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1 Introduction
Investigations into the regularized trace formulas of scalar differential operators started
with the work [] firstly. After that work, regularized trace formulas for several differential
operators have been studied in some works as [, ] and []. In [] a formula for the second
regularized trace of the problem generated by a Sturm-Liouville operator equation with a
spectral parameter dependent boundary condition is found. The list of the works on this
subject is given in [] and []. The trace formulas for differential operators with operator
coefficient are investigated in the works [–] and []. The boundary conditions in our
work are completely different from those in [].

In this work, we find the following regularized trace formula for a self-adjoint differential
operator L of fourth order with bounded operator coefficient:

∞∑

m=

[ ∞∑

n=

(
λmn –

(
m +




))
–


π

∫ π


tr Q(x) dx

]
=




[
tr Q(π ) – tr Q()

]
.

Here {λmn}∞n= are the eigenvalues of the operator L which belong to the interval [(m+ 
 ) –

‖Q‖, (m + 
 ) + ‖Q‖].

1.1 Notation and preliminaries
Let H be a separable Hilbert space with infinite dimension. Let us consider the operators
L and L in the Hilbert space H = L(,π ; H) which are formed by the following differen-
tial expressions:

�(y) = yıv(x),

�(y) = yıv(x) + Q(x)y(x)
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with the same boundary conditions y() = y′′() = y′(π ) = y′′′(π ) = . Suppose that the op-
erator function Q(x) in the expression �(y) satisfies the following conditions:

(Q) Q(x) : H → H is a self-adjoint kernel operator for every x ∈ [,π ]. Moreover, Q(x)
has second order weak derivative in this interval and Q(i)(x) : H → H (i = , ) are
self-adjoint kernel operators for every x ∈ [,π ].

(Q) ‖Q‖ < 
 .

(Q) There is an orthonormal basis {ϕn}∞n= of the space H such that

∞∑

n=

∥∥Q(x)ϕn
∥∥ < ∞.

(Q) The functions ‖Q(i)(x)‖σ(H) are bounded and measurable in the interval [,π ]
(i = , , ).

Here σ(H) is the space of kernel operators from H to H as in []. Moreover, we denote
the norms by ‖ ·‖H and ‖ ·‖ and inner products by (·, ·)H and (·, ·) in H and H, respectively,
and we also denote the sum of eigenvalues of a kernel operator A by tr A = trace A.

Spectrum of the operator L is the set

σ (L) =
{(




)

,
(




)

, . . . ,
(

m +



)

, . . .
}

.

Every point of this set is an eigenvalue of L which has infinite multiplicity. The orthonor-
mal eigenfunctions corresponding to eigenvalue (m + 

 ) are in the form

ψmn(x) =
√


π

sin

(
m +




)
x · ϕn (n = , , . . .). (.)

2 Some relations between spectrums of operators L0 and L
Let R

λ, Rλ be resolvents of the operators L and L, respectively. If the operator Q : H → H

satisfies conditions (Q) and (Q), the following can be proved:
(a) QR

λ ∈ σ(H) for every λ /∈ σ (L).
(b) Spectrum of the operator L is a subset of the union of pairwise disjoint intervals

Fm =
[(

m +



)

– ‖Q‖,
(

m +



)

+ ‖Q‖
]

(m = , , , . . .),σ (L) ⊂
∞⋃

m=

Fm.

(c) Each point of the spectrum of L, different from (m + 
 ) in Fm is an isolated

eigenvalue which has finite multiplicity.
(d) The series

∑∞
n=[λmn – (m + 

 )] (m = , , , . . .) are absolutely convergent where
{λmn}∞n= are eigenvalues of the operator L in the interval Fm.

Let ρ(L) be resolvent set of the operator L; ρ(L) = C\σ (L). Since QR
λ ∈ σ(H) for every

λ ∈ ρ(L), from the equation Rλ = R
λ – RλQR

λ we obtain Rλ – R
λ ∈ σ(H).

On the other hand, if we consider the series

∞∑

n=

[
λmn –

(
m +




)]
(m = , , , . . .)



Karayel and Sezer Journal of Inequalities and Applications  (2015) 2015:316 Page 3 of 10

are absolutely convergent then we have

tr
(
Rλ – R

λ

)
=

∞∑

m=

∞∑

n=

[


λmn – λ
–


(m + 

 ) – λ

]

for every λ ∈ ρ(L) []. If we multiply both sides of this equality with λ
π i and integrate this

equality over the circle |λ| = bp = (p + ) (p ∈ N, p ≥ ), then we find


π i

∫

|λ|=bp

λ tr
(
Rλ – R

λ

)
dλ

=


π i

∫

|λ|=bp

λ

p∑

m=

∞∑

n=

[


λmn – λ
–


(m + 

 ) – λ

]
dλ

+


π i

∫

|λ|=bp

λ

∞∑

m=p+

∞∑

n=

[


λmn – λ
–


(m + 

 ) – λ

]
dλ. (.)

If we consider the relations |λmn| < bp (m = , , , . . . , p) and |λmn| > bp (m = p + , p + , . . .)
for n = , , , . . . , then from (.) we get


π i

∫

|λ|=bp

λ tr
(
Rλ – R

λ

)
dλ

=
p∑

m=

∞∑

n=

[


π i

∫

|λ|=bp

λdλ

λ – (m + 
 )

–


π i

∫

|λ|=bp

λdλ

λ – λmn

]

+
∞∑

m=p+

∞∑

n=

[


π i

∫

|λ|=bp

λdλ

λ – (m + 
 )

–


π i

∫

|λ|=bp

λdλ

λ – λmn

]

=
p∑

m=

∞∑

n=

[(
m +




)

– λmn

]
. (.)

Moreover, from the formula Rλ = R
λ – RλQR

λ, we obtain the following equality:

Rλ – R
λ = –R

λQR
λ + R

λ

(
QR

λ

) – Rλ

(
QR

λ

). (.)

If we put this equality into (.), we have

p∑

m=

∞∑

n=

[
λmn –

(
m +




)]
= Mp + Mp + Mp. (.)

Here

Mpj =
(–)j

π i

∫

|λ|=bp

λ tr
[
R

λ

(
QR

λ

)j]dλ (j = , ), (.)

Mp =
–

π i

∫

|λ|=bp

λ tr
[
Rλ

(
QR

λ

)]dλ. (.)
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Theorem . If the operator function Q(x) satisfies condition (Q), then we have

Mpj =
(–)j

π ij

∫

|λ|=bp

tr
[(

QR
λ

)j]dλ.

Proof It can be shown that the operator function QR
λ is analytic with respect to the norm

in the space σ(H) in domain ρ(L) = C \ σ (L) and

tr
{[(

QR
λ

)j]′} = j tr
[(

QR
λ

)′(QR
λ

)j–]. (.)

Considering (QR
λ)′ = (QR

λ), we can write the formula (.) as

tr
{[(

QR
λ

)j]′} = j tr
[
R

λ

(
QR

λ

)j]. (.)

From (.) and (.), we obtain

Mpj =
(–)j+

π ij

∫

|λ|=bp

λ tr
{[(

QR
λ

)j]′}dλ.

From here, we find

Mpj =
(–)j+

π ij

∫

|λ|=bp

tr
{[

λ
(
QR

λ

)j]′ –
(
QR

λ

)j}dλ

=
(–)j

π ij

∫

|λ|=bp

tr
[(

QR
λ

)j]dλ +
(–)j+

π ij

∫

|λ|=bp

tr
{[

λ
(
QR

λ

)j]′}dλ. (.)

It can be easily shown that

tr
{[

λ
(
QR

λ

)j]′} =
{
tr
[
λ
(
QR

λ

)j]}′.

Therefore, we have

∫

|λ|=bp

tr
{[

λ
(
QR

λ

)j]′}dλ =
∫

|λ|=bp

{
tr
[
λ
(
QR

λ

)j]}′ dλ. (.)

The integral on the right-hand side of the last equality can be written as

∫

|λ|=bp

{
tr
[
λ
(
QR

λ

)j]}′ dλ =
∫

|λ|=bp
Imλ≥

{
tr
[
λ
(
QR

λ

)j]}′ dλ +
∫

|λ|=bp
Imλ≤

{
tr
[
λ
(
QR

λ

)j]}′ dλ. (.)

Let ε be a constant satisfying the condition  < ε < bp – (p + 
 ). Consider the function

tr[λ(QR
λ)j] is analytic in simple connected domains

G = {λ ∈ C : bp – ε < λ < bp + ε, Imλ > –ε},
G = {λ ∈ C : bp – ε < λ < bp + ε, Imλ < ε}
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and

{
λ ∈ C : |λ| = bp, Imλ ≥ 

} ⊂ G,
{
λ ∈ C : |λ| = bp, Imλ ≤ 

} ⊂ G.

From (.) we obtain
∫

|λ|=bp

{
tr
[
λ
(
QR

λ

)j]}′ dλ = tr
[
–bp

(
QR

–bp

)j] – tr
[
bp(QRbp )j]

+ tr
[
bp

(
QR

bp

)j] – tr
[
–bp

(
QR

–bp

)j] = . (.)

From (.), (.) and (.) we find

Mpj =
(–)j

π ij

∫

|λ|=bp

tr
[(

QR
λ

)j]dλ. �

3 The formula of the regularized trace of the operator L
In this section, we find a formula for the regularized trace of the operator L. According to
Theorem .,

Mp = –


π i

∫

|λ|=bp

tr
[(

QR
λ

)]
dλ. (.)

Since {ψmn}∞∞
m=,n= is an orthonormal basis of the space H, from (.) we obtain

Mp = –


π i

∫

|λ|=bp

∞∑

m=

∞∑

n=

(
QR

λψmn,ψmn
)

dλ

= –


π i

∫

|λ|=bp

∞∑

m=

∞∑

n=

(Qψmn,ψmn)
(m + 

 ) – λ
dλ

=
∞∑

m=

∞∑

n=

(Qψmn,ψmn) · 
π i

∫

|λ|=bp


λ – (m + 

 )
dλ. (.)

Considering (m + 
 ) < bp = (p + ) for m ≤ p and (m + 

 ) > bp = (p + ) for m > p, from
formula (.)

Mp =
p∑

m=

∞∑

n=

(Qψmn,ψmn)


π i

∫

|λ|=bp


λ – (m + 

 )
dλ =

p∑

m=

∞∑

n=

(Qψmn,ψmn) (.)

is obtained.
From (.) and (.), we have

Mp =
p∑

m=

∞∑

n=

∫ π



(
Q(x)

√

π

sin

(
m +




)
x · ϕn,

√

π

sin

(
m +




)
x · ϕn

)

H
dx

=

π

p∑

m=

∞∑

n=

∫ π



(
Q(x)ϕn,ϕn

)
H sin

(
m +




)
x dx

=

π

p∑

m=

∫ π



[ ∞∑

n=

(
Q(x)ϕn,ϕn

)
H

]
(
 – cos(m + )x

)
dx. (.)
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If we consider the formula
∑∞

n=(Q(x)ϕn,ϕn)H = tr Q(x), then we get

Mp =
p + 
π

∫ π


tr Q(x) dx –


π

p∑

m=

∫ π


tr Q(x) cos(m + )x dx. (.)

Lemma . If the operator function Q(x) satisfies conditions (Q) and (Q), then we have

‖Rλ‖ < p–

over the circle |λ| = bp.

Proof Since the operator function Q(x) satisfies conditions (Q) and (Q), we have

{λmn}∞n= ⊂
((

m +



)

– ‖Q‖,
(

m +



)

+ ‖Q‖
)

(m = , , , . . .),

∣∣∣∣λmn –
(

m +



)∣∣∣∣ < ‖Q‖ <



(m = , , , . . . ; n = , , . . .).

If we consider this relation, we get

|λmn – λ| =
∣∣∣∣λ –

(
m +




)

–
(

λmn –
(

m +



))∣∣∣∣

≥
∣∣∣∣λ –

(
m +




)∣∣∣∣ –
∣∣∣∣λmn –

(
m +




)∣∣∣∣

> |λ| –
(

m +



)

–



= (p + ) –
(

m +



)

–



≥ (p + ) –
(

p +



)

–



> 
(

p +



)

–



> p (.)

for m ≤ p and

|λmn – λ| =
∣∣∣∣

(
m +




)

– λ –
((

m +



)

– λmn

)∣∣∣∣

≥
∣∣∣∣

(
m +




)

– λ

∣∣∣∣ –
∣∣∣∣

(
m +




)

– λmn

∣∣∣∣ ≥
(

m +



)

– |λ| –



≥
(

p +



)

– (p + ) –



> (p + ) –



> p (.)

for m ≥ p + .
On the other hand, we can write

‖Rλ‖ = max
m=,,...
n=,,...

{|λmn – λ|–}. (.)

From (.), (.) and (.) we get

‖Rλ‖ < p– (|λ| = bp
)
. �
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Lemma . If the operator function Q(x) satisfies condition (Q), then we have

∥∥QR
λ

∥∥
σ(H) < p–

∞∑

n=

∥∥Q(x)ϕn
∥∥

over the circle |λ| = bp.

Proof Let us show that the series
∑∞

m=
∑∞

n= ‖QR
λψmn‖ is convergent.

For λ /∈ σ (L), we get

∞∑

m=

∞∑

n=

∥∥QR
λψmn

∥∥

=
∞∑

m=

∞∑

n=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–

‖Qψmn‖

=
∞∑

m=

∞∑

n=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–[∫ π



∥∥∥∥Q(x)
√


π

sin

(
m +




)
x · ϕn

∥∥∥∥


H
dx

] 


=
√


π

∞∑

m=

∞∑

n=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
– ∫ π



∥∥Q(x)ϕn
∥∥

H sin
(

m +



)
x dx

<
∞∑

m=

∞∑

n=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–[∫ π



∥∥Q(x)ϕn
∥∥

H dx
] 



=
∞∑

m=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
– ∞∑

n=

∥∥Q(x)ϕn
∥∥. (.)

From this relation we obtain

∞∑

m=

∞∑

n=

∥∥QR
λψmn

∥∥ < ∞ (
λ /∈ σ (L)

)
.

On the other hand, since the sequence {ψmn}∞∞
m=,n= is an orthonormal basis of the space

H, we get

∥∥QR
λ

∥∥
σ(H) ≤

∞∑

m=

∞∑

n=

∥∥QR
λψmn

∥∥ (.)

[]. From (.) and (.) we obtain

∥∥QR
λ

∥∥
σ(H) ≤

∞∑

n=

∥∥Q(x)ϕn
∥∥

∞∑

m=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–

. (.)

Furthermore, over the circle |λ| = bp we get

∞∑

m=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–

=
p∑

m=

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–

+
∞∑

m=p+

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–
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<
p∑

m=

(
|λ| –

(
m +




))–

+
∞∑

m=p+

((
m +




)

– |λ|
)–

=
p∑

m=

(
(p + ) –

(
m +




))–

+
∞∑

m=p+

((
m +




)

– (p + )
)–

<
p∑

m=

(
(p + ) –

(
p +




))–

+
∞∑

m=p+

((
m +




)

– (p + )
)–((

m +



)

+ (p + )
)–

<



(p + )
(

p +



)–

+



p–
∞∑

m=p+

((
m +




)

– (p + )
)–

. (.)

It can be easily shown that

(
m +




)

– (p + ) >



(
m – p) (m ≥ p + ) (.)

and

∞∑

m=p+

(
m – p)– < p– 

 . (.)

From (.), (.) and (.) we get

∞∑

m=o

∣∣∣∣

(
m +




)

– λ

∣∣∣∣
–

< p– + p– 
 < p–. (.)

From (.) and (.) we obtain

∥∥QR
λ

∥∥
σ(H) < p–

∞∑

n=

∥∥Q(x)ϕn
∥∥ (|λ| = bp

)
. �

Theorem . If the operator function Q(x) satisfies conditions (Q), (Q), (Q), and (Q),
then we have the formula

∞∑

m=

{ ∞∑

n=

[
λmn –

(
m +




)]
–


π

∫ π


tr Q(x) dx

}

=



[
tr Q(π ) – tr Q()

]
.

Proof By using Theorem ., Lemma . and Lemma ., we find

|Mp| =


π

∣∣∣∣
∫

|λ|=bp

tr
[(

QR
λ

)]dλ

∣∣∣∣

<


π

∫

|λ|=bp

∣∣tr
[(

QR
λ

)]∣∣|dλ|
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≤ 
π

∫

|λ|=bp

∥∥(
QR

λ

)∥∥
σ(H)|dλ|

≤ 
π

∫

|λ|=bp

∥∥QR
λ

∥∥∥∥QR
λ

∥∥
σ(H)|dλ|

≤ ‖Q‖
π

∫

|λ|=bp

∥∥R
λ

∥∥∥∥QR
λ

∥∥
σ(H)|dλ|

< c

∫

|λ|=bp

p– dλ

= π · bp · c · p– = πc(p + )p– < cp–. (.)

Here c is a positive constant.
By using formula (.), Lemma . and Lemma ., we find

|Mp| =


π

∣∣∣∣
∫

|λ|=bp

λ tr
[
Rλ

(
QR

λ

)]dλ

∣∣∣∣

≤ bp

π

∫

|λ|=bp

∥∥Rλ

(
QR

λ

)∥∥|dλ|

≤ bp

π

∫

|λ|=bp

‖Rλ‖
∥∥(

QR
λ

)∥∥
σ(H)|dλ|

≤ bp

π

∫

|λ|=bp

‖Rλ‖
∥∥(

QR
λ

)∥∥∥∥(
QR

λ

)∥∥
σ(H)|dλ|

≤ bp

π

∫

|λ|=bp

‖Rλ‖‖Q‖∥∥R
λ

∥∥∥∥QR
λ

∥∥
σ(H)|dλ|

< c · b
pp–

= c(p + )p– < cp–. (.)

From (.) and (.) we get

lim
p→∞ Mp = lim

p→∞ Mp = . (.)

From (.) and (.) we obtain

p∑

m=

{ ∞∑

n=

[
λmn –

(
m +




)]
–


π

∫ π


tr Q(x) dx

}

= –

π

p∑

m=

∫ π


tr Q(x) cos(m + )x dx + Mp + Mp. (.)

From (.) and (.) we find

∞∑

m=

{ ∞∑

n=

[
λmn –

(
m +




)]
–


π

∫ π


tr Q(x) dx

}

= –

π

∞∑

m=

∫ π


tr Q(x) cos(m + )x dx. (.)
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Moreover, using conditions (Q) and (Q), we get

–

π

∞∑

m=

∫ π


tr Q(x) cos(m + )x dx

= –


π

∞∑

m=

[∫ π


tr Q(x) cos mx dx – (–)m

∫ π


tr Q(x) cos mx dx

]

= –



{ ∞∑

m=

[

π

∫ π


tr Q(x) cos mx dx

]
cos m +

[

π

∫ π


tr Q(x) dx

]
cos 

}

+



{ ∞∑

m=

[

π

∫ π


tr Q(x) cos mx dx

]
cos mπ +

[

π

∫ π


tr Q(x) dx

]
cos π

}

=



[
tr Q(π ) – tr Q()

]
. (.)

From (.) and (.) we find

∞∑

m=

{ ∞∑

n=

[
λmn –

(
m +




)]
–


π

∫ π


tr Q(x) dx

}
=




[
tr Q(π ) – tr Q()

]
.

The theorem is proved. �
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