan x – x > . (.)

From (.)-(.) we clearly see that h(t) is strictly increasing on (,∞). Therefore,
Theorem . follows from (.)-(.) and the monotonicity of h(t). �

Remark . From the proof of Theorem . we know that

h(t) = sinh–(tanh(t)
)

–

√

cosh(t) sinh(t) arcsin(tanh(t))
sinh(t) + cosh(t) arcsin(tanh(t))

> ,

which is equivalent to

sinh(t)
arcsin(tanh(t)) + cosh(t)


√

cosh(t)
>

sinh(t)
sinh–(tanh(t))

. (.)

Equations (.), (.), and (.) together with inequality (.) lead to the conclusion
that the inequality

NS(a, b) <
P

(a, b) + Q(a, b)
Q(a, b)

holds for all a, b >  with a �= b.

Theorem . The double inequality

λNS(a, b) < B(a, b) < μNS(a, b)

holds for all a, b >  with a �= b if and only if λ ≤  and μ ≥ √
eπ/– log( +

√
) =

. . . . .

Proof Since NS(a, b) and B(a, b) are symmetric and homogeneous of degree , without loss
of generality, we assume that b > a > . Let t = log

√
b/a > , then (.) and (.) lead to

B(a, b) =
√

ab cosh/(t)earctan(tanh(t))/ tanh(t)–,

log
B(a, b)

NS(a, b)
=




log
(
cosh(t)

)
+

arctan(tanh(t))
tanh(t)

– log

(
sinh(t)

sinh–(tanh(t))

)

– .
(.)

Let

f (t) =



log
(
cosh(t)

)
+

arctan(tanh(t))
tanh(t)

– log

(
sinh(t)

sinh–(tanh(t))

)

– . (.)

Then simple computations lead to

f
(
+)

= , lim
t→∞ f (t) =

π


–  +




log  + log
[
log( +

√
)

]
, (.)

f ′(t) =
f(t)

sinh(t) sinh–(tanh(t))
, (.)
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where

f(t) =
sinh(t)√

cosh(t) cosh(t)
– sinh–(tanh(t)

)
arctan

(
tanh(t)

)
.

Let x = tanh(t) ∈ (, ). Then

f(t) =
x

√
 + x

– sinh–(x) arctan(x) := f(x), (.)

f
(
+)

= , (.)

f ′
(x) =

√
x + 

[

x
x + 
x + 

–
sinh–(x)√

x + 
– arctan(x)

]

:=
f(x)√
x + 

, (.)

f
(
+)

= , (.)

f ′
(x) =

x
(x + )/

[

sinh–(x) –
x – x

√
x + 

]

:=
x

(x + )/ f(x), (.)

f
(
+)

= , (.)

f ′
(x) =

x(x + )
(x + )/ >  (.)

for x ∈ (, ).
It follows from (.)-(.) that f (t) is strictly increasing on (,∞). Therefore, Theo-

rem . follows easily from (.)-(.) and the monotonicity of f (t). �

Remark . From the proof of Theorem . we know that the inequalities

x
√

 + x
> sinh–(x) arctan(x), (.)

x
x + 
x + 

>
sinh–(x)√

x + 
+ arctan(x), (.)

sinh–(x) >
x – x

√
x + 

(.)

hold for all x ∈ (,∞). Inequalities (.)-(.) lead to the conclusion that the inequalities

NS(a, b)T(a, b) > A(a, b)Q(a, b),

A(a, b)
G(a, b)

>
NS(a, b)
Q(a, b)

,

A(a, b)
Q(a, b)

+
Q(a, b)
A(a, b)

>
A(a, b)

NS(a, b)
+

Q(a, b)
T(a, b)

hold for all a, b >  with a �= b.

Remark . Let I(a, b) = (bb/aa)/(b–a)/e be the identric mean of two distinct positive real
numbers a and b, and I(a, b) = I/(a, b) be the second-order identric mean. Then from
Theorems .-. and the inequalities M(a, b; /) < I(a, b) < M(a, b; log ) [, ] and
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P(a, b) > L(a, b) [] we get two inequalities chains as follows:


,

L(a, b) < U(a, b) < P(a, b) < NS(a, b)

< B(a, b) < M(a, b; /) < I(a, b)

< M(a, b;  log )

and

L(a, b) < P(a, b) < NS(a, b) < B(a, b)

< M(a, b; /) < I(a, b)

< M(a, b;  log )

for all a, b >  with a �= b.
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