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Abstract
Lutwak and Zhang proposed the concept of Lp-centroid bodies. Then Feng and Wang
gave the notion of general Lp-centroid bodies. In this article, based on the Lp-dual
affine surface area, we address Shephard type problems for the general Lp-centroid
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1 Introduction and main results
Let Kn denote the set of convex bodies (compact, convex subsets with non-empty inte-
riors) in Euclidean space R

n. For the set of convex bodies containing the origin in their
interiors, the set of convex bodies whose centroid lie at the origin and the set of origin-
symmetric convex bodies in R

n, we write Kn
o , Kn

c , and Kn
os, respectively. Sn

o , Sn
os, respec-

tively, denote the set of star bodies (about the origin) and the set of origin-symmetric star
bodies in R

n. Let Sn– denote the unit sphere in R
n, and V (K) denotes the n-dimensional

volume of body K . For the standard unit ball B in R
n, denote ωn = V (B).

In , Lutwak and Zhang [] gave the concept of an Lp-centroid body as follows: For
each compact star-shaped about the origin K ⊂R

n, real p ≥ , the Lp-centroid body, �pK ,
of K is an origin-symmetric convex body whose support function is defined by

hp
�pK (u) =


cn,pV (K)

∫
K

|u · x|p dx

for any u ∈ Sn–. Here

cn,p = ωn+p/ωωnωp–. (.)

Meanwhile, they [] obtained the Lp-centroid affine inequality, which implies the well-
known Blaschke-Santaló inequality. Hereafter, associating the Lp-centroid bodies with the
Lp-projection bodies, Lutwak et al. [] established the Lp-Busemann-Petty centroid in-
equality and the Lp-Petty projection inequality. For the studies of Lp-centroid bodies, also
see [–].

In , Ludwig [] introduced a function ϕτ : R → [, +∞) by

ϕτ (t) = |t| + τ t (.)
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for τ ∈ [–, ]. Further, in [] the general Lp-moment bodies and the general Lp-projection
bodies were defined by (.). In , Haberl and Schuster [] derived the general
Lp-moment body (the general Lp-projection body) is an Lp-Minkowski combination of
the asymmetric Lp-moment body (the asymmetric Lp-projection body) and established
the general Lp-Busemann-Petty centroid inequality and the general Lp-Petty projection
inequality.

Recently, motivated by Ludwig’s, and Haberl and Schuster’s work, Feng et al. [] defined
asymmetric Lp-centroid bodies as follows: For K ∈ Sn

o , p ≥ , the asymmetric Lp-centroid
body, �+

p K , of K is a convex body whose support function is defined by

hp
�+

p K (u) =


cn,pV (K)

∫
K

(u · x)p
+ dx

for any u ∈ Sn–. Using polar coordinates in the above definition, we easily obtain, for any
u ∈ Sn–,

hp
�+

p K (u) =


cn,p(n + p)V (K)

∫
Sn–

(u · v)p
+ρK (v)n+p dv, (.)

where (u · x)+ = max{u · x, }, cn,p satisfies (.) and the integration is with respect to
Lebesgue measure on Sn–. Obviously, �+

p B = B. They also defined

�–
p K = �+

p (–K).

By (.), Feng et al. [] introduced the general Lp-centroid bodies: For K ∈ Sn
o , p ≥ ,

and τ ∈ [–, ], the general Lp-centroid body, �τ
p K , of K is a convex body whose support

function is defined by

hp
�τ

p K (u) =


cn,p(τ )V (K)

∫
K

ϕτ (u · x)p dx

=


cn,p(τ )(n + p)V (K)

∫
Sn–

ϕτ (u · v)pρK (v)n+p dv, (.)

where

cn,p(τ ) = cn,p
[
( + τ )p + ( – τ )p]

and cn,p satisfies (.).
Obviously, �τ

p B = B, and if τ = , then �τ
p K = �pK .

From the definition of �±
p K and (.), it follows that if K ∈ Sn

os, p ≥ , and τ ∈ [–, ],
then, for any u ∈ Sn–,

h
(
�τ

p K , u
)p = f(τ )h

(
�+

p K , u
)p + f(τ )h

(
�–

p K , u
)p, (.)

where

f(τ ) =
( + τ )p

( + τ )p + ( – τ )p , f(τ ) =
( – τ )p

( + τ )p + ( – τ )p . (.)
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From (.), we know that

f(–τ ) = f(τ ), f(–τ ) = f(τ ), (.)

f(τ ) + f(τ ) = . (.)

The general Lp-centroid bodies belong to a new and rapidly evolving asymmetric Lp

Brunn-Minkowski theory that has its origins in the work of Ludwig, Haberl, and Schuster
(see [, , –]). For the further researches of asymmetric Lp Brunn-Minkowski theory,
also see [, –].

In , Lutwak [] introduced the concept of an Lp-affine surface area as follows: For
K ∈Kn

o and p ≥ , the Lp-affine surface area, �p(K), of K is defined by

n– p
n �p(K)

n+p
n = inf

{
nVp

(
K , Q∗)V (Q)

p
n : Q ∈ Sn

o
}

,

where Vp(M, N) denotes the Lp-mixed volume of M, N ∈Kn
o .

Further, Wang and Leng [] defined ith Lp-mixed affine surface area, �p,i(K), of K (for
i = , �p,(K) is just the Lp-affine surface area �p(K)) and extended some of Lutwak’s
results. Regarding the studies of an Lp-affine surface area, many results have been obtained
(see [–]).

Associated with the Lp-dual mixed volumes, Wang and He [] gave the notion of the
Lp-dual affine surface area. For K ∈ Sn

o and  ≤ p < n, the Lp-dual affine surface area,
�̃–p(K), of K is defined by

n
p
n �̃–p(K)

n–p
n = inf

{
nṼ–p

(
K , Q∗)V (Q)– p

n : Q ∈Kn
c
}

, (.)

where Ṽ–p(M, N) denotes the Lp-dual mixed volume of M, N ∈ Sn
o .

In , Feng and Wang [] improved definition (.) from Q ∈Kn
c to Q ∈ Sn

os as follows:
For K ∈ Sn

o and  ≤ p < n, the Lp-dual affine surface area, �̃–p(K), of K is defined by

n
p
n �̃–p(K)

n–p
n = inf

{
nṼ–p

(
K , Q∗)V (Q)– p

n : Q ∈ Sn
os
}

. (.)

Let Z∗
p denote the set of polar of all Lp-projection bodies, then Z∗

p ⊆ Sn
os. If Q ∈ Z∗

p in (.),
write �̃o

–p(K) by

n
p
n �̃o

–p(K) = inf
{

nṼ–p
(
K , Q∗)V (Q)

p
n : Q ∈Z∗

p
}

. (.)

According to (.) and (.), Feng and Wang [] studied the Shephard type problems
for the Lp-centroid bodies. First, they gave an affirmative form of the Shephard type prob-
lems for the Lp-centroid bodies as follows.

Theorem .A For K , L ∈ Sn
o ,  ≤ p < n, if �pK ⊆ �pL, then

�̃o
–p(K)

n–p
n

V (K)
≤ �̃o

–p(L)
n–p

n

V (L)
,

with equality if and only if �pK = �pL.
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Hereafter, combining with definition (.) of the Lp-dual affine surface area, the authors
[] gave an improved form of the Shephard type problems for the Lp-centroid bodies.

Theorem .B For K ∈ Sn
o , L ∈ Sn

os and  ≤ p < n, if �pK = �pL, then

�̃–p(K) ≤ �̃–p(L),

with equality if and only if K = L.

Finally, they [] obtained a negative form of the Shephard type problems for the
Lp-centroid bodies.

Theorem .C For L ∈ Sn
o and  ≤ p < n, if L is not origin-symmetric star body, then there

exists K ∈ Sn
os, such that

�pK ⊂ �pL,

but

�̃–p(K) > �̃–p(L).

In this paper, associated with definition (.) of the Lp-dual affine surface area, we
will research the Shephard type problems for the general Lp-centroid bodies. For con-
venience, we improve definition (.) as follows: Let Zτ ,∗

p denote the set of polar of all
general Lp-projection bodies, for K ∈ Sn

o and  ≤ p < n, the Lp-dual affine surface area,
�̃�

–p(K), of K is given by

n
p
n �̃�

–p(K)
n–p

n = inf
{

nṼ–p
(
K , Q∗)V (Q)

p
n : Q ∈Zτ ,∗

p
}

. (.)

From definition (.), we first give an affirmative form of the Shephard type problems
for the general Lp-centroid bodies, i.e., a general form of Theorem .A is obtained.

Theorem . For K , L ∈ Sn
o ,  ≤ p < n, and τ ∈ [–, ], if �τ

p K ⊆ �τ
p L, then

�̃�
–p(K)

n–p
n

V (K)
≤ �̃�

–p(L)
n–p

n

V (L)
, (.)

with equality if and only if �τ
p K = �τ

p L.

Next, corresponding to Theorem .B and combining with definition (.), we get an
improved form of the Shephard type problems for the general Lp-centroid bodies.

Theorem . Let K ∈ Sn
o , L ∈ Sn

os,  ≤ p < n, and τ ∈ [–, ], if �τ
p K = �τ

p L, then

�̃–p(K) ≤ �̃–p(L), (.)

with equality if and only if K = L.
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Further, we prove a general version of Theorem .C, that is, a negative form of the
Shephard type problems for the general Lp-centroid bodies is given.

Theorem . For L ∈ Sn
o ,  ≤ p < n, and τ ∈ (–, ), if L is not origin-symmetric star body,

then there exists K ∈ Sn
o (for τ = , K ∈ Sn

os), such that

�τ
p K ⊂ �τ

p L,

but

�̃–p(K) > �̃–p(L).

Besides, corresponding to Theorem .C, we generalize the scope of negative solutions
of the Shephard type problems for the Lp-centroid bodies from K ∈ Sn

os to K ∈ Sn
o .

Theorem . For L ∈ Sn
o and  ≤ p < n, if L is not origin-symmetric star body, then there

exists K ∈ Sn
o , such that

�pK ⊂ �pL,

but

�̃–p(K) > �̃–p(L).

The proofs of Theorems .-. are completed in Section . In order to prove our results,
we give two inequalities for the general Lp-harmonic Blaschke bodies in Section .

2 Preliminaries
2.1 Support function, radial function and polar
If K ∈ Kn, then its support function, hK = h(K , ·) : Rn → (–∞,∞), is defined by (see [,
])

h(K , x) = max{x · y : y ∈ K}, x ∈R
n,

where x · y denotes the standard inner product of x and y.
If K is a compact star-shaped (about the origin) in R

n, then its radial function, ρK =
ρ(K , ·) : Rn\{} → [, +∞), is defined by (see [, ])

ρ(K , x) = max{λ ≥  : λx ∈ K}, x ∈R
n\{}.

Given c > , we can get, for any u ∈ Sn–,

ρ(cK , u) = cρ(K , u). (.)

If ρK is positive and continuous, K will be called a star body (about the origin). Two
star bodies K and L are said to be dilates (of one another) if ρK (u)/ρL(u) is independent of
u ∈ Sn–.
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If E is a non-empty set in R
n, the polar set, E∗, of E is defined by (see [, ])

E∗ =
{

x ∈ R
n : x · y ≤ , y ∈ E

}
. (.)

From (.), we easily see that if K ∈ Sn
o , then K∗ ∈Kn

o (see []).

2.2 Lp-Dual mixed volumes
For K , L ∈ Sn

o , p ≥ , and λ,μ ≥  (not both zero), the Lp-harmonic radial combination,
λ � K +–p μ � L ∈ Sn

o , of K and L is defined by (see [])

ρ(λ � K +–p μ � L, ·)–p = λρ(K , ·)–p + μρ(L, ·)–p, (.)

where the operation ‘+–p’ is called Lp-harmonic radical addition and λ � K denotes the
Lp-harmonic radical scalar multiplication. From (.) and (.), we have λ � K = λ

– 
p K .

Associated with (.), Lutwak [] introduced the notion of an Lp-dual mixed volume
as follows: For K , L ∈ Sn

o , p ≥ , and ε > , the Lp-dual mixed volume, Ṽ–p(K , L), of K and
L is defined by (see [])

n
–p

Ṽ–p(K , L) = lim
ε→+

V (K +–p ε � L) – V (K)
ε

.

The definition above and Hospital’s rule give the following integral representation of an
Lp-dual mixed volume (see []):

Ṽ–p(K , L) =

n

∫
Sn–

ρ
n+p
K (u)ρ–p

L (u) du,

where the integration is with respect to spherical Lebesgue measure on Sn–.
The Lp-dual Minkowski inequality can be stated as follows (see []).

Theorem .A If K , L ∈ Sn
o , p ≥ , then

Ṽ–p(K , L) ≥ V (K)
n+p

n V (L)– p
n , (.)

with equality if and only if K and L are dilates.

2.3 General Lp-projection bodies
The general Lp-projection body was introduced by Ludwig (see []). For K ∈ Kn

o , p ≥ ,
and τ ∈ [–, ], the general Lp-projection body, �τ

pK ∈Kn
o , of K is given by

hp
�τ

pK (u) = αn,p(τ )
∫

Sn–
ϕτ (u · v)p dSp(K , v),

where ϕτ satisfies (.) and

αn,p(τ ) =
αn,p

( + τ )p + ( – τ )p

with αn,p = /cn,p(n + p)ωn.
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3 General Lp-harmonic Blaschke bodies
In order to prove our results, we require the notions of Lp-harmonic Blaschke combina-
tions and general Lp-harmonic Blaschke bodies.

For K , L ∈ Sn
o , p ≥ , and λ,μ ≥  (not both zero), the Lp-harmonic Blaschke combina-

tion, λ ∗ K +̂p μ ∗ L ∈ Sn
o , of K and L is defined by (see [])

ρ(λ ∗ K +̂p μ ∗ L, ·)n+p

V (λ ∗ K +̂p μ ∗ L)
= λ

ρ(K , ·)n+p

V (K)
+ μ

ρ(L, ·)n+p

V (L)
, (.)

where the operation ‘+̂p ’ is called Lp-harmonic Blaschke addition and λ ∗ K denotes
Lp-harmonic Blaschke scalar multiplication. From (.) and (.), we know λ ∗ K = λ


p K .

Let λ = μ = 
 and L = –K in (.), then the Lp-harmonic Blaschke body, ∇̂pK , of K ∈ Sn

o

is given by (see [])

∇̂pK =



∗ K +̂p



∗ (–K).

According to (.), Feng and Wang [] defined general Lp-harmonic Blaschke bodies
as follows: For K ∈ Sn

o , p ≥ , and τ ∈ [–, ], the general Lp-harmonic Blaschke body,
∇̂τ

p K = f(τ ) ◦ K +̂p f(τ ) ◦ (–K), of K is defined by

ρ(∇̂τ
p K , ·)n+p

V (∇̂τ
p K)

= f(τ )
ρ(K , ·)n+p

V (K)
+ f(τ )

ρ(–K , ·)n+p

V (–K)
, (.)

where f(τ ), f(τ ) satisfy (.).
Obviously, if τ = , then ∇̂τ

p K = ∇̂pK . In addition, if τ = ±, then we write ∇̂τ
p (K) = ∇̂±

p K ,
and ∇̂+

p K = K , ∇̂–
p K = –K .

For the Lp-harmonic Blaschke combination (.), Feng and Wang [] proved the fol-
lowing fact.

Theorem .A If K , L ∈ Sn
o , p ≥ , λ,μ ≥  (not both zero), then

V (λ ∗ K +̂p μ ∗ L)
p
n ≥ λV (K)

p
n + μV (L)

p
n , (.)

with equality if and only if K and L are dilates.

From Theorem .A, we easily get the following.

Corollary . If K ∈ Sn
o , p ≥ , and τ ∈ [–, ], then

V
(∇̂τ

p K
) ≥ V (K). (.)

For τ ∈ (–, ), equality holds if and only if K is origin-symmetric. For τ = ±, (.) is iden-
tic.

Proof For τ ∈ (–, ), taking λ = f(τ ), μ = f(τ ), and L = –K in (.), then by (.) we im-
mediately get inequality (.). According to the equality condition of inequality (.), we
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see that equality holds in inequality (.) if and only if K and –K are dilates, i.e., K is
origin-symmetric.

For τ = ±, by ∇̂+
p K = K and ∇̂–

p K = –K , we know that (.) is identic. �

Further, according to the Lp-harmonic Blaschke combination (.) and definition (.)
of the Lp-dual affine surface area, Feng and Wang [] gave the following result.

Theorem .B If K , L ∈ Sn
o , λ,μ ≥  (not both zero) and  ≤ p < n, then

�̃–p(λ ∗ K +̂p μ ∗ L)
n–p

n

V (λ ∗ K +̂p μ ∗ L)
≥ λ

�̃–p(K)
n–p

n

V (K)
+ μ

�̃–p(L)
n–p

n

V (L)
, (.)

with equality if and only if K and L are dilates.

Corollary . If K ∈ Sn
o ,  ≤ p < n, and τ ∈ [–, ], then

�̃–p
(∇̂τ

p K
) ≥ �̃–p(K). (.)

For τ ∈ (–, ), equality holds if and only if K is origin-symmetric. For τ = ±, (.) is iden-
tic.

Proof For τ ∈ (–, ), let λ = f(τ ), μ = f(τ ), and L = –K in (.), we obtain

�̃(∇̂τ
p K)

n–p
n

V (∇̂τ
p K)

≥ f(τ )
�̃–p(K)

n–p
n

V (K)
+ f(τ )

�̃–p(–K)
n–p

n

V (–K)
. (.)

For any Q ∈ Sn
os, using ρQ∗ (u) = ρ–Q∗ (u), for any u ∈ Sn–, we get

Ṽ–p
(
–K , Q∗) = Ṽ–p

(
K , Q∗). (.)

Associated with (.) and (.), we have

�̃–p(–K) = �̃–p(K). (.)

Thus by (.), (.), and (.), we know

(
�̃–p(∇̂τ

p K)
�̃–p(K)

) n–p
n

≥ V (∇̂τ
p K)

V (K)
.

This and inequality (.) yield inequality (.).
From the equality conditions of inequalities (.) and (.), we see that equality holds in

(.) if and only if K is origin-symmetric.
For τ = ±, obviously, (.) is identic. �

4 Proofs of theorems
In this section, we complete the proofs of Theorems .-.. In the proof of Theorem .,
we require a lemma as follows.
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Lemma . ([]) If K ∈ Sn
o , p ≥ , τ ∈ [–, ], then, for any Q ∈Kn

o ,

Vp
(
Q,�τ

p K
)

=
ωn

V (K)
Ṽ–p

(
K ,�τ ,∗

p Q
)
.

Proof of Theorem . Since �τ
p K ⊆ �τ

p L, for any Q ∈Kn
o ,

Vp
(
Q,�τ

p K
) ≤ Vp

(
Q,�τ

p L
)
, (.)

with equality if and only if �τ
p K = �τ

p L.
Therefore, from (.) and Lemma ., we have

Ṽ–p(K ,�τ ,∗
p Q)

V (K)
≤ Ṽ–p(L,�τ ,∗

p Q)
V (L)

. (.)

Let M = �τ
pQ, then M ∈ Zτ ,∗

p . From (.) and (.), we get

n
p
n �̃�

–p(K)
n–p

n

V (K)
= inf

{
nṼ–p(K , M∗)

V (K)
V (M)– p

n : M ∈Zτ ,∗
p

}

≤ inf

{
nṼ–p(L, M∗)

V (L)
V (M)– p

n : M ∈Zτ ,∗
p

}

=
n

p
n �̃�

–p(L)
n–p

n

V (L)
,

i.e., (.) is obtained.
According to the equality condition of (.), we know that the equality holds in (.) if

and only if �τ
p K = �τ

p L. �

The proof of Theorem . requires the following lemmas.

Lemma . ([]) For K , L ∈ Sn
o , p ≥ , if �pK = �pL, then, for any Q ∈ Sn

os,

Ṽ–p(K , Q)
V (K)

=
Ṽ–p(L, Q)

V (L)
.

Lemma . For K , L ∈ Sn
o , p ≥ , and τ ∈ [–, ], if �τ

p K = �τ
p L, then, for any Q ∈ Sn

os,

Ṽ–p(K , Q)
V (K)

=
Ṽ–p(L, Q)

V (L)
. (.)

Proof Let τ =  in (.), we have, for any u ∈ Sn–,

h(�pK , u)p =



h
(
�+

p K , u
)p +




h
(
�–

p K , u
)p. (.)

On the other hand, by (.), (.), (.), and (.), we see that, for any u ∈ Sn–,




h
(
�τ

p K , u
)p +




h
(
�–τ

p K , u
)p

=


[
f(τ )hp

�+
p K (u) + f(τ )hp

�–
p K (u)

]
+



[
f(–τ )hp

�+
p K (u) + f(–τ )hp

�–
p K (u)

]
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=


[
f(τ )hp

�+
p K (u) + f(τ )hp

�–
p K (u)

]
+



[
f(τ )hp

�+
p K (u) + f(τ )hp

�–
p K (u)

]

=



h
(
�+

p K , u
)p +




h
(
�–

p K , u
)p = h(�pK , u)p,

i.e., for any u ∈ Sn–,

h(�pK , u)p =



h
(
�τ

p K , u
)p +




h
(
�–τ

p K , u
)p. (.)

From this, if �τ
p K = �τ

p L, then �–τ
p K = �–τ

p L. Thus by (.) we obtain �pK = �pL. This
combined with Lemma . gives (.). �

Proof of Theorem . According to (.), we know

n
p
n �̃–p(K)

n–p
n

V (K)
= inf

{
n

Ṽ–p(K , Q∗)
V (K)

V (Q)– p
n : Q ∈ Sn

os

}
. (.)

Since �τ
p K = �τ

p L, thus from Lemma ., we get, for any Q ∈ Sn
os,

Ṽ–p(K , Q∗)
V (K)

=
Ṽ–p(L, Q∗)

V (L)
. (.)

Thus from (.) and (.), we have

�̃–p(K)
n–p

n

V (K)
=

�̃–p(L)
n–p

n

V (L)
,

i.e.,

(
�̃–p(K)
�̃–p(L)

) n–p
n

=
V (K)
V (L)

. (.)

But L ∈ Sn
os, thus taking Q = L in (.), and associated with inequality (.), we obtain

V (K) = Ṽ–p(K , L) ≥ V (K)
n+p

n V (L)– p
n ,

i.e.,

V (K) ≤ V (L).

This combined with (.), and noticing n > p, leads to (.).
According to the equality condition of (.), we see that equality holds in (.) if and

only if K = L. �

Now we complete the proofs of Theorems . and .. The following lemmas are re-
quired.

Lemma . If K ∈ Sn
o , p ≥ , τ ∈ [–, ], then

�+
p ∇̂τ

p K = �τ
p K (.)
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and

�–
p ∇̂τ

p K = �–τ
p K . (.)

Proof From (.) and (.), we have, for all u ∈ Sn–,

hp
�+

p ∇̂τ
p K (u) =


cn,p(n + p)V (∇̂τ

p K)

∫
Sn–

(u · v)p
+ρ∇̂τ

p K (v)n+p dv

=


cn,p(n + p)

∫
Sn–

(u · v)p
+

[
f(τ )

ρK (v)n+p

V (K)
+ f(τ )

ρ–K (v)n+p

V (–K)

]
dv

= f(τ )hp
�+

p K (u) + f(τ )hp
�+

p (–K )(u)

= f(τ )hp
�+

p K (u) + f(τ )hp
�–

p K (u) = hp
�τ

p K (u).

This immediately gives (.).
Similarly, we know that, for all u ∈ Sn–,

hp
�–

p ∇̂τ
p K (u) = hp

�–τ
p K (u).

This yields (.). �

Lemma . For L ∈ Sn
o , p ≥ , and τ ∈ (–, ), if L is not origin-symmetric, then there exists

K ∈ Sn
o (for τ = , K ∈ Sn

os) such that

�+
p K ⊂ �τ

p L, �–
p K ⊂ �–τ

p L,

but

�̃–p(K) > �̃–p(L).

Proof Since L is not origin-symmetric and τ ∈ (–, ), thus by Corollary . we know
�̃–p(∇̂τ

p L) > �̃–p(L). From this, choose ε >  such that  – ε > , and K = ( – ε)∇̂τ
p L ∈ Sn

o

(if τ =  then K ∈ Sn
os) satisfies

�̃–p(K) = �̃–p
(
( – ε)∇̂τ

p L
)

> �̃–p(L).

But by (.) and (.), and noticing that �±
p (cM) = c�±

p M (c > ), we, respectively, have

�+
p K = �+

p ( – ε)∇̂τ
p L = ( – ε)�+

p ∇̂τ
p L = ( – ε)�τ

p L ⊂ �τ
p L

and

�–
p K = �–

p ( – ε)∇̂τ
p L = ( – ε)�–

p ∇̂τ
p L = ( – ε)�–τ

p L ⊂ �–τ
p L. �

Proof of Theorem . Since L is not origin-symmetric and τ ∈ (–, ), thus by Lemma .,
there exists K ∈ Sn

o such that

�+
p K ⊂ �τ

p L, �–
p K ⊂ �–τ

p L,
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but

�̃–p(K) > �̃–p(L).

Because τ ∈ (–, ) is equivalent to –τ ∈ (–, ), we have �+
p K ⊂ �τ

p L, �–
p K ⊂ �–τ

p L im-
plying

�+
p K ⊂ �τ

p L, �–
p K ⊂ �τ

p L.

From this together with (.) and (.), we obtain, for any u ∈ Sn–,

h
(
�τ

p K , u
)p = f(τ )h

(
�+

p K , u
)p + f(τ )h

(
�–

p K , u
)p

< f(τ )h
(
�τ

p L, u
)p + f(τ )h

(
�τ

p L, u
)p = h

(
�τ

p L, u
)p,

i.e., �τ
p K ⊂ �τ

p L. �

Lemma . If K ∈ Sn
o , p ≥ , and τ ∈ [–, ], then

�p
(∇̂τ

p K
)

= �pK . (.)

Proof From (.), (.), (.), and (.), we have, for all u ∈ Sn–,

hp
�p∇̂τ

p K (u) =



hp
�+

p ∇̂τ
p K (u) +




hp
�–

p ∇̂τ
p K (u)

=



hp
�τ

p K (u) +



hp
�–τ

p K (u) = hp
�pK (u).

So (.) is obtained. �

Proof of Theorem . Since L is not origin-symmetric, for τ ∈ (–, ), by Corollary . we
know

�̃–p
(∇̂τ

p L
)

> �̃–p(L).

Choose ε > , such that  – ε >  and

�̃–p
(
( – ε)∇̂τ

p L
)

> �̃–p(L).

Let K = ( – ε)∇̂τ
p L, thus K ∈ Sn

o (if τ =  then K ∈ Sn
os) and �̃–p(K) > �̃–p(L).

But from Lemma . and �p(cM) = c�pM (c > ), we can get

�pK = �p( – ε)∇̂τ
p L = ( – ε)�p∇̂τ

p L = ( – ε)�pL ⊂ �pL. �
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