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Abstract
Warped product submanifolds of nearly cosymplectic manifolds were studied in
Uddin et al. (Math. Probl. Eng. 2011, doi:10.1155/2011/230374), Uddin and Khan
(J. Inequal. Appl. 2012:304, 2012) and Uddin et al. (Rev. Unión Mat. Argent. 55:55-69,
2014). In this paper, we study warped product submanifolds of nearly cosymplectic
manifolds in which the base manifold is slant and thus we derive a sharp relation for
the squared norm of the second fundamental form. The equality case is also
considered.
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1 Introduction
The almost contact manifolds with Killing structures tensors were defined in [] as nearly
cosymplectic manifolds. Later, these manifolds were studied by Blair and Showers from
the topological point of view []. A totally geodesic hypersurface S of a -dimensional
sphere S is a nearly cosymplectic manifold. A normal nearly cosymplectic manifold is
cosymplectic (see []).

On the other hand, pseudo-slant submanifolds of almost contact metric manifolds were
studied by Carriazo [] under the name of anti-slant submanifolds. Later on, Sahin studied
these submanifolds for their warped products [].

Recently, Uddin et al. studied warped product semi-invariant and semi-slant subman-
ifolds of nearly cosymplectic manifolds [–]. In this paper, we study the warped prod-
uct pseudo-slant submanifolds of the type Nθ × f N⊥ of a nearly cosymplectic manifold,
where N⊥ and Nθ are anti-invariant and proper slant submanifolds of a nearly cosymplec-
tic manifold, respectively. We derive an inequality for the second fundamental form of
such warped product immersions in terms of the warping function and the slant angle.
The equality case is also discussed.

2 Preliminaries
Let ˜M be a (n + )-dimensional C∞ manifold with almost contact structure (ϕ, ξ ,η) i.e.,
a (, ) tensor field ϕ, a vector field ξ and a -form η on ˜M such that
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ϕ = –I + η ⊗ ξ , ϕξ = , η ◦ ϕ = , η(ξ ) = . (.)

There always exists a Riemannian metric g on an almost contact manifold ˜M satisfying
the following compatibility condition:

η(X) = g(X, ξ ), g(ϕX,ϕY ) = g(X, Y ) – η(X)η(Y ), (.)

where X and Y are vector fields on ˜M [].
An almost contact structure (ϕ, ξ ,η) is said to be nearly cosymplectic if ϕ is Killing, i.e.,

if

(˜∇Xϕ)Y + (˜∇Y ϕ)X = , (.)

or any X, Y tangent to ˜M, where ˜∇ denotes the Riemannian connection of the met-
ric g . Equation (.) is equivalent to (˜∇Xϕ)X = , for each X tangent to ˜M. A normal
nearly cosymplectic structure is cosymplectic. It is well known that an almost contact
metric manifold is cosymplectic if and only if ˜∇ϕ vanishes identically, i.e., (˜∇Xϕ)Y =  and
˜∇Xξ = .

On a nearly cosymplectic manifold the structure vector field ξ is Killing [], that is,

g(˜∇Y ξ , Z) + g(˜∇Zξ , Y ) =  (.)

for any Y , Z tangent to ˜M.
Let M be submanifold of an almost contact metric manifold ˜M with induced metric g

and let ∇ and ∇⊥ be the induced connections on the tangent bundle TM and the normal
bundle T⊥M of M, respectively. Denote by F (M) the algebra of smooth functions on M
and by �(TM) the F (M)-module of smooth sections of TM over M. Then the Gauss and
Weingarten formulas are given by

˜∇XY = ∇XY + h(X, Y ), (.)

˜∇XN = –AN X + ∇⊥
X N , (.)

for each X, Y ∈ �(TM) and N ∈ �(T⊥M), where h and AN are the second fundamental
form and the shape operator (corresponding to the normal vector field N ), respectively,
for the immersion of M into ˜M. They are related as

g
(

h(X, Y ), N
)

= g(AN X, Y ), (.)

where g denotes the Riemannian metric on ˜M as well as the one induced on M. The mean
curvature vector H of M is given by H = 

m
∑m

i= h(ei, ei), where n is the dimension of M
and {e, e, . . . , em} is a local orthonormal frame of vector fields on M. A submanifold M
of an almost contact metric manifold ˜M is said to be totally umbilical if the second fun-
damental form satisfies h(X, Y ) = g(X, Y )H , for all X, Y ∈ �(TM). The submanifold M is
totally geodesic if h(X, Y ) = , for all X, Y ∈ �(TM) and minimal if H = .



Al-Solamy Journal of Inequalities and Applications  (2015) 2015:306 Page 3 of 9

Now, let {e, . . . , em} be an orthonormal basis of tangent space TM and er belong to the
orthonormal basis {em+, . . . , en+} of the normal bundle T⊥M, we put

hr
ij = g

(

h(ei, ej), er
)

and ‖h‖ =
m

∑

i,j=

g
(

h(ei, ej), h(ei, ej)
)

. (.)

For a differentiable function ϕ on M, the gradient 	∇ϕ is defined by

g( 	∇ϕ, X) = Xϕ (.)

for any X ∈ �(TM). As a consequence, we have

‖ 	∇ϕ‖ =
m

∑

i=

(

ei(ϕ)
). (.)

For any X ∈ �(TM), we write

ϕX = PX + FX, (.)

where PX is the tangential component and FX is the normal component of ϕX. A subman-
ifold M of an almost contact metric manifold ˜M is said to be invariant if F is identically
zero, that is, ϕX ∈ �(TM) and anti-invariant if P is identically zero, that is, ϕX ∈ �(T⊥M),
for any X ∈ �(TM).

Let M be a submanifold tangent to the structure vector field ξ isometrically immersed
into an almost contact metric manifold ˜M. Then M is said to be a contact CR-submanifold
if there exists a pair of orthogonal distributions D : p → Dp and D⊥ : p → D⊥

p , ∀p ∈ M
such that:

(i) TM = D ⊕D⊥ ⊕ 〈ξ 〉, where 〈ξ 〉 is the -dimensional distribution spanned by the
structure vector field ξ .

(ii) D is invariant, i.e., ϕD = D.
(iii) D⊥ is anti-invariant, i.e., ϕD⊥ ⊆ T⊥M.

Invariant and anti-invariant submanifolds are the special cases of a contact CR-submani-
fold. If we denote the dimensions of the distributions D and D⊥ by d and d, respectively.
Then M is invariant (resp. anti-invariant) if d =  (resp. d = ).

There is another class of submanifolds that is called the slant submanifold. For each
non-zero vector X tangent to M at x, such that X is not proportional to ξx, we denote by
 ≤ θ (X) ≤ π

 , the angle between ϕX and TxM is called the Wirtinger angle. If the angle
θ (X) is constant for all nonzero X ∈ TxM – 〈ξx〉 and x ∈ M, then M is said to be a slant
submanifold [] and the angle θ is the slant angle of M. Obviously if θ = , M is invariant
and if θ = π

 , M is an anti-invariant submanifold. A slant submanifold is said to be proper
slant if it is neither invariant nor anti-invariant.

We recall the following result for a slant submanifold of an almost contact metric man-
ifold.

Theorem . [] Let M be a submanifold of an almost contact metric manifold ˜M, such
that ξ is tangent to M. Then M is slant if and only if there exists a constant λ ∈ [, ] such
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that

P = λ(–I + η ⊗ ξ ). (.)

Furthermore, if θ is slant angle of M, then λ = cos θ .

The following relations are straightforward consequences of (.):

g(PX, PY ) = cos θ
(

g(X, Y ) – η(Y )η(X)
)

, (.)

g(FX, FY ) = sin θ
(

g(X, Y ) – η(Y )η(X)
)

, (.)

for all X, Y ∈ �(TM).
Now, we give the brief introduction of pseudo-slant submanifolds introduced by Car-

riazo in [] under the name of anti-slant submanifolds, which are the generalization of
contact CR-submanifolds and slant submanifolds []. He defined these submanifolds as
follows.

Definition . A submanifold M of an almost contact metric manifold ˜M is said to be a
pseudo-slant submanifold if there exists a pair of orthogonal distributions D⊥ and Dθ on
M such that:

(i) TM admits the orthogonal direct decomposition TM = D⊥ ⊕Dθ ⊕ 〈ξ 〉.
(ii) The distribution D⊥ is anti-invariant, i.e., ϕ(D⊥) ⊂ T⊥M.

(iii) The distribution Dθ is slant with angle θ �= π
 .

The normal bundle T⊥M of a pseudo-slant submanifold is decomposed as

T⊥M = FDθ ⊕ ϕD⊥ ⊕ μ, (.)

where μ is an invariant normal subbundle under ϕ.

3 Warped product pseudo-slant submanifolds
In this section, we discuss the warped product submanifolds of a nearly cosymplectic man-
ifold. These manifolds were studied by Bishop and O’Neill []. They defined these man-
ifolds as follows: Let (N, g) and (N, g) be two Riemannian manifolds and f a positive
differentiable function on N. Then their warped product M = N × f N is the product
manifold N × N equipped with the Riemannian structure such that

g = g + f g.

The function f is called the warping function on M. It was proved in [] that for any
X ∈ �(TN) and Z ∈ �(TN), the following holds:

∇XZ = ∇ZX = (X ln f )Z, (.)

where ∇ denote the Levi-Civita connection M. A warped product manifold M = N × f N

is said to be trivial if the warping function f is constant. If M = N × f N is a warped
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product manifold then the base manifold N is totally geodesic and the fiber N is a totally
umbilical submanifold of M, respectively [].

Now, we discuss the warped product pseudo-slant submanifolds of the type Nθ × f N⊥
of a nearly cosymplectic manifold ˜M. We consider the structure vector field ξ tangent to
the base manifold Nθ of the warped products. If ξ is tangential to N⊥ then the warped
product is trivial []. We have the following results for later use.

Lemma . Let M = Nθ × f N⊥ be a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold ˜M, then:

(i) ξ ln f = ,
(ii) g(h(X, Y ),ϕZ) = g(h(X, Z), FY ) + g(h(Y , Z), FX).

for any X, Y ∈ �(TNθ ) and Z ∈ �(TN⊥).

Proof For any Z, W ∈ �(TN⊥) and ξ tangential to Nθ , we have

g(˜∇Zξ , W ) = g(∇Zξ , W ).

Then from (.), we obtain

g(˜∇Zξ , W ) = ξ ln fg(Z, W ). (.)

By the polarization identity, we derive

g(˜∇W ξ , Z) = ξ ln fg(Z, W ). (.)

Thus the first part follows from (.) and (.) by using (.). For the second part, consider
X, Y ∈ �(TNθ ) and Z ∈ �(TN⊥), we have

g
(

h(X, Y ),ϕZ
)

= g(˜∇XY ,ϕZ) = –g(ϕ˜∇XY , Z).

Then by the covariant derivative property of ϕ, we derive

g
(

h(X, Y ),ϕZ
)

= g
(

(˜∇Xϕ)Y , Z
)

– g(˜∇XϕY , Z)

= g
(

(˜∇Xϕ)Y , Z
)

– g(˜∇XPY , Z) – g(˜∇XFY , Z)

= g
(

(˜∇Xϕ)Y , Z
)

+ g(PY , ˜∇XZ) + g(AFY X, Z).

Using (.) and (.), we get

g
(

h(X, Y ),ϕZ
)

= g
(

(˜∇Xϕ)Y , Z
)

+ g(PY ,∇XZ) + g
(

h(X, Z), FY
)

.

From (.), we obtain

g
(

h(X, Y ),ϕZ
)

= g
(

(˜∇Xϕ)Y , Z
)

+ (X ln f )g(PY , Z) + g
(

h(X, Z), FY
)

.

The second term of right hand side is identically zero by the orthogonality of vector fields,
thus we have

g
(

h(X, Y ),ϕZ
)

= g
(

(˜∇Xϕ)Y , Z
)

+ g
(

h(X, Z), FY
)

. (.)
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Then by the polarization identity, we obtain

g
(

h(X, Y ),ϕZ
)

= g
(

(˜∇Y ϕ)X, Z
)

+ g
(

h(Y , Z), FX
)

. (.)

Then from (.) and (.), we get

g
(

h(X, Y ),ϕZ
)

= g
(

(˜∇Xϕ)Y + (˜∇Y ϕ)X, Z
)

+ g
(

h(X, Z), FY
)

+ g
(

h(Y , Z), FX
)

.

The first term of right hand side is identically zero by (.), thus we get (ii), which proves
the lemma completely. �

Lemma . Let M = Nθ × f N⊥ be a warped product pseudo-slant submanifold of a nearly
cosymplectic manifold ˜M, where N⊥ and Nθ are anti-invariant and proper slant subman-
ifolds of ˜M, respectively. Then:

(i) g(h(Z, W ), FX) = g(h(X, Z),ϕW ) + g(h(X, W ),ϕZ) + (PX ln f )g(Z, W ),
(ii) g(h(Z, W ), FPX) = g(h(PX, Z),ϕW ) + g(h(PX, W ),ϕZ) –  cos θ (X ln f )g(Z, W )

for any X ∈ �(TNθ ) and Z, W ∈ �(TN⊥).

Proof For any Z, W ∈ �(TN⊥) and X ∈ �(TNθ ), we have

g
(

h(Z, W ), FX
)

= g(˜∇ZW ,ϕX) – g(˜∇ZW , PX)

= g
(

(˜∇Zϕ)W , X
)

– g(˜∇ZϕW , X) + g(W , ˜∇ZPX).

Using (.) and (.), we obtain

g
(

h(Z, W ), FX
)

= g
(

(˜∇Zϕ)W , X
)

+ g(AϕW Z, X) + g(W ,∇ZPX).

Then from (.) and (.), we get

g
(

h(Z, W ), FX
)

= g
(

(˜∇Zϕ)W , X
)

+ g
(

h(X, Z),ϕW
)

+ (PX ln f )g(Z, W ). (.)

Then by the polarization identity we derive

g
(

h(Z, W ), FX
)

= g
(

(˜∇W ϕ)Z, X
)

+ g
(

h(X, W ),ϕZ
)

+ (PX ln f )g(Z, W ). (.)

From (.) and (.), we get

g
(

h(Z, W ), FX
)

= g
(

(˜∇W ϕ)Z + (˜∇Zϕ)W , X
)

+ g
(

h(X, Z),ϕW
)

+ g
(

h(X, W ),ϕZ
)

+ (PX ln f )g(Z, W ).

Then, from the above relation, (i) holds by using (.). If we interchange X by PX in (i) we
get (ii) by using Theorem . and Lemma .(i). Thus, the proof is complete. �

Now, we construct the following frame for a warped product pseudo-slant submanifold
M = Nθ × f N⊥ of a (n + )-dimensional nearly cosymplectic manifold.
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Let M = Nθ × f N⊥ be a m-dimensional warped product pseudo-slant submanifold of
a (n + )-dimensional nearly cosymplectic manifold ˜M such that N⊥ is a q-dimensional
anti-invariant submanifold and Nθ is a (p + )-dimensional slant submanifold tangent
to the structure vector field ξ of ˜M, respectively. Then the orthonormal frame fields of
the tangent spaces of N⊥ and Nθ , respectively, are {e, . . . , eq} and {eq+ = e∗

 , . . . , eq+p =
e∗

p, eq+p+ = e∗
p+ = sec θPe∗

 , . . . , eq+p = e∗
p = sec θPe∗

p, eq+p+ = em = ξ}. The orthonormal
frames of ϕ(TN⊥), F(TNθ ), and μ, respectively, are {em+ = ϕe, . . . , em+q = ϕeq}, {em+q+ =
ẽ = csc θFe∗

 , . . . , em+p+q = ẽ∗
p = csc θFe∗

p, em+p+q+ = ẽp+ = csc θ sec θFPe∗
 , . . . , em+p+q = ẽp =

csc θ sec θFPe∗
p} and {em, . . . , en+}. The dimensions of ϕ(TN⊥), F(TNθ ), and μ, respec-

tively, are q, p, and (n – m + ).

Theorem . Let M = Nθ × f N⊥ be a mixed geodesic warped product pseudo-slant sub-
manifold of a nearly cosymplectic manifold ˜M such that N⊥ and Nθ are anti-invariant and
proper slant submanifolds of ˜M, respectively. Then:

(i) The squared norm of the second fundamental form h of M satisfies

‖h‖ ≥ q cot θ
∥

∥∇θ ln f
∥

∥



where ∇θ ln f is the gradient of ln f over Nθ and q is the dimension of N⊥.
(ii) If the equality holds in (i), then h(Z, W ) lies in F(TNθ ) for any Z, W ∈ �(TN⊥) and

h(X, Y ) lies in ϕ(TN⊥), for any X, Y ∈ �(TNθ ).

Proof From (.), we have

‖h‖ =
m

∑

i,j=

g
(

h(ei, ej), h(ei, ej)
)

=
n+
∑

r=m+

m
∑

i,j=

g
(

h(ei, ej), er
).

Then using the frame fields of TN⊥ and TNθ , we get

‖h‖ =
n+
∑

r=m+

p+
∑

i,j=

g
(

h(ei, ej), er
) + 

n+
∑

r=m+

p+
∑

i=

q
∑

j=

g
(

h(ei, ej), er
)

+
n+
∑

r=m+

q
∑

i,j=

g
(

h
(

e∗
i , e∗

j
)

, er
).

Since M is mixed geodesic, the second term of right hand side is identically zero and break
the above relation for the frames of F(TNθ ), ϕ(TN⊥), and μ. Then we derive

‖h‖ =
m+q
∑

r=m+

p+
∑

i,j=

g
(

h(ei, ej), er
) +

m–
∑

r=m+q+

p+
∑

i,j=

g
(

h(ei, ej), er
)

+
n+
∑

r=m+q+p+

p+
∑

i,j=

g
(

h(ei, ej), er
) +

m+q
∑

r=m+

q
∑

i,j=

g
(

h(ei, ej), er
)

+
m–
∑

r=m+q+

q
∑

i,j=

g
(

h(ei, ej), er
) +

n+
∑

r=m+q+p+

q
∑

i,j=

g
(

h(ei, ej), er
). (.)
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The first term of right hand side is identically zero by Lemma .(ii) for a mixed geodesic
warped product submanifold. Also, we have no relation for the μ components with h and
g(h(Z, W ), FW ′), for any Z, W , W ′ ∈ �(TN⊥) in terms of the warping function. Thus, we
shall leave all positive terms except the fifth term, then we have

‖h‖ ≥
p

∑

r=

q
∑

i,j=

g
(

h(ei, ej), ẽr
)

=
p

∑

r=

q
∑

i,j=

g
(

h(ei, ej), sec θFe∗
r
) +

p
∑

r=

q
∑

i,j=

g
(

h(ei, ej), csc θ sec θFPe∗
r
).

Using Lemma . for mixed geodesic warped products, we derive

‖h‖ ≥ csc θ

p
∑

r=

q
∑

i,j=

(

Pe∗
r ln f

)g(ei, ej) + cot θ

p
∑

r=

q
∑

i,j=

(

e∗
r ln f

)g(ei, ej)

= q csc θ

p+
∑

r=

(

Pe∗
r ln f

) – q csc θ

p
∑

r=p+

(

Pe∗
r ln f

)

– q csc θ
(

Pe∗
p+ ln f

) + q cot θ

p
∑

r=

(

e∗
r ln f

).

Since e∗
p+ ln f = ξ ln f = , from (.), we derive

‖h‖ ≥ q csc θ
∥

∥P∇θ ln f
∥

∥

 – q csc θ

p
∑

r=

g
(

e∗
r+p, P∇θ ln f

)

+ q cot θ

p
∑

r=

(

e∗
r ln f

).

Then by Theorem ., we obtain

‖h‖ ≥ q cot θ
{∥

∥∇θ ln f
∥

∥

 – g
(∇θ ln f , ξ

)}

– q csc θ sec θ

p
∑

r=

g
(

Pe∗
r , P∇θ ln f

) + q cot θ

p
∑

r=

(

e∗
r ln f

).

Then from (.), (.), and the trigonometric identities, finally, we get

‖h‖ ≥ q cot θ
∥

∥∇θ ln f
∥

∥

,

which is inequality (i). If the equality holds in (i), then from the second and third remaining
terms

g
(

h(X, Y ), FY ′) = , ∀X, Y , Y ′ ∈ �(TNθ ) ⇒ h(X, Y ) ∈ �(ϕTN⊥ ⊕ μ) (.)
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and

g
(

h(X, Y ), ζ
)

= , ∀X, Y ∈ �(TNθ ) and ζ ∈ �(μ)

⇒ h(X, Y ) ∈ �(ϕTN⊥ ⊕ FTNθ ). (.)

Then from (.) and (.), we get

h(X, Y ) ∈ �(ϕTN⊥), ∀X, Y ∈ �(TNθ ). (.)

Similarly, from the remaining fourth and sixth terms, we conclude that

g
(

h(Z, W ),ϕW ′) = , ∀Z, W , W ′ ∈ �(TN⊥)

⇒ h(Z, W ) ∈ �(FTNθ ⊕ μ) (.)

and

g
(

h(Z, W ), ζ
)

= , ∀Z, W ∈ �(TN⊥) and ζ ∈ �(μ)

⇒ h(Z, W ) ∈ �(ϕTN⊥ ⊕ FTNθ ). (.)

Then from (.) and (.), we get

h(Z, W ) ∈ �(FTNθ ), ∀Z, W ∈ �(TN⊥). (.)

Thus (ii) follows from (.) and (.). This completes the proof of the theorem. �
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