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Abstract
We describe the one-dimensional Čebyšëv subspaces of a JBW∗-tripleM by showing
that for a non-zero element x inM, Cx is a Čebyšëv subspace ofM if and only if x is a
Brown-Pedersen quasi-invertible element inM. We study the Čebyšëv
JBW∗-subtriples of a JBW∗-tripleM. We prove that for each non-zero Čebyšëv
JBW∗-subtriple N ofM, exactly one of the following statements holds:
(a) N is a rank-one JBW∗-triple with dim(N) ≥ 2 (i.e., a complex Hilbert space

regarded as a type 1 Cartan factor). Moreover, Nmay be a closed subspace of
arbitrary dimension andMmay have arbitrary rank;

(b) N =Ce, where e is a complete tripotent inM;
(c) N andM have rank two, but Nmay have arbitrary dimension ≥ 2;
(d) N has rank greater than or equal to three, and N =M.
We also provide new examples of Čebyšëv subspaces of classic Banach spaces in

connection with ternary rings of operators.
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Keywords: Čebyšëv/Chebyshev subspace; JBW∗-triples; Čebyšëv/Chebyshev
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1 Introduction
Let V be a subspace of a Banach space X. The subspace V is called a Čebyšëv (Chebyshev)
subspace of X if and only if for each x ∈ X there exists a unique point x ∈ V such that
dist(x, V ) = ‖x – x‖. The uniqueness of x plays a key role in this paper (see, for example,
Lemma  and Proposition ).

Let K be a compact Hausdorff space. A classical theorem due to Haar establishes that
an n-dimensional subspace V of the space C(K), of all continuous complex-valued func-
tions on K , is a Čebyšëv subspace of C(K) if and only if any non-zero f ∈ V admits at most
n –  zeros (cf. [] and the monograph [], p.). Having in mind the Riesz representa-
tion theorem and the characterization of the extreme points of the closed unit ball in the
dual space of C(K), we can easily see that, in the above conditions, V is an n-dimensional
Čebyšëv subspace of C(K) if and only if for every set {δt , . . . , δtn} of n-mutually orthogo-
nal pure states, we have V ∩ ⋂n

i= ker(δti ) = {}. This result implies that any non-zero f in
C(K) spans a Čebyšëv subspace of the latter space if and only if f is invertible in the algebra
C(K).

Later on, Stampfli proved in [], Theorem , that the scalar multiples of the unit element
in a von Neumann algebra M is a Čebyšëv subspace of M. In [], Legg et al. characterize the
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semi-Čebyšëv and finite dimensional Čebyšëv subspaces of K(H), the algebra of compact
operators on an infinite-dimensional Hilbert space H . They conclude that, for a separa-
ble Hilbert space H , there exist Čebyšëv subspaces of every finite dimension in K(H) [],
Theorem , when H is not separable, K(H) has no finite-dimensional Čebyšëv subspaces
[], Corollary .

Robertson continued with the study on Čebyšëv subspaces of von Neumann algebras in
[], where he established the following results.

Theorem  ([], Theorem ) Let x be a non-zero element in a von Neumann algebra M.
Then the one-dimensional subspace Cx is a Čebyšëv subspace of M if and only if there is
a projection p in the center of M such that px is left invertible in pM and ( – p)x is right
invertible in ( – p)M.

Theorem  ([], Theorem ) Let N be a finite dimensional ∗-subalgebra of an infinite
dimensional von Neumann algebra M. Suppose that N has dimension > . Then N is not a
Čebyšëv subspace of M.

Robertson and Yost prove in [], Corollary ., that an infinite dimensional C∗-algebra
A admits a finite dimensional ∗-subalgebra B which is also a Čebyšëv in A if and only if A
is unital and B = C.

The results proved by Robertson and Yost were complemented by Pedersen, who shows
that if A is a C∗-algebra without unit and B is a Čebyšëv C∗-subalgebra of A, then A = B
(compare [], Theorem ).

The previous results of Robertson [] and Pedersen [], Theorem  (see also []) also
prove the following which leads immediately to Theorem : for each non-zero element x
in a von Neumann algebra M, the following statements are equivalent:

(a) Cx is a Čebyšëv subspace of M;
(b) x is Brown-Pedersen quasi-invertible in M (see page  for the precise definition of

this notion);
(c) For each pure state (i.e., for each extreme point of the positive part of the closed unit

ball of M∗) ϕ ∈ M∗, and for each unitary u ∈ M, we have ϕ(x∗x) + ϕ(uxx∗u) > .
A renewed interest in Čebyšëv subspaces of C∗-algebras has led Namboodiri, Pramod

and Vijayarajan to revisit and generalize the previous contributions of Robertson, Yost and
Pedersen in [].

On the other hand, C∗-algebras can be regarded as elements in a strictly wider class of
complex Banach spaces called JB∗-triples (see Section  for the detailed definitions). Many
geometric properties studied in the setting of C∗-algebras have been also explored in the
bigger class of JB∗-triples. However, Čebyšëv subspaces and the theory of best approxima-
tions remains unexplored in the class of JB∗-triples. In this note we present the first results
about Čebyšëv subspaces and Čebyšëv subtriples in Jordan structures.

In Section  we prove that for a non-zero element x in a JBW∗-triple M, Cx is a Čebyšëv
subspace of M if and only if x is a Brown-Pedersen quasi-invertible element in M (see
Theorem ). This theorem generalizes the result established by Robertson in Theorem 
(cf. []), but it also adds a new perspective from an independent argument.

In Section  we establish a precise description of the JBW∗-subtriples of a JBW∗-triple M
which are Čebyšëv subspaces in M. We should remark that in the setting of von Neumann
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algebras and C∗-algebras, the scarcity of non-trivial Čebyšëv ∗-subalgebras is endorsed
by Theorems  and  and [, ]. The first main difference in the setting of JB∗-triples is
the existence of Čebyšëv JB∗-subtriples with arbitrary dimensions; complex Hilbert spaces
and spin factors give a complete list of examples (compare Remark  and comments before
it).

In our main result we give a complete description of all Čebyšëv JBW∗-subtriples of
an arbitrary JBW∗-triple (see Theorem ). We provide examples of infinite dimensional
proper Čebyšëv JBW∗-subtriples of JBW∗-triples (see Remark ). We apply the solution
of the minimum covering sphere problem in the Euclidean space �m

 to present new ex-
amples of Čebyšëv subspaces of classical Banach spaces (cf. Remark ) and to construct
an example of a rank-one Hilbert space which is a Čebyšëv JBW∗-subtriple of a rank-n
JBW∗-triple, where n is an arbitrary natural number (cf. Remark ).

It should be remarked at this point that the techniques applied by Robertson, Yost [,
] and Pedersen [] in the setting of von Neumann algebras do not make any sense in
the wider setting of JBW∗-triples. The techniques developed in this paper are completely
independent and provide new arguments to understand the Čebyšëv von Neumann sub-
algebras of a von Neumann algebra (Corollary ).

2 One-dimensional Čebyšëv subspaces of JBW∗-triples
A complex Jordan triple system is a complex linear space E equipped with a triple product
{x, y, z} which is bilinear and symmetric in the external variables and conjugate linear in
the middle one and satisfies the Jordan identity

L(x, y){a, b, c} =
{

L(x, y)a, b, c
}

–
{

a, L(y, x)b, c
}

+
{

a, b, L(x, y)c
}

(.)

for all x, y, a, b, c ∈ E, where L(x, y) : E → E is the linear mapping given by L(x, y)z = {x, y, z}.
A JB∗-triple is a complex Jordan triple system E which is a Banach space satisfying the

additional ‘geometric’ axioms:
(a) For each x ∈ E, the operator L(x, x) is hermitian with non-negative spectrum;
(b) ‖{x, x, x}‖ = ‖x‖ for all x ∈ E.
Every C∗-algebra is a JB∗-triple with respect to the triple product given by

{a, b, c} =


(
ab∗c + cb∗a

)
. (.)

Every JB∗-algebra (i.e., a complex Jordan Banach ∗-algebra with product denoted by x ◦ y
satisfying

∥
∥Ua

(
a∗)∥∥ = ‖a‖

for every element a, where Ua(x) := (a ◦ x) ◦ a – a ◦ x, cf. [], Section .) is a JB∗-triple
under the triple product defined by

{x, y, z} =
(
x ◦ y∗) ◦ z +

(
z ◦ y∗) ◦ x – (x ◦ z) ◦ y∗. (.)

The space B(H , K) of all bounded linear operators between complex Hilbert spaces, al-
though rarely is a C∗-algebra, is a JB∗-triple with the product defined in (.). In particular,
every complex Hilbert space is a JB∗-triple.



Jamjoom et al. Journal of Inequalities and Applications  (2015) 2015:288 Page 4 of 15

Other examples of JB∗-triples are given by the so-called Cartan factors. A Cartan factor
of type  is a JB∗-triple which coincides with the Banach space B(H , K) of bounded linear
operators between two complex Hilbert spaces, H and K , where the triple product is de-
fined by (.). Cartan factors of types  and  are JB∗-triples which can be identified with
the subtriples of B(H) defined by IIC = {x ∈ B(H) : x = –jx∗j} and IIIC = {x ∈ B(H) : x = jx∗j},
respectively, where j is a conjugation on H . A Cartan factor of type  is a spin factor, that
is, a complex Hilbert space provided with a conjugation x 	→ x, where the triple product
and the norm are defined by

{x, y, z} = 〈x/y〉z + 〈z/y〉x – 〈x/z̄〉ȳ,

and ‖x‖ = 〈x/x〉 +
√〈x/x〉 – |〈x/x〉|, respectively. The Cartan factors of types  and 

consist of finite dimensional spaces of matrices over the eight-dimensional complex Cayley
division algebra O; the type VI is the space of all hermitian  ×  matrices over O, while
the type V is the subtriple of  ×  matrices with entries in O (compare [, ] and [],
Section .).

A JB∗-triple W is called a JBW∗-triple if it has a predual W∗. It is known that a JBW∗-
triple admits a unique isometric predual, and its triple product is separately σ (W , W∗)-
continuous (see []). The second dual E∗∗ of a JB∗-triple E is a JBW∗-triple with respect
to a triple product which extends the triple product of E (cf. []).

For more details of the properties of JB∗-triples and JBW∗-triples, the reader is referred
to the monographs [] and [].

Given an element a in a JB∗-triple E, the symbol Q(a) will denote the conjugate linear
operator on E defined by Q(a)(x) = {a, x, a}.

An element e ∈ E is called a tripotent when {e, e, e} = e. Each tripotent e ∈ E induces
a decomposition of E, called the Peirce decomposition, in the form E = E(e) ⊕ E(e) ⊕
E(e), where Ei(e) is the i

 eigenspace of the operator L(e, e), i = , , . This decomposition
satisfies the following Peirce rules:

{
E(e), E(e), E

}
=

{
E(e), E(e), E

}
= 

and

{
Ei(e), Ej(e), Ek(e)

} ⊆ Ei–j+k(e),

when i – j + k ∈ {, , } and is zero otherwise. The projection Pk(e) of E onto Ek(e) is
called the Peirce k-projection. It is known that Peirce projections are contractive (cf. [],
Corollary .) and satisfy

P(e) = Q(e), P(e) = 
(
L(e, e) – Q(e)),

and

P(e) = IdE – L(e, e) + Q(e).

The separate weak∗-continuity of the triple product of a JBW∗-triple M implies that
Peirce projections associated with a tripotent e in M are weak∗-continuous.
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It is known that the Peirce- subspace E(e) is a JB∗-algebra with unit e, Jordan product
x ◦e y := {x, e, y} and involution x∗e := {e, x, e}, respectively. Since surjective linear isome-
tries and triple isomorphisms on a JB∗-triple coincide (cf. [], Proposition .), the triple
product in E(e) is uniquely given by

{x, y, z} =
(
x ◦e y∗e

) ◦e z +
(
z ◦e y∗e

) ◦e x – (x ◦e z) ◦e y∗e ,

x, y, z ∈ E(e).
We shall make use of the following property: given a tripotent e ∈ E and an element λ in

the unit sphere of C, the mapping

Sλ(e) : E → E, Sλ(e) = λP(e) + λP(e) + P(e) (.)

is a surjective linear isometry on E and a triple isomorphism (compare [], Lemma .).
A tripotent e ∈ E is said to be unitary if the operator L(e, e) coincides with the identity

map IE on E; that is, E(e) = E. We shall say that e is complete or maximal when E(e) = E.
When E(e) = P(e)(E) = Ce �= {}, we say that e is minimal.

The complete tripotents of a JB∗-triple E coincide with the real and complex extreme
points of its closed unit ball E (cf. [], Lemma . and [], Proposition . or [], The-
orem ..). Consequently, the Krein-Milman theorem assures that every JBW∗-triple ad-
mits an abundant set of complete tripotents [], Corollary ...

Let a be an element in a JB∗-triple E. It is known that the JB∗-subtriple Ea generated
by a identifies with some C(L), where ‖a‖ ∈ L ⊆ [,‖a‖] with L ∪ {} compact (cf. [],
Corollary .). Moreover, there exists a triple isomorphism � : Ea → C(L) such that
�(a)(t) = t.

When a is an element in a JBW∗-triple M, the sequence (a 
n– ) converges in the weak∗-

topology of M to a tripotent, denoted by r(a), called the range tripotent of a. The tripotent
r(a) is the smallest tripotent e ∈ M satisfying that a is positive in the JBW∗-algebra M(e)
(see [], p.). Clearly, the range tripotent r(a) can be identified with the characteristic
function χ(,‖a‖]∩L ∈ C(L)∗∗ (see [], beginning of Section ).

We recall that an element x in a Jordan algebra J with unit e is called invertible if there
exists an element y such that x ◦ y = e and x ◦ y = x. The element y is called the inverse
of x and is denoted by x–. The inverse of any element x in a Jordan algebra J is unique
whenever it exists. The set of all invertible elements in J is denoted by J –.

An element a in a JB∗-triple E is called von Neumann regular if and only if there exists
b ∈ E such that

Q(a)(b) = a, Q(b)(a) = b, and
[
Q(a), Q(b)

]
:= Q(a)Q(b) – Q(b)Q(a) = .

When a is von Neumann regular, the (unique) element b ∈ E satisfying the above con-
ditions is called the generalized inverse of a and is denoted by a†. It is known that an
element a ∈ E is von Neumann regular if and only if Q(a) has norm-closed image if and
only if the range tripotent r(a) of a lies in E and a is a positive and invertible element of
the JB∗-algebra E(r(a)) (compare []). Furthermore, when a is von Neumann regular,
Q(a)Q(a†) = Q(a†)Q(a) = P(r(a)) and L(a, a†) = L(a†, a) = L(r(a), r(a)) [], p..
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Given a pair of elements a, b in a JB∗-triple E, the Bergmann operator associated to a
and b is the mapping B(a, b) : E → L(E) defined by B(a, b) = IdE – L(a, b) + Q(a)Q(b) (cf.
[], p.).

An element a in a JB∗-triple E is said to be Brown-Pedersen quasi-invertible (BP-quasi-
invertible for short) when it is von Neumann regular with generalized inverse b such that
the Bergmann operator B(a, b) vanishes; in such a case, b is called the BP-quasi-inverse of
a. The set of BP-quasi-invertible elements in E is denoted by E–

q (see []). It is established
in [] that an element a ∈ E is BP-quasi-invertible if and only if one of the following
equivalent statements holds:

(i) a is von Neumann regular, and its range tripotent r(a) is an extreme point of the
closed unit ball E of E (i.e., r(a) is a complete tripotent of E);

(ii) There exists a complete tripotent e ∈ E such that a is positive and invertible in the
JB∗-algebra E(e).

We recall that two elements a, b in a JB∗-triple E are said to be orthogonal (written
a ⊥ b) if L(a, b) = . Lemma  in [] shows that a ⊥ b if and only if one of the following
nine statements holds:

{a, a, b} = ; a ⊥ r(b); r(a) ⊥ r(b);

E∗∗


(
r(a)

) ⊥ E∗∗


(
r(b)

)
; r(a) ∈ E∗∗


(
r(b)

)
; a ∈ E∗∗


(
r(b)

)
; (.)

b ∈ E∗∗


(
r(a)

)
; Ea ⊥ Eb; {b, b, a} = .

Let e be a tripotent in a JB∗-triple E. Lemma .(a) in [] shows that

‖x + x‖ = max
{‖x‖,‖x‖

}

for every x ∈ E(e) and every x ∈ E(e). Combining this result with the equivalences in
(.), we see that

‖a + b‖ = max
{‖a‖,‖b‖}, (.)

whenever a and b are orthogonal elements in a JB∗-triple.
Given a subset M ⊆ E, we write M⊥

E (or simply M⊥) for the (orthogonal) annihilator of
M defined by M⊥

E = {y ∈ E : y ⊥ x,∀x ∈ M}. If e ∈ E is a tripotent, then {e}⊥ = E(e) and
{a}⊥ = (E∗∗)(r(a)) ∩ E for every a ∈ E (cf. [], Lemma .).

Lemma  Let V be a non-zero Čebyšëv subspace of a JBW∗-triple M. Then V ∩ M–
q �= ∅,

where M–
q denotes the set of BP-quasi-invertible elements of M.

Proof Arguing by contradiction, we suppose that V ∩ M–
q = ∅.

Let us take x ∈ V with ‖x‖ = . By assumptions, x /∈ M–
q . By [], Lemma ., there

exists a complete tripotent e in M such that r(x) ≤ e, where r(x) denotes the range tripotent
of x.

We shall identify the JB∗-subtriple Mx of M generated by x with some C(L), where
 = ‖x‖ ∈ L ⊆ [,‖x‖] with L ∪ {} compact (cf. [], Corollary .). We further know that
there exists a triple isomorphism � : Mx → C(L) such that �(x)(t) = t, and the range
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tripotent r(x) identifies with the characteristic function χ(,‖x‖]∩L ∈ C(L)∗∗ (see page ). It
is clear that, under this identification,

∥
∥r(x) – λx

∥
∥ ≤  if �e(λ) ≥ 


and |λ| = .

If e = r(x), since the element x is not invertible in the JBW∗-algebra M(r(x)),  lies in the
closure of L, and hence ‖e – λx‖ = ‖r(x) – λx‖ =  for every λ ∈ C with �e(λ) ≥ 

 and
|λ| = .

When e � r(x), we have ‖e – r(x)‖ = . Thus, applying e – r(x) ⊥ r(x) and (.), we further
know that for �e(λ) ≥ 

 and |λ| = ,

‖e – λx‖ =
∥
∥e – r(x) + r(x) – λx

∥
∥ = max

{∥
∥e – r(x)

∥
∥,

∥
∥r(x) – λx

∥
∥
}

= .

We observe that, since e is a complete tripotent, e ∈ M–
q , and hence e /∈ V . Since V is a

Čebyšëv subspace, there exists a unique best approximation cV (e) ∈ V of e in V satisfying
dist(e, V ) = ‖e – cV (e)‖ > .

If dist(e, V ) = ‖e – cV (e)‖ ≥ , we would have  = ‖e‖ ≥ dist(e, V ) = , and

 =
∥
∥e – cV (e)

∥
∥ = dist(e, V ) = ‖e – λx‖

for at least two values of λ, contradicting the uniqueness of the best approximation of e
in V . We can therefore assume that dist(e, V ) < . Consequently, there exits y ∈ V with
‖e – y‖ < . Corollary . in [] implies that y ∈ M–

q ∩ V , which is impossible. �

Let e be a tripotent in a JB∗-triple E. Let us recall that e is a tripotent in the JBW∗-triple
E∗∗, and that Peirce projections associated with e on E∗∗ are weak∗-continuous. Goldstine’s
theorem assures that E is weak∗-dense in E∗∗, and hence E∗∗

k (e) coincides with the weak∗-
closure of Ek(e) in E∗∗ for every k = , , . In particular, e is complete in E∗∗ whenever e is
a complete tripotent in E. Moreover, since the orthogonal complement of a tripotent e in
a JB∗-triple F coincides with F(e), we have the following.

Lemma  Let e be a complete tripotent in a JB∗-triple E. Then {e}⊥E∗∗ = {}, that is, e is not
orthogonal to any non-zero element in E∗∗.

The following technical result is part of the folklore in the theory of best approximation
(see [], Lemma  or [], Theorem .).

Lemma  ([], Lemma ) Let x be an element in a complex Banach space X such that Cx
is not a Čebyšëv subspace of X. Then there exists an extreme point φ of the closed unit ball
of X∗, a vector y ∈ X and a scalar λ ∈C\{} such that

(a) φ(x) = ;
(b) φ(y) = ‖y‖ = ‖y – λx‖.

We can characterize now the one-dimensional Čebyšëv subspaces of a JBW∗-triple.

Theorem  Let x be a non-zero element in a JBW∗-triple M. The following statements are
equivalent:
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(a) Cx is a Čebyšëv subspace of M;
(b) x is a Brown-Pedersen quasi-invertible element in M.

Proof The implication (a) ⇒ (b) follows from Lemma .
(b) ⇒ (a) Suppose that x is BP-quasi-invertible in M. We note that the support tripo-

tent r(x) of x is complete in M, and hence a complete tripotent in M∗∗ (cf. Lemma  and
comments before it).

Suppose that Cx is not a Čebyšëv subspace of M. By Lemma  there exists an extreme
point φ of the closed unit ball of M∗, λ ∈ C\{}, and y ∈ M such that φ(x) =  and φ(y) =
‖y‖ = ‖y – λx‖.

The support tripotent υ = s(φ) of φ in M∗∗ is a (non-zero) minimal tripotent in M∗∗

satisfying φ = P(υ)∗φ = φP(υ) and φ(z)υ = P(υ)(z), ∀z ∈ M∗∗ (cf. [], Proposition ).
Therefore, P(υ)(x) = φ(x)υ = .

We may suppose that ‖y‖ = . Since P(υ)(y) = φ(y)υ = υ , Lemma . in [] implies that
P(υ)(y) = , which shows that y = υ + P(υ)y. We similarly get P(υ)(y –λx) =  (we simply
observe that φ(y – λx) = ‖y‖ = ‖y – λx‖ = ). Therefore, P(υ)(x) = , and x = P(υ)x ∈
(M∗∗)(υ) = ((M∗∗)(υ))⊥, implying that x ⊥ υ . The equivalent statements in (.) prove
that r(x) ⊥ υ , which contradicts Lemma . �

The above Theorem  generalizes the previously commented results obtained by
Robertson in [] (compare Theorem ). We have been unable to find a triple version of the
reformulation established by Pedersen in [], Theorem , stated as statement (c) on page
. However, we do have a partial result in that direction.

For each functional ϕ in the predual of a JBW∗-triple W , and for each z in W with
ϕ(z) = ‖ϕ‖ and ‖z‖ = , the mapping x 	→ ‖x‖ϕ := (ϕ{x, x, z})/ defines a pre-Hilbertian
semi-norm on W . Moreover, ϕ{x, x, w} = ϕ{x, x, z} whenever w ∈ W with ϕ(w) = ‖ϕ‖ and
‖w‖ =  (cf. [], Proposition .). It is known that

∣
∣ϕ(x)

∣
∣ ≤ ‖x‖ϕ (.)

for every x ∈ W (see [], p.).
The inequality in (.) together with Lemma  imply the following property: Let x be

a non-zero element in a JBW∗-triple M such that Cx is a Čebyšëv subspace of M. Then,
for each extreme point ϕ of the closed unit ball of M∗, we have ‖x‖ϕ � . It would be
interesting to know under what additional hypothesis the condition ‖x‖ϕ �  for every
extreme point ϕ of the closed unit ball of M∗ implies that x is BP-quasi-invertible.

3 Čebyšëv subtriples of JBW∗-triples
In this section, we shall determine the JBW∗-subtriples of a JBW∗-triple M which are
Čebyšëv subspaces in M. The scarcity of non-trivial Čebyšëv C∗-subalgebras in general
C∗-algebras can be better understood with the following result due to Pedersen: If A is a
C∗-algebra without unit and B is a Čebyšëv C∗-subalgebra of A, then A = B (compare [],
Theorem ).

The first main difference in the setting of JB∗-triples is the existence of Čebyšëv JB∗-
subtriples with arbitrary dimensions. For example, let E = H be a complex Hilbert space
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regarded as a type  Cartan factor with the Hilbert norm and the product

{x, y, z} =


(〈x, y〉z + 〈z, y〉x)

, (.)

where 〈·, ·〉 denotes the inner product of H . It is known that elements in the unit sphere of
a complex Hilbert H space regarded as a type  Cartan factor are precisely the complete
tripotents of H . The orthogonal projection theorem tells that any closed subspace of H is
a Čebyšëv subspace of H and clearly a JB∗-subtriple.

The following remark provides an additional example.

Remark  Let E be a spin factor with triple product and norm, equivalent to the Hilbert
norm, given by

{x, y, z} = 〈x/y〉z + 〈z/y〉x – 〈x/z̄〉ȳ,

and ‖x‖ = 〈x/x〉 +
√〈x/x〉 – |〈x/x〉|, respectively, where x 	→ x is a conjugation on E, and

〈·/·〉 denotes the inner product of E. Let K be a closed subspace of E with K = K . Clearly, K
is a JB∗-subtriple of E. Since K is a closed subspace of the complex Hilbert space E, there
exists an orthogonal projection P of E onto K and E = K ⊕ H , where H = (I – P)(E) with
〈K/H〉 = . Since K = K , we also have H = H . Given η ∈ K and ξ ∈ H , since |〈ξ /ξ 〉| ≤ 〈ξ /ξ 〉,
it is easy to check that

‖η + ξ‖ = 〈η + ξ /η + ξ 〉 +
√

〈η + ξ /η + ξ 〉 –
∣
∣〈η + ξ /η + ξ 〉∣∣

= 〈η/η〉 + 〈ξ /ξ 〉 +
√

〈η/η〉 –
∣
∣〈η/η〉∣∣ + 〈ξ /ξ 〉 –

∣
∣〈ξ /ξ〉∣∣

≥ 〈η/η〉 +
√

〈η/η〉 –
∣
∣〈η/η〉∣∣ = ‖η‖.

Moreover, ‖η + ξ‖ = ‖η‖ if and only if ξ = . We also have ‖η + ξ‖ ≥ ‖ξ‖, and ‖η + ξ‖ = ‖ξ‖
if and only if η = . Thus, if x = η + ξ , dist(x, K) = infη′∈K ‖η + ξ – η′‖ ≥ ‖ξ‖ = ‖x – P(x)‖,
showing that P(x) is a best approximation to x. Moreover, if for some η′ ∈ K , ‖ξ‖ = ‖x –
P(x)‖ = ‖x – η′‖ = ‖(η – η′) + ξ‖, then η′ = η = P(x). Therefore, K is a Čebyšëv JB∗-subtriple
of E. We observe that the dimensions of E and K can be arbitrarily big.

We can present now our conclusions on Čebyšëv JB∗-subtriples.
The next property of Čebyšëv subspaces is probably part of the folklore in the theory of

best approximation in normed spaces, but we could not find an exact reference.

Lemma  Let V be a Čebyšëv subspace of a normed space X. For each x ∈ X, we denote
by cV (x) the unique element in V satisfying ‖x – cV (x)‖ = dist(x, V ). Let P : X → X be a
contractive projection such that P(V ) ⊆ V . Then

P
(
cV

(
P(x)

))
= cV

(
P(x)

)

for every x ∈ X. Furthermore, P(V ) is a Čebyšëv subspace of the normed space P(X), and
for each x ∈ X, cP(V )(P(x)) = P(cV (x)).
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Proof Let x be an element in X. The condition ‖P‖ ≤  implies that

∥
∥P(x) – P

(
cV

(
P(x)

))∥
∥ ≤ ∥

∥P(x) – cV
(
P(x)

)∥
∥ = dist

(
P(x), V

)
.

The element P(cV (P(x))) ∈ P(V ) ⊆ V . Thus, the uniqueness of the best approximation in
V proves that P(cV (P(x))) = cV (P(x)). The rest is clear. �

Proposition  Let F be a Čebyšëv JB∗-subtriple of a JB∗-triple E. Suppose that e is a non-
zero tripotent in F . Then E(e) = F(e). Consequently, every complete tripotent in F is com-
plete in E.

Proof Since e is a tripotent in F and the latter is a JB∗-subtriple of E, e is a tripotent in E and
F(e) ⊆ E(e). Arguing by contradiction, let us assume that there exists b ∈ E(e)\F(e) =
E(e)\F �= ∅. Since dist(b, F) >  and F is a Čebyšëv subspace, there exists a unique cF (b) ∈ F
such that ‖b – cF (b)‖ = dist(b, F).

Since P(e)(F) ⊆ F and P(e)(b) = b, Lemma  implies that

P(e)
(
cF (b)

)
= cF (b) ∈ F(e).

Having in mind that e ∈ E(e) ⊥ E(e) � b – cF (b), we deduce, via (.), that

∥
∥b – cF (b) – λe

∥
∥ = max

{∥
∥b – cF (b)

∥
∥, |λ|} =

∥
∥b – cF (b)

∥
∥ = dist(b, F)

for every |λ| ≤ dist(b, F). This contradicts the uniqueness of the best approximation cF (b)
of b in F because cF (b) + λe ∈ F for every |λ| ≤ dist(b, F). �

Proposition  Let F be a Čebyšëv JB∗-subtriple of a JB∗-triple E. Suppose that e is a
tripotent in F with F(e) = {e}⊥F �= . Then E(e) = F(e).

Proof Clearly Fj(e) ⊆ Ej(e) for j = , , . We have to show that E(e) ⊆ F(e). Suppose, on
the contrary, that E(e)\F(e) = E(e)\F �= ∅. Pick b ∈ E(e)\F . Since F is a Čebyšëv sub-
space of E, there exists a unique cF (b) ∈ F satisfying ‖b – cF (b)‖ = dist(b, F) > .

By Lemma  applied to P = P(e), X = E and V = F , we deduce that P(e)(cF (b)) = cF (b).
By hypothesis, F(e) = {e}⊥F �= . So, there exists a norm-one element z ∈ F(e). The con-

ditions b ∈ E(e), cF (b) ∈ F(e) and z ∈ F(e) combined with (.) give

∥
∥b – cF (b) – λz

∥
∥ = max

{∥
∥b – cF (b)

∥
∥, |λ|} =

∥
∥b – cF (b)

∥
∥ = dist(b, F)

for every |λ| ≤ dist(b, F), which contradicts the uniqueness of the best approximation of b
in F because cF (b) – λz ∈ F for every λ. �

Let e and v be tripotents in a JB∗-triple E. We shall say that v ≤ e, when e – v is a tripotent
in E with e – v ⊥ v (compare the notation in []).

Let E be a JB∗-triple. A subset S ⊆ E is said to be orthogonal if  /∈ S and x ⊥ y for every
x �= y in S. The minimal cardinal number r satisfying card(S) ≤ r for every orthogonal
subset S ⊆ E is called the rank of E (and will be denoted by r(E)). Given a tripotent e ∈ E,
the rank of the Peirce- subspace E(e) will be called the rank of e.
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Theorem . in [] combined with Proposition .(iii) in [] assures that a JB∗-triple
is reflexive if and only if it is isomorphic to a Hilbert space if and only if it has finite rank.

Suppose that E is a rank-one JB∗-triple. The above comments show that E is reflexive
and hence a JBW∗-triple. Let e be a complete tripotent in E. Since the rank of e is smaller
than the rank of E, we deduce that e is a minimal tripotent in E. Proposition . in []
and its proof show that E = {e}⊥⊥ = {}⊥ is a rank-one Cartan factor of the form L(H ,C),
where H is a complex Hilbert space or a type  Cartan factor II (it is known that II is
JB∗-triple isomorphic to a three-dimensional complex Hilbert space). We have proved the
following.

Lemma  Every JB∗-triple of rank one is JB∗-isomorphic (and hence isometric) to a com-
plex Hilbert space regarded as a type  Cartan factor. �

The above result is also stated in [], Corollary in p..
We have already commented that orthogonal elements are M-orthogonal in the sense

of the geometric theory of Banach spaces (see (.)). We shall state next other results of
a geometric nature. Let u and v be two non-zero tripotents in a JB∗-triple E. We recall
that u and v are colinear (written u� v) when u ∈ E(v) and v ∈ E(u) (cf. [], p.).
Suppose u� v in E. Clearly, the JB∗-subtriple Eu,v of E generated by u and v is algebraically
isomorphic to Cu ⊕ Cv. We observe that u and v are minimal colinear tripotents in Eu,v.
It follows from [], Proposition , that Eu,v is JB∗-triple isomorphic and hence isometric
to M,(C) (regarded as a type  Cartan factor). We, consequently, have

‖λu + μv‖ =
(|λ| + |μ|) 

 (.)

for every λ,μ ∈ C. It should be also noted here that, in a Hilbert space F regarded as a type
 Cartan factor with product given in (.), the tripotents in F are precisely the elements
in its unit sphere, and the relation of being Hilbert-orthogonal is exactly the relation of
colinearity in terms of the triple product.

We have shown several examples of Hilbert spaces (regarded as a type  Cartan factor)
which are Čebyšëv JB∗-subtriples of JB∗-triples of rank one and two. We present next more
examples of Hilbert spaces which are Čebyšëv JB∗-subtriples of JB∗-triples having a bigger
rank. The first example is a construction with classical Banach spaces and the second one
is an isometric translation to the setting of JB∗-triples.

Remark  Let H be complex Hilbert space of dimension two with norm denoted by

‖ · ‖. We consider the Banach space X =

(n)
︷ ︸︸ ︷
H ⊕�∞ · · · ⊕�∞ H (n ≥ ). Let {ξ, ξ} be an

orthonormal basis of H . Each h ∈ H writes uniquely in the form h = λξ + λξ. Let V
denote the two-dimensional subspace of X generated by the vectors e = (ξ, . . . , ξ) and
e = (ξ, . . . , ξ). That is, every vector in V is of the form λe + μe. Clearly,

‖λe + μe‖ =
∥
∥λ(ξ, . . . , ξ) + μ(ξ, . . . , ξ)

∥
∥



= max
i=,...,n

‖λξ + μξ‖ =
√

|λ| + |μ|,

and hence V is isometrically isomorphic to a Hilbert space.
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We claim that V is a Čebyšëv subspace of X. Indeed, let x = (h, . . . , hn) be an element in
X and let λe + μe ∈ V . We write hi = λi

ξ + λi
ξ. We write the formula for the distance

from x to V in the form:

dist(x, V ) = inf
λ,μ∈C

∥
∥(h, . . . , hn) – λe – μe

∥
∥

= inf
λ,μ∈C

max
i=,...,n

∥
∥λi

ξ + λi
ξ – λξ – μξ

∥
∥



= inf
λ,μ∈C

max
i=,...,n

(∣
∣λi

 – λ
∣
∣ +

∣
∣λi

 – μ
∣
∣) 



= inf
λ,μ∈C

max
i=,...,n

distC
((

λi
,λi


)
, (λ,μ)

)
.

Our problem is equivalent to determining a point (λ,μ) ∈C
 so that the maximum Eu-

clidean distance from (λ,μ) to the points (λi
,λi

) ∈ C
 (i = , . . . , n) is minimized, where

C
 is equipped with the Euclidean distance ‖(λ,μ)‖ =

√|λ| + |μ|. This problem is com-
monly called ‘the Euclidean delivery problem’ or ‘the min-max location problem’ or ‘the
minimum covering sphere problem’. It is known that an equivalent reformulation of the
problem is

Min
{
ρ : (λ,μ) ∈C

,ρ > ,
∥
∥
(
λi

,λi

)

– (λ,μ)
∥
∥

 ≤ ρ,∀i
}

.

The goal is to find the circle of center (λ,μ) ∈C
 of smallest radius ρ that encloses all the

points (λi
,λi

) ∈C
 (i = , . . . , n).

It is well known that a solution to the minimum covering sphere problem always exists,
the center (λ,μ) and the radius ρ are unique (cf. [, ]). This shows that every element
x = (λ

ξ + λ
ξ, . . . ,λn

 ξ + λn
ξ) in X admits a unique best approximation in V , which

proves the claim.

Remark  Let e and u be two colinear complete tripotents in a JB∗-triple E. Let us assume
that we can find two sets {e, . . . , en} and {u, . . . , un} of mutually orthogonal tripotents in
E(e) and E(u), respectively, such that ei �ui for all i and ui ⊥ ej for every i �= j. Take, for
example, E = Mn×(n)(C), e =

∑n
i= wi,i, u =

∑n
i= wi,i+n, ei = wi,i and ui = e = wi,i+n, where wi,j

is the matrix with entry  at the position i, j and zero elsewhere.
Let F be the JB∗-subtriple of E generated by {e, . . . , en, u, . . . , un}, and let W be the closed

JB∗-subtriple of F generated by {e, u}. For each i ∈ {, . . . , n}, ei �ui and hence

‖λiei + μiui‖ =
√

|λi| + |μi|,

that is, the subtriple Fi generated by ei and ui is a two-dimensional complex Hilbert space
(cf. (.)). Since, for each i �= j, {ei, ui} ⊥ {ej, uj}, that is, Fi ⊥ Fj, we deduce from (.) that
‖xi + xj‖ = max{‖xi‖,‖xj‖} for every xi ∈ Fi, xj ∈ Fj, i �= j. Having in mind that F = F ⊕�∞

· · · ⊕�∞ Fn and Fi ≡ �
, we can easily see that F is isometrically isomorphic to the space

X in Remark . It is also easy to see that under the natural isometric identification of F
and X in Remark , the JB∗-subtriple W is identified with the subspace V in that remark.
Therefore, it follows that W is a Čebyšëv JB∗-subtriple of F . The JB∗-triple F has been
constructed to have rank n.
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The theorem describing the Čebyšëv JBW∗-subtriples of a JBW∗-triple can be stated
now. We shall show that the examples given in Remarks  and  are essentially the unique
examples of non-trivial Čebyšëv JBW∗-subtriples.

Theorem  Let N be a non-zero Čebyšëv JBW∗-subtriple of a JBW∗-triple M. Then ex-
actly one of the following statements holds:

(a) N is a rank-one JBW∗-triple with dim(N) ≥  (i.e., a complex Hilbert space regarded
as a type  Cartan factor). Moreover, N may be a closed subspace of arbitrary
dimension and M may have arbitrary rank;

(b) N = Ce, where e is a complete tripotent in M;
(c) N and M have rank two, but N may have arbitrary dimension ≥ ;
(d) N has rank greater than or equal to three, and N = M.

Proof We can always find a complete tripotent e in N (see the comments on page ).
Proposition  implies that e is complete in M (i.e., M(e) = {}). We have three possi-
bilities:

(i) e has rank one in N ;
(ii) e has rank two in N ;

(iii) e has rank greater than or equal to three in N .
(i) Suppose first that e has rank one in N . In this case, e is a minimal and complete

tripotent in N and a complete tripotent in M. Therefore, N is a complex Hilbert space
regarded as a type  Cartan factor (cf. Lemma  or Proposition . in []). If dim N = ,
then (b) holds. If dim N ≥ , (a) holds.

In the latter case, the examples given before Remark  and in Remark  show that N
may have arbitrary dimension and M may have rank as big as desired.

(ii) We assume now that e has rank two in N . Then there exist two non-zero minimal,
mutually orthogonal tripotents e, e ∈ N with e = e + e. Propositions  and  show that
M(ej) = N(ej), and M(ej) = N(ej) �= {} for every j in {, }. Since M(ej) = N(ej) = Cej,
we deduce that e and e are minimal tripotents in M. We also know that e = e + e is a
complete tripotent in M (i.e., M = M(e) ⊕ M(e)), which proves that M has rank two. The
statement concerning the dimension of N follows from the example in Remark . Thus (c)
holds.

(iii) Suppose now that e has rank greater than or equal to three in N . We shall show that
M = N . Under the present assumptions, we can find three non-zero mutually orthogonal
tripotents e, e, e with e + e + e = e. Clearly, N(ej + ek) �= {} for every k �= j in {, , }.
Propositions  and  assure that M(ej + ek) = N(ej + ek), M(ej + ek) = N(ej + ek), M(ej) =
N(ej), and M(ej) = N(ej) for every k �= j in {, , }. In the Peirce decomposition

M = M(e) ⊕ M(e) ⊕ M(e),

we have M(e) = N(e) and M(e) = N(e). We shall show that M(e) ⊆ N .
Pick x ∈ M(e). Since e ⊥ ej (j = , ), we have M(e) ∩ M(ej) = {} for j = , . There-

fore,

x = P(e)(x) + P(e)(x),

where P(e)(x) ∈ M(e) = N(e) ⊆ N .
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We next show that P(e)(x) ∈ N . Since




P(e)(x) +



P(e)(x) =



x = {e, e, x}

=
{

e, e, P(e)(x)
}

+
{

e, e, P(e)(x)
}

,

it follows from Peirce rules that




P(e)(x) =
{

e, e, P(e)(x)
}

,

and hence P(e)(x) ∈ M(e) ∩ M(e). The condition e ⊥ e leads us to {e + e, e +
e, P(e)(x)} = P(e)(x), which means that

P(e)(x) ∈ M(e + e) = N(e + e) ⊆ N .

We have therefore shown that x = P(e)(x) + P(e)(x) ∈ N , which implies that M(e) ⊆ N
and, consequently, M = N . This concludes the proof. �

Let us recall that a C∗-algebra is reflexive if and only if it is finite dimensional (cf. [],
Proposition ). Consequently, a C∗-algebra has finite rank if and only if it is finite dimen-
sional. It is further known that a C∗-algebra A has rank one if and only if A = C. In par-
ticular, the result established by Robertson in [], Theorem  (see Theorem ) is a direct
consequence of our last theorem.

Corollary  Let M be an infinite dimensional von Neumann algebra. Let N be a Čebyšëv
von Neumann subalgebra of M. Then N = C or M = N . �

We have already seen that, for each natural n, we can find a complex Hilbert space (of
dimension two) which is a Čebyšëv JB∗-subtriple of a JB∗-triple having rank n. It is natural
to ask whether we can find a precise description of those complex Hilbert spaces which are
Čebyšëv JBW∗-subtriples of a JBW∗-triple. Another general question that remains open
in this paper is the following:

Problem  Determine the Čebyšëv JB∗-subtriples of a general JB∗-triple.
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