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Abstract
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1 Introduction
This study was motivated by the following two facts. There exists a compactly supported,
smooth Riesz wavelet basis such that the corresponding frame operator is bijective on
L(R), but not on Lp(R) for any specified  < p <  []. However, a frame operator is a
composition of a pre-frame operator and the adjoint operator of the pre-frame operator.
One therefore wonders whether the Riesz wavelet basis is complete in Lp(R),  < p < . The
second one was found in [], p.,, in which a Riesz wavelet basis with good behavior
was found to maybe be not complete in Lp(R),  < p < ∞. A more detailed understanding
of such wavelets can be found in Remark ..

This study confirms the bijectivity of the pre-wavelet (semi-orthogonal wavelet) frame
operator on Lp(R),  < p < ∞ (Theorem .). Due to bijectivity of the frame operator, it is
certain that the pre-frame operator of the wavelet basis is surjective on Lp(R),  < p < ∞.
The keys for proving Theorem . are that the dual wavelet basis of the pre-wavelet basis
has been constructed, and it has the same decay as the basis. In contrast, the two Riesz
wavelet bases discussed earlier had only put emphasis on the wavelet behavior, but they
ignored the behavior of a dual basis. It may yield negative results in the completeness of
the wavelet bases in Lebesgue spaces.

This paper is organized as follows. In Section , we give the relevant theory of wavelet
frames. In Section , we prove Lemma . and Theorems .-.. Finally, we give further
comments and examples in Section .

2 Preliminaries and notations
The bases in this paper are Schauder bases. Let B be a Banach space. A sequence {fk} ⊂ B
is called a basis if for all f ∈ B, there exists unique sequence of scalars {ak} such that

f =
∑

k

akfk .
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A basis {fk} is unconditional in a Banach space if any convergent series
∑

k akfk converges
unconditionally; that is, the series

∑
k aπ (k)fπ (k) converges to the same limit for all permu-

tations π of N (or Z). It is well known that unconditional bases can be characterized as
follows.

Theorem . ([], Theorem .) Let {fn} be a basis in a Banach space. Then the following
properties are equivalent.

() {fn} is unconditional.
() There exists a positive constant C such that, for all n, for all εi = ±, and for all

scalars a, a, . . . , an,

∥∥∥∥∥

n∑

i=

εiaifi

∥∥∥∥∥ ≤ C

∥∥∥∥∥

n∑

i=

aifi

∥∥∥∥∥.

The Wiener amalgam space W (L∞, l) was introduced by Wiener in connection with
the Tauberian theorem []. The definition of W (L∞, l) is given as follows. A measurable
function f belongs to W (L∞, l) if it satisfies

‖f ‖W (L∞ ,l) :=
∑

k∈Z
sup
[,)

|f |(x + k) < ∞. (.)

Equation (.) leads to f ∈ Lp(R), for all  ≤ p ≤ ∞. Indeed,

∫

R

∣∣f (x)
∣∣p dx ≤

∫ 



(∑

k∈Z
|f |(x + k)

)p

dx

≤
(∑

k∈Z
sup
[,)

|f |(x + k)
)p

= ‖f ‖p
W (L∞ ,l).

Let Q be a mapping from Lp(R) to Lq(R), for all  ≤ p, q ≤ ∞. Then Q is of type (p, q) [] if

∥∥Q(f )
∥∥

q ≤ A‖f ‖p, f ∈ Lp(R),

where A does not depend on f . Similarly, Q is of weak type (p, q) if

m
{

x :
∣∣Qf (x)

∣∣ > α
} ≤

(
A‖f ‖p

α

)q

, q < ∞,α > ,

where A does not depend on f or α, and m is the Lebesgue measure. We note that an
operator of type (p, q) is also of weak type (p, q).

A family of elements {ψi : i ∈ Z} is called a frame for a Hilbert space H if there exist two
constants  < A ≤ B < ∞ such that

A‖f ‖ ≤
∑

i∈Z

∣∣〈f ,ψi〉
∣∣ ≤ B‖f ‖, for all f ∈H.

The numbers A, B are called frame bounds and if A = B, we call this a tight frame. Frames
are essentially a set of functions that span the whole space but are not necessarily linearly
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independent. Define the frame operator S of {ψi : i ∈ Z},

Sf :=
∑

i∈Z
〈f ,ψi〉ψi,

and each f ∈H has the decomposition

f =
∑

i∈Z

〈
f , S–ψi

〉
ψi =

∑

i∈Z

〈
f ,ψi

〉
S–ψi.

The series converges unconditionally inH [], pp.-. {S–ψi : i ∈ Z} is called the canon-
ical dual of {ψi : i ∈ Z}, and every frame has its own canonical dual frame for L(R).
T , which is bounded; it is called the pre-frame operator or the synthesis operator. We
have

T : l(N) →H, T{ci}i∈Z :=
∑

i∈Z
ciψi,

S = TT∗. Both S and S– are of type (, ), bounded, invertible, self-adjoint, and positive
[], p.. {S–ψi : i ∈ Z} is also a frame in H and its frame operator is S–. The canonical
dual frame {S–ψi : i ∈ Z} of a tight frame {ψi : i ∈ Z} is simply { 

Aψi : i ∈ Z}.
Riesz bases are exact frames which obey the linear independence property, and their

bounds coincide with the frame bounds. {ψi : i ∈ Z} is a Riesz basis for H if there exist
constants A, B >  such that for every finite scalar {ci} one has

A
∑

i

|ci| ≤
∥∥∥∥
∑

i

ciψi

∥∥∥∥



≤ B

∑

i

|ci|.

The dual basis of a Riesz basis is, again, a Riesz basis and is equal to {S–ψi} and

〈
ψi, S–ψj

〉
= δij.

A frame which is not a Riesz basis is said to be overcomplete, and thus, for overcomplete
frames, the coefficients in the series expansion of f ∈H are not unique.

We next turn to wavelets. Throughout this paper, we used the following notation:

ψj,k(x) := DjTkψ(x) = j/ψ
(
jx + k

)
,

where Dj(·)(x) := j/(·)(jx), Tk(·)(x) := (·)(x + k). The affine wavelet frame system for L(R)
generated by ψ is defined as {ψj,k : j, k ∈ Z}, and it is a frame for L(R). One can show that

S–DjTkψ = DjS–Tkψ .

However, in general [], p.,

DjS–Tkψ �= DjTkS–ψ .

In this case, we say that the canonical dual frame {S–ψj,k} of {ψj,k} does not have the
wavelet structure. {ψj,k} and {S–ψj,k} are a pair of biorthogonal (Riesz) wavelet bases []



Gun et al. Journal of Inequalities and Applications  (2015) 2015:286 Page 4 of 16

for L(R) if {S–ψj,k} has the wavelet structure. Listed below (Remark .) are a number of
details that require attention.

Remark .
() To avoid confusion, we denote by H the frame operator of {S–ψj,k}. Notice that H is

bounded, invertible (SH = HS = I), self-adjoint, and positive on L(R) [], p..
() If the frame operator of a frame is bijective on Lp(R), then bijectivity will guarantee

the pre-frame operator to be surjective. Therefore, bijectivity guarantees that each func-
tion f in Lp(R) has an expansion in terms of the wavelet.

() There is an important function which comes from [], [], p., [, ]. Let {ψj,k :
j, k ∈ Z} be an orthonormal basis for L(R). Given  < ε < , we define a function θ by

θ := ψ + εDψ .

{θj,k : j, k ∈ Z} is a Riesz basis, but its canonical dual basis does not have a wavelet structure.
Therefore, a function θ̃ such that {θj,k} and {θ̃j,k} are a pair of biorthogonal Riesz wavelet
bases does not exist. However, S–θ is not always compactly supported even when θ has
compact support [], p.. Even when θ belongs to the Schwartz class, S–θj, does not
belong to Lp for small p –  >  []. Moreover, Tao pointed out that the frame operator of
{θj,k} with ‘good’ conditions does not necessarily come with the bijectivity []. This leads
to the observation that continuously strengthening restrictions on the wavelets may not
necessarily provide effectively guaranteed behavior of dual bases.

Finally, we say that ψ satisfies condition M if

∫ ∞



[
log( + x)

]
ϕ(x) dx < ∞, (.)

where ϕ(x) := supx≤|y| |ψ |(y), x ≥  is named minimum radical dominated function of ψ ,
and Fψ := {ψj,k : ψ ∈M, j, k ∈ Z} is a Riesz basis for L(R) with ψ ∈M.

3 Proofs and results
The proofs of Lemma . and Theorem . are based on the Calderón-Zygmund decom-
position theorem []. For all f ∈ L ∩L(R) and α > , there exists a collection 	 ⊂ Z

 such
that the intervals {Im,n}(m,n)∈	 are disjoint, Im,n := [–mn, –m(n + )),

∣∣f (x)
∣∣ ≤ α,

almost everywhere on F := R\⋃
(m,n)∈	 Im,n, and also, for all (m, n) ∈ 	,

α < m
∫

Im,n

|f | ≤ α.

Therefore,

∑

(m,n)∈	

α–m < ‖f ‖.
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Let Fψ be a Riesz basis for L(R). We denote by Pm the projection onto a subspace of
Vm := span{S–ψj,k : j, k ∈ Z, j < m},

Pm(f ) :=
∑

j,k∈Z
j<m

〈f ,ψj,k〉S–ψj,k , (.)

for all f ∈ L ∩ L(R). For all f ∈ L ∩ L(R), we set

g := f χF +
∑

(m,n)∈	

Pm(f χIm,n ), (.)

producing

h := f – g =
∑

(m,n)∈	

[
f χIm,n – Pm(f χIm,n )

]
(.)

=
∑

(m,n)∈	

[∑

j,k∈Z
〈f χIm,n ,ψj,k〉S–ψj,k – Pm(f χIm,n )

]
(.)

=
∑

(m,n)∈	

∑

j,k∈Z
j≥m

〈f χIm,n ,ψj,k〉S–ψj,k , (.)

Sh =
∑

j,k∈Z

〈
∑

(m,n)∈	

∑

j′ ,k′∈Z
j′≥m

〈f χIm,n ,ψj′ ,k′ 〉S–ψj′ ,k′ ,ψj,k

〉
ψj,k

=
∑

(m,n)∈	

∑

j,k∈Z
j≥m

〈f χIm,n ,ψj,k〉ψj,k .

Here, we would like to stress the importance of Lemma ., being the foundation of
the main results in this study. The proofs of Lemma . and Theorem . are based on the
ideas expressed in [, ], without the unnecessary assumptions and complicated proving
procedures. Most importantly, the results produced in Lemma . have not been produced
in the references mentioned.

Lemma . Let ψ satisfy condition M. Then ψ ∈ W (L∞, l), and (.) holds. Moreover,
the following are equivalent:

∑

j,k∈Z
sup
[,)

|ψ |(jx + k
)

< ∞,

∑

j,k∈Z
sup
x∈R

|ψ |(jx + k
)

< ∞, and (.)

∑

j,k∈Z
sup
Im,n

|ψ |(jx + k
)

< ∞.

The finiteness does not depend on m or n.
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Proof of Lemma . ψ ∈ W (L∞, l) and the part of equivalence are obvious. ψ ∈ W (L∞, l)
leads to ψ ∈ Lp(R), for all  ≤ p ≤ ∞. Next, we prove (.). We set

I∗
m,n :=

[
–m(n – ), –m(n + )

)
,

and we also note that
∫ ∞

 ϕ(x) dx < ∞. For any fixed (m, n) ∈ 	,

(∑

j,k∈Z
j≥m

sup
jIm,n+k

|ψ |(x)
)∫

R\I∗m,n

j/|ψj,k| (.)

≤
(∑

j,k∈Z
j≥m

sup
jIm,n+k

|ψ |(x)
)(∫ –m(n–)

–∞
+

∫ ∞

–m(n+)

)
j/|ψj,k|

≤
(∑

j,k∈Z
j≥m

sup
jIm,n+k

|ψ |(x)
)(∫ j–m(n–)+k

–∞
+

∫ ∞

j–m(n+)+k

)
|ψ |

=
(∑

j,k∈Z
j≥m

sup
[k,k+j–m)

|ψ |(x)
)(∫ k–j–m

–∞
+

∫ ∞

j–m++k

)
|ψ | < ∞. (.)

The finiteness in (.) does not depend on (m, n) and can be proven by breaking k into
parts. First,

∞∑

j=m

( ∑

k≤–j–m+

+
∑

k>j–m–

)
sup

[k,k+j–m)
|ψ |(x)

(∫ k–j–m

–∞
+

∫ ∞

j–m++k

)
|ψ |

≤ ‖ψ‖

∞∑

j=m

(k=–·j–m∑

–∞
ϕ
(
–k – j–m)

+
∞∑

k=[ 
 j–m]+

ϕ(k)

)

≤ ‖ψ‖

∞∑

j=m

∞∑

k=[ 
 j–m]+

ϕ(k)

≤ ‖ψ‖

∞∑

p=

(
[log p] + 

)
ϕ(p) ≤ ‖ψ‖

∫ ∞


( + log x)ϕ(x) dx < ∞.

Second, applying the Dirichlet test,

∞∑

j=m

( ∑

–j–m+<k≤j–m–

)
sup

[k,k+j–m)
|ψ |(x)

(∫ k–j–m

–∞
+

∫ ∞

j–m++k

)
|ψ |

≤
∞∑

j=m

( ∑

–j–m+<k≤j–m–

)
sup

[k,k+j–m)
|ψ |(x)

(∫ –j–m–

–∞
+

∫ ∞

j–m++k

)
|ψ | < ∞. (.)

Because the double summation of (.) is finite, (.) is finite. We have

∑

j>m

∑

k

sup
[k,k+j–m)

|ψ |(x) < ∞. (.)
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We will prove (.) using a pedagogical argument. Assuming that (.) does not hold,
and given V > , there exist j > m, k ∈ Z, q, q ∈N such that

V <
j+q–∑

j=j

k+q–∑

k=k

sup
[k,k+j–m)

|ψ |(x) ≤ qq sup
[k,k+j–m)

|ψ |(x),

where j ∈ {j, j + , . . . , j + q – }, k ∈ {k, k + , . . . , k + q – }. There also exist x and
n ∈ Z with x ∈ [k, k + j–m) such that

V
qq

< |ψ |(x) ≤ sup
[n,n+)

|ψ |(x)

≤ ϕ(x)χ[n,n+) ≤ ϕ(x)χ[n,n+qq),

where n := min{|n|, |n + |}. Performing integration on both sides,

V =
∫ n+qq

n

V
qq

<
∫ n+qq

n

ϕ(x).

This is a contradiction to
∫ ∞

 ϕ(x) dx < ∞.
Putting (m, n) = (, ) into (.), we obtain

∑

j,k∈Z
j≥

sup
j[,)

|ψ |(x + k) < ∞,

and this leads to

∑

j′ ,k′∈Z
j′<

sup
j′ [,)

|ψ |(x + k′) ≤
∑

j,k∈Z
j≥

sup
j[,)

|ψ |(x + k) < ∞.

So, (.) holds. �

Next, we prove Theorem ., which explains that the frame operator of the Riesz wavelet
basis with the decay condition has Lp-boundedness. It has to be stressed that Theorem .
does not need to take the behavior of the dual basis into consideration, and it also does
not require the dual basis to have a wavelet structure.

Theorem . The frame operator S of a Riesz wavelet basis Fψ is of weak type (, ) and
of type (p, p), for all  < p < ∞.

Proof of Theorem . The Lp-boundedness of S can be proven if S being of weak type (, )
can be proven. We note that S is of type (, ). The proof is based on two inequalities:

‖g‖
 ≤ αA‖f ‖ and (.)

m
{

x : |Sh| > α/
} ≤ B

α
‖f ‖, (.)
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where A and B do not depend on f or α. S being of weak type (, ) can be proven by the
following:

m
{

x : |Sf | > α
} ≤ m

{
x : |Sg| > α/

}
+ m

{
x : |Sh| > α/

}

≤ m
{

x : |Sg| > α/
}

+
B

α
‖f ‖

≤ [
(A + B)/α

]‖f ‖,

for all f ∈ L ∩ L(R), α > . Suppose for the moment that we know, and then we will im-
mediately see from Marcinkiewicz interpolation theorem that S is of type (p, p),  < p < ,
and thus by duality for all p,  < p < ∞.

First, we claim that the first inequality holds. By Lemma . and the Dirichlet test, for
any (m, n), (m′, n′) ∈ 	 with m ≤ m′, there exist constants M, M, and M which do not
depend on m or n, such that

M := 
∥∥S–∥∥

‖ψ‖


[ ∑

j′ ,k′∈Z
j′<m′


j′–m′

 sup
Im′ ,n′

|ψ |(j′x + k′)
]

< ∞,

M :=
[∑

j,k∈Z
j<m

j–m′
sup
Im′ ,n′

|ψ |(jx + k
)]–[

 +
∑

j,k∈Z
j<m


j–m′

 sup
Im′ ,n′

|ψ |(jx + k
)]

< ∞,

∑

j,k∈Z
j<m


j–m′

 sup
Im,n

|ψ |(jx + k
) ≤ M

∑

j,k∈Z
j<m


j–m′

 sup
Im′ ,n′

|ψ |(jx + k
)

< ∞,

∑

j,k∈Z
j<m


j–m′

 sup
Im′ ,n′

|ψ |(jx + k
) ≤ M

∑

j,k∈Z
j<m

j–m′
sup
Im′ ,n′

|ψ |(jx + k
)

< ∞,

∥∥∥∥
∑

(m,n)∈	

Pm(f χIm,n )
∥∥∥∥





=
∫

R

∑

(m,n)∈	

∑

(m′ ,n′)∈	

Pm(f χIm,n )Pm′ (f χIm′ ,n′ )

≤
∑

(m,n)∈	

∑

(m′ ,n′)∈	

∑

j,k∈Z
j<m

∑

j′ ,k′∈Z
j′<m′

∣∣〈f χIm,n ,ψj,k〉〈f χIm′ ,n′ ,ψj′ ,k′ 〉〈S–ψj,k , S–ψj′ ,k′
〉∣∣

≤ 
∥∥S–∥∥

‖ψ‖


∑

(m,n)∈	

∑

(m′ ,n′)∈	

m≤m′ ,n≤n′

∑

j,k∈Z
j<m

∑

j′ ,k′∈Z
j′<m′

(∫

Im,n

|f |
)(


j
 sup

Im,n
|ψ |(jx + k

))

×
((

 · –m′
α
)


j′
 sup

Im′ ,n′
|ψ |(j′x + k′))

≤ α
∥∥S–∥∥

‖ψ‖


( ∑

(m,n)∈	

∫

Im,n

|f |
) ∑

(m′ ,n′)∈	

m≤m′

∑

j,k∈Z
j<m

(


j–m′
 sup

Im,n
|ψ |(jx + k

))
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×
∑

j′ ,k′∈Z
j′<m′

(


j′–m′
 sup

Im′ ,n′
|ψ |(j′x + k′))

≤ αMMM

( ∑

(m,n)∈	

∫

Im,n

|f |
) ∑

(m′ ,n′)∈	

m≤m′

∑

j,k∈Z
j<m

j–m′
sup
Im′ ,n′

|ψ |(jx + k
)

≤ αMMM

( ∑

(m,n)∈	

∫

Im,n

|f |
)(

∑

p∈Z

∞∑

m′=m

(p+)m′–m+∑

n′=pm′–m

)
∑

j,k∈Z
j<m

j–m′
sup
Im′ ,n′

|ψ |(jx + k
)

≤ αMMM

( ∑

(m,n)∈	

∫

Im,n

|f |
)∑

p∈Z

∑

j,k∈Z
j<m

j–m sup
Im,p

|ψ |(jx + k
) ≤ αN‖f ‖,

where, by the Dirichlet test,

N := MMM
∑

p∈Z

∑

j,k∈Z
j<m

j–m sup
Im,p

|ψ |(jx + k
)

< ∞.

The finiteness of N derives from:
() Recall that {Im′ ,n′ }(m′ ,n′)∈	 are disjoint. Under m ≤ m′ and pm′–m ≤ n′ < (p + )m′–m,

we have

Im′ ,n′ ⊂ Im,p.

It leads, for each p, to

∞∑

m′=m

(p+)m′–m–∑

n′=pm′–m

–m′
< –m.

() For any finite terms of p, j, and k,

∑

p,j,k
j<m

sup
Im,p

|ψ |(jx + k
) ≤

∑

finite k′
sup
[,)

|ψ |(x + k′) < ‖ψ‖W (L∞ ,l) < ∞.

Next,
∫

R

|f χF | ≤ α

∫

F
|f | ≤ α‖f ‖,

and it leads to ‖g‖
 ≤ (N + )α‖f ‖.

For the second inequality, we set

I∗
m,n :=

[
–m(n – ), –m(n + )

)
, F∗ := R\

⋃

(m,n)∈	

I∗
m,n,

B′
 := ‖ψ‖

∑

j,k∈Z
j≥m

sup
Im,n

|ψ |(jx + k
)
,
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∫

F∗
|Sh| ≤

∫

R\I∗m,n

|Sh|

≤
∑

(m,n)∈	

∑

j,k∈Z
j≥m

∣∣〈f χIm,n ,ψj,k〉
∣∣
(∫

R\I∗m,n

|ψj,k|
)

≤ ‖ψ‖

( ∑

(m,n)∈S

∫

Im,n

|f |
)(∑

j,k∈Z
j≥m

sup
Im,n

|ψ |(jx + k
))

≤ B′
‖f ‖.

Finally, we note that m{R \ F∗} < /α‖f ‖ and thus

m
{

x : |Sh| > α/
} ≤ [(

B′
 + 

)
/α

]‖f ‖. �

Theorem . gives a characterization on a pair of biorthogonal Riesz wavelet bases for
Lebesgue spaces. The proof relies on the Lp-boundedness of the frame operator of the dual
wavelet basis which is an application from Theorem ..

Theorem . Let Fψ and Fψ̃ be a pair of biorthogonal Riesz wavelet bases for L(R).
Then:

() The operator H is of weak type (, ) and of type (p, p), for all  < p < ∞. Moreover,

C′‖f ‖p ≤ ‖Sf ‖p ≤ C′′‖f ‖p,

C′
‖f ‖p ≤ ‖Hf ‖p ≤ C′′

 ‖f ‖p,

for all f ∈ Lp(R) and some constants C′, C′′, C′
, C′′

 .
() The two operators S and H are bijective on Lp(R),  < p < ∞.
() Fψ and Fψ̃ are also unconditional bases for Lp(R),  < p < ∞.

Proof of Theorem . () Using the same argument as the proof of Theorem ., the Lp-
boundedness of H can be proven. Next, we will prove that S is bounded below. By duality,
for all f ′ ∈ L ∩ Lp(R), we have

∥∥f ′∥∥
p = sup

‖h‖q≤,
h∈L∩Lq(R)

∣∣∣∣
∫

R

f ′h
∣∣∣∣

≤ sup
‖h‖q≤,

h∈L∩Lq(R)

∣∣〈Sf ′, Hh
〉
L(R)

∣∣

≤ 
C

∥∥Sf ′∥∥
p,

for some constant 
C >  and /p + /q = . Since L ∩ Lp(R) is dense in Lp(R),  < p < ∞,

for all f ∈ Lp(R), there exists {fk} ⊂ L ∩ Lp(R) such that fk converges to f in Lp-norm,

‖f ‖p = lim
k→∞

‖fk‖p ≤ 
C

lim
k→∞

‖Sfk‖p =

C

‖Sf ‖p. (.)
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So, S is injective and has a closed range. Similarly, we can prove that H is bounded below
by using the method described above.

() To claim S is bijective, that the adjoint of S is bounded below needs to be proven. We
denote by S∗ the adjoint of S which is on Lq(R) into Lq(R), and which is based on (.),

‖f ‖p ·  ≤ 
C

‖Sf ‖p =

C

sup
‖g‖q=

∣∣∣∣
∫

R

(Sf )g
∣∣∣∣

=

C

sup
‖g‖q=

∣∣∣∣
∫

R

f
(
S∗g

)∣∣∣∣ ≤ 
C

‖f ‖p
∥∥S∗g

∥∥
q.

This leads to

‖g‖q =  ≤ 
C

∥∥S∗g
∥∥

q.

We can conclude that S is bijective on Lp(R),  < p < ∞. Similarly, we can prove that H is
bijective on Lp(R),  < p < ∞ by using the method described above.

() In order to prove (), we will change hypotheses (.)-(.) to:
Pm is the projection onto a subspace of Vm := span{ψj,k : j, k ∈ Z, j < m},

Pm(f ) : =
∑

j,k∈Z
j<m

〈f , ψ̃j,k〉ψj,k ,

for all f ∈ L ∩ L(R). We set

g := f χF +
∑

(m,n)∈	

Pm(f χIm,n ),

producing

h := f – g =
∑

(m,n)∈	

[
f χIm,n – Pm(f χIm,n )

]

=
∑

(m,n)∈	

[∑

j,k∈Z
〈f χIm,n , ψ̃j,k〉ψj,k – Pm(f χIm,n )

]

=
∑

(m,n)∈	

∑

j,k∈Z
j≥m

〈f χIm,n , ψ̃j,k〉ψj,k .

Define an operator Q on L(R) as

Q(·) :=
∑

j,k∈Z
εj,k〈·, ψ̃j,k〉ψj,k ,

for all εj,k = ±. Using a similar argument to Theorem ., the Lp-boundedness of Q can
be proven. Secondly, since L ∩ Lp(R) is a dense subset of Lp(R),  < p < ∞, we have
f =

∑
j,k∈Z〈f , ψ̃j,k〉ψj,k ∈ Lp(R), for any f ∈ L ∩ Lp(R). Thus, for each f ∈ Lp(R), the se-

ries
∑

j,k∈Z〈f , ψ̃j,k〉ψj,k converges unconditionally (since Q is of type (p, p)) in Lp(R) so that
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it must converge to f . Similarly, we can prove that Fψ̃ is an unconditional basis of Lp(R),
 < p < ∞ by using the methods described above. �

In order to fully understand the main result, we need some basic terminology. A pre-
wavelet basis (semi-orthogoal basis) is orthogonal between the different dilation levels and
all dilations and shifts form a Riesz basis for L(R). This was first used by Battle []. More
information can be found in []. Wiener’s lemma was used to prove Theorem .. Let A
be the set of all formal power series f =

∑
k∈Z akzk for which

‖f ‖A :=
∑

k∈Z
σ (k)|ak| < ∞,

where σ is the weight function which satisfies σ (x + y) ≤ σ (x)σ (y). For example, σ (x) =
( + x)p, p > . So, if {σ (k)ak} ∈ l(Z), f is a continuous function of z on the torus T, and A
is a commutative Banach algebra with the unit. In our application, we denote

[f , g](z) :=
∑

k∈Z
(f ∗ g)(k)zk , (.)

where the sequence f ∗ g on Z is defined by

(f ∗ g)(k) :=
∫

R

f (x)g(x – k) dx =
∫

R

f (x + k)g(x) dx. (.)

Now, we are ready to prove Theorem ..

Theorem . Let ψ be a pre-wavelet of L(R) with

‖σψ‖w :=
∑

a∈Z
sup
[,)

|σψ |(x + a) < ∞. (.)

Then, we have the following.
() The dual basis {ψ̃j,k : j, k ∈ Z} of {ψj,k : j, k ∈ Z} has a wavelet structure, and the

generator ψ̃ satisfies

‖σψ̃‖w ≤ ‖σψ‖w‖ψ̃‖A < ∞.

() The two operators S and H are bijective on Lp(R),  < p < ∞. Both {ψj,k : j, k ∈ Z} and
{ψ̃j,k : j, k ∈ Z} are also unconditional bases for Lp(R),  < p < ∞.

Proof of Theorem . () This proof is presented in two parts. First, we want to describe
the form of the dual basis. Second, we will prove {ψ̃j,k : j, k ∈ Z} is, indeed, the dual basis.
We have

∑

k∈Z
σ (k)

∣∣(ψ ∗ ψ)
∣∣(k) ≤

∑

l∈Z

∑

k∈Z
σ (k)

∫

[,)
|ψ |(x + l + k)|ψ |(x + l) dx

≤
∑

l∈Z

[
sup
[,)

|σψ |(x + l)
∑

k∈Z
sup
[,)

|σψ |(x + l + k)
]

≤ ‖σψ‖
w < ∞.
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This leads to [ψ ,ψ] ∈A. Next, since

∫ 



(∑

k∈Z
|ψ |(x + k)

)

dx ≤ ‖ψ‖
w,

we have

[ψ ,ψ]
(
e–iξ ) =

∑

k∈Z

∣∣ψ̂(ξ + πk)
∣∣ > 

and thus [ψ ,ψ](z) > , for all z ∈ T [], Theorem .. Let a be a sequence given by

ak := ψ ∗ ψ(k),

which leads to
∑

k∈Z akzk ∈A. Using Wiener’s lemma, there exists {ck}k∈Z ∈ l(Z) for
which the formal power series


[ψ ,ψ]

(z) =
∑

k∈Z
ckzk ∈A.

We denote ψ̃ :=
∑

k∈Z ckψ(x + k) and consider the Cauchy product

∑

a∈Z
sup
[,)

|σψ̃ |(x + a) ≤
∑

a,k∈Z

∣∣σ (k)ck
∣∣ sup

[,)
|σψ |(x + a + k)

≤ ‖σψ‖w‖ψ̃‖A < ∞.

Thus, we have ‖σψ̃‖w < ∞, and

[ψ̃ ,ψ](z) =


[ψ ,ψ]
(z) · [ψ ,ψ](z) = , (.)

for all z ∈ T. Finally, we will explain that {ψ̃j,k} is the dual basis of {ψj,k}. For this there are
three reasons. The first one is that a pre-wavelet basis is orthogonal between the different
dilation levels and all dilations and shifts form a Riesz basis for L(R). Second, from (.)
and (.), (.) is equivalent to

〈
ψ̃ ,ψ(· – α)

〉
= δα , for all α ∈ Z.

Combining two reasons, we can conclude that {ψ̃j,k} and {ψj,k} are biorthogonal. The last
one is that {ψj,k} has a unique dual basis.

() We have constructed the dual basis of {ψj,k} in (), and {ψ̃j,k} has the same decay as
{ψj,k}. Applying that and Theorem ., we complete the proof of (). �

4 Further remarks and examples
In this section, we give comments and examples. Bownik and Weber point out the con-
nection between the behavior of a canonical dual of {ψj,k} and how ψ generates a GMRA
[]. For a Riesz wavelet ψ , the shift invariance of negative dilates V(ψ) implies a wavelet
structure of the canonical dual. They have also given an interesting example of a wavelet
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frame for which the canonical dual does not have the wavelet structure, but other dual
frames with the wavelet structure exist. Bownik and Lemvig also mentioned in another
paper [] that a frame may have an infinite number of dual frames with a wavelet struc-
ture. The last paper [] we refer to was written by Lemvig; he constructed pairs of dual
band-limited wavelet frames.

The aforementioned three papers all depend on one important theorem [], p., The-
orem .. (or [], p., [], Theorem .). Part of the results are generated by using the
multiresolution analysis (MRA). However, Theorem . provides a method to construct
the dual wavelet of a given pre-wavelet without using the mentioned theorem or MRA.
Through the fact that dual basis has wavelet structure and it has the same decay as basis,
less limitations are applied on wavelets to accomplish our results.

Next, we review some typical pre-wavelets and biorthogonal wavelets.
(I) Compactly supported. Compactly supported wavelets certainly satisfy condition M

and thus Theorem . can be applied to all compactly supported orthogonal wavelets. The
earliest example is the Haar wavelet [], Chapter , Example A. For non-orthogonal cases,
Chui and Wang [], and independently Jia and Micchelli [] have constructed compactly
supported pre-wavelets. Riemenschneider considered a cardinal spline approach to con-
struct compactly supported, skew-symmetric pre-wavelets [, ]. Cohen et al. have con-
structed biorthogonal wavelets that are symmetric, regular, and compactly supported [].

(II) Decay. Theorems .-. can be applied to many mild decay wavelets. For exam-
ple, Daubechies’ wavelets [], Lemarié-Meyer wavelets [, ], and spline wavelets of
high order (orthogonal [, ], semi-orthogoanl [, ], biorthogonal []). In addition,
we would like to emphasize an important fact. Lemma . guarantees that ϕ is a radial
decreasing L-majorant of ψ [], p., Chapter . Indeed, the boundedness of ϕ follows
from

ϕ is decreasing on [,∞), and |ψ |(x) ≤ ϕ
(|x|)

for almost every x ∈ R. ϕ contrasts with typical majorants of wavelets (polynomial C( +
x)–α , α > , exponential De–βx, β > ) by stressing that the majorant ϕ is generated by
wavelets themselves, not borrowed from specific L functions. Wojtaszczyk reported that
orthogonal wavelet bases are unconditional bases for Lebesgue spaces by providing some
assumptions []. His assumptions seem verbose in comparison to condition M.

Unser has constructed pre-wavelets in [] that these wavelets converge to a cosine-
modulated Gaussian function as the degree of the spline goes to infinity. Another re-
markable wavelet was found in [] which has subexponential decay (ψ(x) ≤ Eγ e–|x|–γ ,
 < γ < , x ∈R), it is band-limited and belongs to C∞.

For different methods to construct dual wavelets, Kim has shown that if a Riesz wavelet
is associated with an MRA, then it has a dual Riesz wavelet [], Corollary .. Later, he
gave a characterization on biorthogonal/semi-orthogonal wavelets associated with MRA
[]. Combining these two facts, lots of biorthogonal/semi-orthogonal wavelets can be
found.

(III) Smooth. Daubechies’ wavelets and biorthogonal wavelets in [] are typical smooth
wavelets. References [], p., Theorem ., [, ], [], p., Theorems ..-..,
[], Chapter , Theorems ., ., [], Chapter , and [], Section ., Theorem ,
ensure that orthogonal wavelets that are sufficiently smooth are unconditional bases for
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Lebesgue spaces and the associated frame operators have Lp-boundedness. Bui and Lauge-
sen have proven that the frame operator of a wavelet frame (not necessarily a wavelet basis)
is bijective on Lebesgue spaces if some assumptions are provided []. Mainly ψ and ψ ′

need to have sufficient decay on the frequency domain. The aforementioned results were
obtained by using the technique of Calderón-Zygmund operators. Apparently, the method
suffers from the requirement of smoothness on wavelets (and thus they do not support the
Haar wavelet). In contrast, smoothness is not required for Theorems .-. to hold.
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