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Abstract
The purpose of this paper is to investigate coderivatives of the gap function involving
the Minty vector variational inequality. First, we discuss the regular coderivative, the
normal coderivative, and the mixed coderivative of a class of set-valued maps. Then,
by using the relationships between the coderivatives of a set-valued map and its
efficient points set-valued map, we obtain the coderivatives of the gap function for
the Minty vector variational inequality.
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1 Introduction
The vector variational inequality (for short, VVI) and the Minty vector variational inequal-
ity (for short, MVVI) have been of great interest in the academic and professional com-
munities ever since the path-breaking paper [] in the early s. Enormous results on
the existence (see [, ]) and stabilities (see [, ]) have been obtained. There are some
applications to be found in vector traffic equilibrium problems (see [, ]).

It is well known that the concept of gap functions is very important for the study of (VVI)
and (MVVI). From the vector optimization point of view, Chen et al. [] defined the gap
function for the (VVI) problem as a set-valued map. Under some suitable coerciveness
conditions, Li et al. [] discussed the differential and sensitivity properties of the set-valued
gap functions defined in [] for (VVI). They also obtained an explicit expression of the
contingent derivative for a class of set-valued maps, and some optimality conditions for
(VVI) and weak (VVI) by virtue of the gap functions. Later, by the definition of the gap
function for Minty vector variational inequalities, some differential and sensitivity results
for Minty vector variational inequalities were also obtained in []. High-order optimality
conditions and differential and sensitivity properties for gap functions of weak (VVI) were
also considered (see []).

The generalized derivatives mentioned above for set-valued maps are generated by tan-
gent cones to their graphs in primal spaces. Another derivative-like construction for set-
valued maps has been introduced by Mordukhovich [], which is called coderivatives and
is generated by normal cones to their graphs in dual spaces. There are numerous appli-
cations of coderivatives and the corresponding subdifferential to derive necessary condi-
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tions and existence properties in various vector optimization problems, such as [–].
Coderivatives have also been applied to sensitivity analysis of scalar (single-objective) op-
timization problems. We refer the readers to [–] for just a few of them.

Recently, Li and Xue [] discussed the differential and sensitivity properties of the set-
valued gap functions defined in [] for (VVI) via coderivatives. First, they established an
explicit expression for computing the normal coderivative and mixed coderivative of a
class of set-valued map. Then, through discussing the relations between a set-valued map
and its efficient points set-valued map, they investigated sensitivity properties of the gap
function for VVI. They also obtained some optimality conditions for (VVI).

Motivated by the work reported in [, ], in this paper, we make an effort to investigate
the coderivatives of Minty vector variational inequality problem in general Banach spaces.
First, we establish an explicit expression for computing the regular coderivatives, normal
coderivative, and mixed coderivative of a class of set-valued maps. Then, using the rela-
tions between coderivatives of a set-valued map and its efficient points set-valued map,
we obtain the coderivatives of the gap function for the Minty vector variational inequality.
We also give some examples to illustrate the results.

The rest of the paper is organized as follows. In Section , we recall the basic defini-
tions and notations from the vector variational inequality, set-valued analysis, and vari-
ational analysis. In Section , we establish the coderivative of a class of set-valued map.
Under some mild conditions, we first give the including relations of the coderivatives of
set-valued maps. Then we obtain the explicit expressions under some stronger conditions.
In Section , we give the coderivatives of the gap function for (MVVI).

Throughout the paper we use the standard notation, with special symbols introduced
where they are defined. Unless otherwise stated, all spaces considered are Banach spaces,
whose norms are always denoted by ‖ · ‖. For any space X, we consider its dual space X∗

equipped with the weak* topology w∗, where 〈·, ·〉 means the canonical pairing. The closed
ball with center x and radius η is denoted by Bη(x). The symbol A∗ denotes the adjoint
operator of a linear continuous operator A. If F : X ⇒ Y is a set-valued map, we denote
by dom F = {x ∈ X | F(x) �= ∅} and gph F = {(x, y) ∈ X × Y | y ∈ F(x)}, the domain and graph
of F , respectively. The notation ∗→ stands for weak∗ convergence in a dual space, while
xn

S→ x means that the sequence xn is contained in the subset S and converges to x. For
the set-valued map F : X ⇒ X∗ the expression

Limsup
x→x̄

F(x) =
{

x∗ ∈ X∗ | ∃ sequences xk → x̄, x∗
k

∗→ x∗ s.t. x∗
k ∈ F(xk) for all k ∈N

}

signifies the sequential Painlevé-Kuratowski upper (outer) limit with respect to the norm
topology in X and the weak* topology in X∗. The origins of all real normed spaces are
denoted by .

2 Basic definitions and preliminaries
Throughout this paper, let L(X, Y ) be the set of all linear continuous operators from X
to Y . For any A ∈ L(X, Y ), we introduce norm

‖A‖L = sup
{∥∥A(x)

∥∥ | ‖x‖ ≤ 
}

.

Since X, Y are Banach spaces, L(X, Y ) is also a Banach space with the norm.
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Definition . Let F : X → L(X, Y ) be a vector-valued function. F is said to be Fréchet
differentiable at x if and only if there exists a linear continuous operator � : X → L(X, Y ),
such that

lim
x→x

‖F(x) – F(x) – �(x – x)‖L

‖x – x‖ = .

Obviously, � is unique. We denote derivative � of F at x by ∇F(x). If, for any x ∈
K , F is Fréchet differentiable at x, F is said to be Fréchet differentiable on K . Therefore,
∇F(·) : X → L(X, Y ) is a vector-valued function.

In the following of this section, we introduce the basic concepts and constructions of
variational analysis and generalized differentiation needed for formulations and justifica-
tions of the main results of the paper. Most of the concepts and properties can be found
in [].

Definition . [, ] Let � ⊂ X be a nonempty subset of a Banach space.
(i) Given x̄ ∈ � and ε ≥ . The set of ε-normals to � at x̄ ∈ � is defined by

N̂ε(x̄,�) =
{

x∗ ∈ X∗
∣∣∣ lim sup

x �→x̄

〈x∗, x – x̄〉
‖x – x̄‖ ≤ ε

}
. ()

When ε = , the set () is a cone that is called the regular normal cone (or the
prenormal cone) to � at x̄ and is denoted by N̂(x̄,�). We put N̂ε(x̄,�) = ∅ for all
ε ≥  if x̄ /∈ �.

(ii) The Mordukhovich normal cone (or basic normal cone) to � ⊂ X at x̄ is defined
through the Painlevé-Kuratowski upper (outer) limit as

N(x̄,�) = Limsup
xk→x̄,εk→+

N̂εk (xk ,�). ()

Definition . [, ] Consider a set-valued map � : X ⇒ Y between Banach spaces.
(i) The ε-coderivative D̂∗

ε�(x̄, ȳ) at (x̄, ȳ) is defined through the ε-normal set () to the
graph as

D̂∗
ε�(x̄, ȳ)

(
y∗) =

{
x∗ ∈ X∗ | (x∗, –y∗) ∈ N̂ε

(
(x̄, ȳ), gph�

)}
. ()

When ε = , the positive homogeneous set-valued map of y∗ in () is called the
regular coderivative of � at (x̄, ȳ) and denoted by D̂∗�(x̄, ȳ)(·).

(ii) The normal (Mordukhovich) coderivative of � at (x̄, ȳ) is

D∗
N�(x̄, ȳ)

(
y∗) =

{
x∗ ∈ X∗ | (x∗, –y∗) ∈ N

(
(x̄, ȳ), gph�

)}
, ()

that is, D∗
N�(x̄, ȳ)(y∗) is the collection of all x∗ for which there are sequences

εk → +, (xk , yk) → (x̄, ȳ), (x∗
k , y∗

k) ∗→ (x∗, y∗) with (xk , yk) ∈ gph� and
x∗

k ∈ D̂∗
εk

�(xk , yk)(y∗
k).

(iii) The mixed coderivative D∗
M�(x̄, ȳ) of a set-valued map � : X ⇒ Y at (x̄, ȳ) is the

set-valued map D∗
M�(x̄, ȳ) : Y ∗ ⇒ X∗ defined by

D∗
M�(x̄, ȳ)

(
y∗) = Limsup

(xk ,yk ,y∗
k )→(x̄,ȳ,y∗),εk→+

D̂∗
εk

�(xk , yk)
(
y∗

k
)
, ()
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i.e., x∗ ∈ D∗
M�(x̄, ȳ)(y∗) if and only if there are sequences εk → +,

(xk , yk , y∗
k) → (x̄, ȳ, y∗), x∗

k
∗→ x∗ with (xk , yk) ∈ gph�, and x∗

k ∈ D̂∗
εk

�(xk , yk)(y∗
k).

It follows from the definitions that D∗
M�(x̄, ȳ)(y∗) ⊂ D∗

N�(x̄, ȳ)(y∗) when the equality ob-
viously holds if Y is finite-dimensional. We say that � is regular at x̄ ∈ � if N(x̄,�) =
N̂(x̄,�) and � is N-regular (resp. M-regular) at (x̄, ȳ) if and only if D∗

N�(x̄, ȳ) = D̂∗�(x̄, ȳ)
(resp. D∗

M�(x̄, ȳ) = D̂∗�(x̄, ȳ)) (see []). The following proposition gives a sufficient con-
dition for the regularity of � and special representations of the coderivatives.

Proposition . [] Let � : X → Y be Fréchet differentiable at x̄. Then

D̂∗�(x̄)
(
y∗) =

{(∇�(x̄)
)∗y∗}, ∀y∗ ∈ Y ∗.

Moreover, if � is strictly differentiable at x̄, i.e., � is single-valued around x̄ and

lim
x,x′→x̄

[
�(x) – �

(
x′) – ∇�(x̄)

(
x – x′)]/

∥∥x – x′∥∥ = ,

then � is N-regular at x̄ and one has

D∗
N�(x̄)

(
y∗) = D∗

M�(x̄)
(
y∗) =

{(∇�(x̄)
)∗y∗}, ∀y∗ ∈ Y ∗.

We also need some Lipschitzian notions in the following study.

Definition . [] Let f : X → Y be a single-valued map and x̄ ∈ dom f . f is said to be
local upper Lipschitzian at x̄ if there are numbers η >  and L >  such that

∥∥f (x) – f (x̄)
∥∥ ≤ L‖x – x̄‖, for all x ∈ Bη(x̄) ∩ dom f .

We say that a set-valued map F : X ⇒ Y admits a local upper Lipschitzian selection
at (x̄, ȳ) ∈ gph F if there is a single-valued map f : dom F → Y which is local upper Lips-
chitzian at x̄ satisfying f (x̄) = ȳ and f (x) ∈ F(x) for all x ∈ dom F in a neighborhood of x̄.

Definition . [] We say that the domination property holds for the multifunction F :
X ⇒ Y around x̄ if there exists a neighborhood U of x̄ such that

F(x) ⊂ Min F(x) + S, for all x ∈ U ,

or

F(x) ⊂ Max F(x) – S, for all x ∈ U .

3 Coderivatives of a set-valued map
In subsequent sections, let K be a closed subset of X, F : X → L(X, Y ) be a continuous
vector-valued map, and

G(x) =
⋃

z∈K

F(z)(x – z). ()
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We will discuss the coderivative properties of G. First, recall that a set-valued map H :
X ⇒ Y is said to be inner semicontinuous at (x̂, ŷ) ∈ gph H if for every sequence xk → x̂
with xk ∈ dom H there is a sequence yk ∈ H(xk) converging to ŷ as k → ∞. H is inner
semicompact at x̂ if for every sequence xk → x̂ with xk ∈ dom H there is a sequence yk ∈
H(xk) that contains a convergent subsequence as k → ∞.

In the rest of this paper, let D∗ stand either for the normal coderivative () or for
the mixed coderivative (). Since the proof methods of normal coderivative and mixed
coderivative are similar, we only show the case of normal coderivative in the following.

Theorem . Let x̂ ∈ dom G, ŷ ∈ G(x̂), and

M(x, y) =
{

z ∈ K | F(z)(x – z) = y
}

. ()

(i) For any y∗ ∈ Y ∗,

D̂∗G(x̂, ŷ)
(
y∗) ⊂

⋂

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N̂(x̂, dom G). ()

(ii) If M is inner semicompact at (x̂, ŷ), then, for any y∗ ∈ Y ∗,

D∗G(x̂, ŷ)
(
y∗) ⊂

⋃

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N(x̂, dom G). ()

(iii) Given ẑ ∈ M(x̂, ŷ), if M is inner semicontinuous at (x̂, ŷ, ẑ), then, for any y∗ ∈ Y ∗,

D∗G(x̂, ŷ)
(
y∗) ⊂ F(ẑ)∗y∗ + N(x̂, dom G). ()

Proof (i) For any x∗ ∈ D̂∗G(x̂, ŷ)(y∗), by the definitions of regular coderivative and regular
normal cone,

lim sup

(xk ,yk )
gph G−→ (x̂,ŷ)

〈(x∗, –y∗), (xk – x̂, yk – ŷ)〉
‖xk – x̂‖ + ‖yk – ŷ‖ ≤ .

Then, for any zk ∈ K satisfying zk → ẑ, we have

lim sup

xk
dom G−→ x̂

〈x∗, xk – x̂〉 – 〈y∗, F(zk)(xk – zk) – F(ẑ)(x̂ – ẑ)〉
‖xk – x̂‖ + ‖F(zk)(xk – zk) – F(ẑ)(x̂ – ẑ)‖ ≤ .

Especially, let zk = ẑ, we have

lim sup

xk
dom G−→ x̂

〈x∗, xk – x̂〉 – 〈y∗, F(ẑ)(xk – x̂)〉
‖xk – x̂‖ + ‖F(ẑ)(xk – x̂)‖ ≤ .

Thus,

lim sup

xk
dom G−→ x̂

〈x∗, xk – x̂〉 – 〈F(ẑ)∗y∗, xk – x̂〉
‖xk – x̂‖ ≤ .
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This ensures that x∗ – F(ẑ)∗y∗ ∈ N̂(x̂, dom G). So we have

D̂∗G(x̂, ŷ)
(
y∗) ⊂ F(ẑ)∗y∗ + N̂(x̂, dom G).

(ii) For any x∗ ∈ D∗G(x̂, ŷ)(y∗), by the definitions of coderivatives and normal cone, there
are sequences of vector (xk , yk) → (x̂, ŷ), (x∗

k , y∗
k) ∗→ (x∗, y∗) (y∗

k → y∗ for the case of a mixed
coderivative) and εk ↓  such that yk ∈ G(xk) and

lim sup

(xki ,yki )
gph G−→ (xk ,yk )

〈(x∗
k , –y∗

k), (xki – xk , yki – yk)〉
‖xki – xk‖ + ‖yki – yk‖ ≤ εk .

Since M is inner semicompact at (x̂, ŷ), for the above (xk , yk), there exists a sequence of
zk ∈ M(xk , yk) that contains a subsequence converging to some ẑ. Since K is closed, we have
ẑ ∈ K . Let k → ∞ in yk = F(zk)(xk – zk), we have ŷ = F(ẑ)(x̂ – ẑ), which implies ẑ ∈ M(x̂, ŷ).
Then, for any zki ∈ K satisfying zki → zk , we have

lim sup

xki
dom G−→ xk

〈x∗
k , xki – xk〉 – 〈y∗

k , F(zki )(xki – zki ) – F(zk)(xk – zk)〉
‖xki – xk‖ + ‖F(zki )(xki – zki ) – F(zk)(xk – zk)‖ ≤ εk .

Especially, let zki = zk , we have

lim sup

xki
dom G−→ xk

〈x∗
k , xki – xk〉 – 〈y∗

k , F(zk)(xki – xk)〉
‖xki – xk‖ + ‖F(zk)(xki – xk)‖ ≤ εk .

Thus,

lim sup

xki
dom G−→ xk

〈x∗
k , xki – xk〉 – 〈F(zk)∗y∗

k , (xki – xk)〉
‖xki – xk‖ ≤ ε′

k ,

where ε′
k = ( + ‖F(zk)‖)εk →  as k → ∞. This ensures that x∗ – F(ẑ)∗y∗ ∈ N(x̂, dom G).

So we have

D∗G(x̂, ŷ)
(
y∗) ⊂

⋃

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N(x̂, dom G).

(iii) It can be proved similarly to the case (ii), since for any sequence (xk , yk) → (x̂, ŷ), by
the inner semicontinuous assumption of M, there exists a sequence zk ∈ M(xk , yk) con-
verging to ẑ. This complete the proof. �

Now we turn to the converse inclusion.

Theorem . Let x̂ ∈ dom G, ŷ ∈ G(x̂), and ẑ ∈ M(x̂, ŷ). If F is local upper Lipschitzian
at ẑ, and M admits a local upper Lipschitzian selection at (x̂, ŷ, ẑ), then, for any y∗ ∈ Y ∗

satisfying F(ẑ)∗y∗ ∈ D̂∗F(ẑ)(y∗(x̂ – ẑ)∗),

F(ẑ)∗y∗ + N̂(x̂, dom G) ⊂ D̂∗G(x̂, ŷ)
(
y∗).
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Moreover, if dom G is regular at x̂, then, for any y∗ ∈ Y ∗ satisfying F(ẑ)∗y∗ ∈ D̂∗F(ẑ)(y∗(x̂ –
ẑ)∗),

F(ẑ)∗y∗ + N(x̂, dom G) ⊂ D∗G(x̂, ŷ)
(
y∗).

Proof Let F(ẑ)∗y∗ ∈ D̂∗F(ẑ)(y∗(x̂ – ẑ)∗) and x∗ ∈ N̂(x̂, dom G). Then we have

lim sup
z F→ẑ

〈F(ẑ)∗y∗, z – ẑ〉 – 〈y∗(x̂ – ẑ)∗, F(z) – F(ẑ)〉
‖z – ẑ‖ + ‖F(z) – F(ẑ)‖L

≤ 

and

lim sup
xdom G→ x̂

〈x∗, x – x̂〉
‖x – x̂‖ ≤ .

This means that, for any ε > , one can find η > , η >  such that

〈
y∗, F(ẑ)(z – ẑ)

〉
–

〈
y∗,

(
F(z) – F(ẑ)

)
(x̂ – ẑ)

〉 ≤ ε
(‖z – ẑ‖ +

∥∥F(z) – F(ẑ)
∥∥

L

)

and

〈
x∗, x – x̂

〉 ≤ ε‖x – x̂‖,

for all z ∈ Bη (ẑ), x ∈ Bη (x̂).

Since M admits a local upper Lipschitzian selection at (x̂, ŷ, ẑ), for any (x, y)
gph G−→ (x̂, ŷ),

there are a constant t >  and z ∈ M(x, y) such that ‖z – ẑ‖ ≤ t(‖x – x̂‖ + ‖y – ŷ‖). Further-
more, the locally upper Lipschitzian assumption of F ensures that ‖F(z)–F(ẑ)‖L ≤ L‖z– ẑ‖
for some L >  whenever z → ẑ. Thus, for any (x, y)

gph G−→ (x̂, ŷ), we have the inequalities

〈
x∗ + F(ẑ)∗y∗, x – x̂

〉
–

〈
y∗, y – ŷ

〉

=
〈
x∗, x – x̂

〉
+

〈
F(ẑ)∗y∗, x – x̂

〉
–

〈
y∗, F(z)(x – z) – F(ẑ)(x̂ – ẑ)

〉

=
〈
x∗, x – x̂

〉
+

〈
y∗, F(ẑ)(z – ẑ)

〉
–

〈
y∗,

(
F(z) – F(ẑ)

)
(x̂ – ẑ)

〉

–
〈
y∗,

(
F(z) – F(ẑ)

)(
(x – x̂) – (z – ẑ)

)〉

≤ ε
(‖x – x̂‖) + ε

(‖z – ẑ‖ +
∥∥F(z) – F(ẑ)

∥∥)
–

〈
y∗,

(
F(z) – F(ẑ)

)(
(x – x̂) – (z – ẑ)

)〉

≤ ε
(‖x – x̂‖) + ε

(‖z – ẑ‖ + L‖z – ẑ‖) + L‖z – ẑ‖∥∥y∗∥∥∥∥(x – x̂) – (z – ẑ)
∥∥

≤ (Lt + t + )ε
(‖x – x̂‖ + ‖y – ŷ‖) + L(t + )‖z – ẑ‖∥∥y∗∥∥(‖x – x̂‖ + ‖y – ŷ‖)

=
(
(Lt + t + )ε + Lt(t + )

∥∥y∗∥∥(‖x – x̂‖ + ‖y – ŷ‖))(‖x – x̂‖ + ‖y – ŷ‖).

Since ε >  is chosen arbitrarily, we have

lim sup

(x,y)
gph G−→ (x̂,ŷ)

〈x∗ + F(ẑ)∗y∗, x – x̂〉 – 〈y∗, y – ŷ〉
‖x – x̂‖ + ‖y – ŷ‖ ≤ .
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By the definition of regular coderivative, x∗ + F(ẑ)∗y∗ ∈ D̂∗G(x̂, ŷ)(y∗), and then

F(ẑ)∗y∗ + N̂(x̂, dom G) ⊂ D̂∗G(x̂, ŷ)
(
y∗).

Moreover, if K is regular at x̂, then N(x̂, dom G) = N̂(x̂, dom G) and the residual part is
obvious. �

Remark . In fact, since the local upper Lipschitzian selection of M implies the inner
semicontinuity and inner semicompactness of M, the converse include relations in Theo-
rem . can be written as equalities.

Corollary . Let ẑ ∈ M(x̂, ŷ). If F is Fréchet differentiable at ẑ, and M admits a local upper
Lipschitzian selection at (x̂, ŷ, ẑ), then, for any y∗ ∈ Y ∗ satisfying F(ẑ)∗y∗ = ∇F(ẑ)∗(y∗(x̂ –
ẑ)∗), we have

D̂∗G(x̂, ŷ)
(
y∗) = F(ẑ)∗y∗ + N̂(x̂, dom G).

Moreover, if dom G is regular at x̂, then G is N-regular at (x̂, ŷ) and for any y∗ ∈ Y ∗ satisfying
F(ẑ)∗y∗ = ∇F(ẑ)∗(y∗(x̂ – ẑ)∗), we have

D∗G(x̂, ŷ)
(
y∗) = F(ẑ)∗y∗ + N(x̂, dom G).

Proof Since F is Fréchet differentiable at ẑ, then F is locally upper Lipschitzian at x̂, and for
any y∗ ∈ Y ∗, D̂∗F(ẑ)(y∗(x̂ – ẑ)∗) = ∇F(ẑ)∗(y∗(x̂ – ẑ)∗). The first equality relation immediately
follows from Theorems ., ..

Now assume that dom G is regular at x̂, we prove the second part of the corollary. Obvi-
ously, the upper Lipschitz selection property of M implies that M is inner semicontinuous
at (x̂, ŷ, ẑ). Thus, for any y∗ ∈ Y ∗ satisfying F(ẑ)∗y∗ = ∇F(ẑ)∗(y∗(x̂ – ẑ)∗), we have

D∗G(x̂, ŷ)
(
y∗) ⊂ F(ẑ)∗y∗ + N(x̂, dom G) = F(ẑ)∗y∗ + N̂(x̂, dom G)

⊂ D̂∗G(x̂, ŷ)
(
y∗) ⊂ D∗G(x̂, ŷ)

(
y∗).

The proof is completed. �

We give an example to illustrate Theorems . and ..

Example . Let X = Y = R, K = [–, ], S = R+, and F(x) = x. Let x̂ = –, ŷ = . Then we
have

G(x) =

⎧
⎪⎨

⎪⎩

[, x + ], x > ;
[x – , x + ], – ≤ x ≤ ;
[x – , ], x ≤ –.

By direct computing, we have M(x̂, ŷ) = {–, }, N̂(x̂, dom G) = N(x̂, dom G) = {},

D̂∗G(x̂, ŷ)
(
y∗) =

{
, y∗ = ;
∅, else,
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and

D∗G(x̂, ŷ)
(
y∗) =

{
{y∗, }, y∗ ≤ ;
∅, else.

Then, for any y∗ ∈ R, we have

D̂∗G(x̂, ŷ)
(
y∗) ⊂

⋂

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N̂(x̂, dom G)

and

D∗G(x̂, ŷ)
(
y∗) ⊂

⋃

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N(x̂, dom G).

However, for any ẑ ∈ M(x̂, ŷ), the inclusion

D∗G(x̂, ŷ)
(
y∗) ⊂ F(ẑ)∗y∗ + N(x̂, dom G)

does not hold. This is so because M is not inner semicontinuous at any (x̂, ŷ, ẑ). For ex-
ample, let (x̂, ŷ, ẑ) = (–, , –), we can find a sequence (xk , yk) = (– – 

k , ) which does not
have a sequence zk ∈ M(xk , yk) converging to ẑ as k → ∞.

On the other hand, since M does not admit a local upper Lipschitzian selection at
(x̂, ŷ, ẑ) = (–, , –), the converse inclusions

F(ẑ)∗y∗ + N̂(x̂, dom G) ⊂ D̂∗G(x̂, ŷ)
(
y∗)

and

F(ẑ)∗y∗ + N(x̂, dom G) ⊂ D∗G(x̂, ŷ)
(
y∗)

do not hold for any y∗ ∈ R though F is continuous differential at ẑ and dom G is regular
at x̂.

4 Coderivatives of gap functions
Let X, Y be Banach spaces and S ⊂ Y be a closed convex and point cone. Given a nonempty
closed set K ⊂ X and a map F : K → L(X, Y ), where L(X, Y ) is a set of all linear continuous
operators from X to Y , the Minty vector variational inequality is to find x∗ ∈ K such that

F(x)
(
x – x∗) /∈ –S \ {Y }, ∀x ∈ K .

Definition . Let S be a closed convex and pointed cone in Y with nonempty interior.
A set-valued map N : X ⇒ Y is said to be a gap function of (MVVI) if and only if

(a)  ∈ N(x̂) if and only if x̂ solves (MVVI);
(b) N(x) ∩ (–S \ {}) = ∅, ∀x ∈ K .
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Consider set-valued map N : X ⇒ Y defined by

N(x) := MaxS G(x) = MaxS
⋃

z∈K

F(z)(x – z), x ∈ K ,

where the symbol MaxS denotes the collection of efficient points. That is, for a set A ∈ Y ,

MaxS A :=
{

a ∈ A | �a′ ∈ A s.t. a′ – a ∈ S \ {Y }}.

By Theorem . in [], N is a gap function of (MVVI). So, (MVVI) is equivalent to the
following set-valued optimization problem:

MinS N(x) subject to x ∈ K .

In this section, we discuss the coderivative D∗N .

Theorem . Let K be a compact set, x̂ ∈ K , ŷ ∈ N(x̂), and

M(x, y) =
{

z ∈ K | F(z)(x – z) = y
}

.

(i) For any y∗ ∈ Y ∗ satisfying sups∈S\{}
〈y∗ ,s〉
‖s‖ =: v < ,

D̂∗N(x̂, ŷ)
(
y∗) ⊂

⋂

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N̂(x̂, K). ()

(ii) If M is inner semicompact at (x̂, ŷ), then, for any y∗ ∈ Y ∗ satisfying
sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < ,

D∗
MN(x̂, ŷ)

(
y∗) ⊂

⋃

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N(x̂, K). ()

(iii) Given ẑ ∈ M(x̂, ŷ), if M is inner semicontinuous at (x̂, ŷ, ẑ), then, for any y∗ ∈ Y ∗

satisfying sups∈S\{}
〈y∗ ,s〉
‖s‖ =: v < ,

D∗
MN(x̂, ŷ)

(
y∗) ⊂ F(ẑ)∗y∗ + N(x̂, K). ()

In addition to the assumption of case (ii) and (iii), respectively, if K has a compact base,
then the including relations in case (ii) and (iii) hold for normal coderivatives.

Proof (i) First, we show that G is compact at any x ∈ K , which ensures that G is locally
compact around x̂. Give a sequence {(xi, yi)} ⊂ gph G satisfying xi → x. By the construction
of G, there exist zi ∈ K such that yi = F(zi)(x – zi). Since K is a compact set, we assume
without loss of generality that zi → z ∈ K . The continuity of F implies that yi = F(zi)(x –
zi) → F(z)(x – z) := y ∈ G(x). Therefore, G is compact at any x ∈ K and then G(x) is a
compact set for any x ∈ K .

Since G is compact at any x ∈ K , G(x) is a compact set for any x ∈ K . So the domination
property for –G holds around x̂. That is, –G(x) ⊂ MinS(–G(x))+S for any x ∈ K . Therefore,
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we have –G(x) + S = MinS(–G(x)) + S, which implies –G(x) + S = –N(x) + S. Thus, for any
y∗ ∈ Y ∗, by the definitions of regular coderivatives, we have

D̂∗(–G + S)(x̂, –ŷ)
(
–y∗) = D̂∗(–N + S)(x̂, –ŷ)

(
–y∗).

Obviously –G is also compact at any x ∈ K . According to [], Proposition ., this
implies that –N is locally order semicontinuous around (x̂, –ŷ) and then –G is order semi-
continuous at (x̂, –ŷ). Employing [], Proposition ., we have, for any y∗ ∈ Y ∗ satisfying
sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < ,

D̂∗N(x̂, ŷ)
(
y∗) = D̂∗(–N)(x̂, –ŷ)

(
–y∗)

= D̂∗(–N + S)(x̂, –ŷ)
(
–y∗)

= D̂∗(–G + S)(x̂, –ŷ)
(
–y∗)

= D̂∗(–G)(x̂, –ŷ)
(
–y∗)

= D̂∗G(x̂, ŷ)
(
y∗).

Note that dom G = K , the inclusions follow from Theorem ..
(ii) Using [], Proposition ., we get, for any y∗ ∈ Y ∗ satisfying sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < ,

D∗
M(–N)(x̂, –ŷ)

(
–y∗) = D∗

M(–N + S)(x̂, –ŷ)
(
–y∗)

and

D∗
M(–G + S)(x̂, –ŷ)

(
–y∗) ⊂ D∗

M(–G)(x̂, –ŷ)
(
–y∗).

Thus, case (ii) and (iii) can be proved similar to case (i).
Moreover, if for K we have the compact case, then according to [], Proposition .,

for any y∗ ∈ Y ∗ satisfying sups∈S\{}
〈y∗ ,s〉
‖s‖ =: v < , we have

D∗
N (–N)(x̂, –ŷ)

(
–y∗) = D∗

N (–N + S)(x̂, –ŷ)
(
–y∗)

and

D∗
N (–G + S)(x̂, –ŷ)

(
–y∗) ⊂ D∗

N (–G)(x̂, –ŷ)
(
–y∗).

Thus, the including relations in case (ii) and (iii) hold for normal coderivatives. This com-
pletes the proof. �

Example . Let X, Y , K , F , (x̂, ŷ) as in Example .. Obviously

N(x) =

{
x + , x ∈ K ;
∅, else.

By direct computing, we have N̂(x̂, K) = N(x̂, K) = R– and

D̂∗N(x̂, ŷ)
(
y∗) = D∗N(x̂, ŷ)

(
y∗) =

{
x∗ ∈R | x∗ ≤ y∗}.
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Then, for any y∗ ∈ Y ∗ satisfying sups∈S\{}
〈y∗ ,s〉
‖s‖ =: v < , i.e., y∗ < ,

D̂∗N(x̂, ŷ)
(
y∗) ⊂

⋂

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N̂(x̂, K)

and

D∗N(x̂, ŷ)
(
y∗) ⊂

⋃

ẑ∈M(x̂,ŷ)

F(ẑ)∗y∗ + N(x̂, K).

Theorem . Let K be a compact set, x̂ ∈ K , ŷ ∈ N(x̂), and ẑ ∈ M(x̂, ŷ).
(i) If F is local upper Lipschitzian relative to K at ẑ, and M admits a local upper

Lipschitzian selection at (x̂, ŷ, ẑ), then, for any y∗ ∈ Y ∗ satisfying
F(ẑ)∗y∗ ∈ D̂∗F(ẑ)(y∗(x̂ – ẑ)∗) and sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < ,

F(ẑ)∗y∗ + N̂(x̂, K) ⊂ D̂∗N(x̂, ŷ)
(
y∗).

(ii) In addition to the conditions in (i), if K is regular at x̂, then, for any y∗ ∈ Y ∗ satisfying
F(ẑ)∗y∗ ∈ D̂∗F(ẑ)(y∗(x̂ – ẑ)∗) and sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < ,

F(ẑ)∗y∗ + N(x̂, K) ⊂ D∗N(x̂, ŷ)
(
y∗).

Proof It immediately follows from Theorem . and the proof of Theorem .. �

Similarly to Corollary . we have the following result.

Corollary . Let K be a compact set, x̂ ∈ K , ŷ ∈ N(x̂), and ẑ ∈ M(x̂, ŷ).
(i) If F is Fréchet differentiable at ẑ, and M admits a local upper Lipschitzian selection

at (x̂, ŷ, ẑ), then, for any y∗ ∈ Y ∗ satisfying F(ẑ)∗y∗ = ∇F(ẑ)∗(y∗(x̂ – ẑ)∗) and
sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < , we have

D̂∗N(x̂, ŷ)
(
y∗) = F(ẑ)∗y∗ + N̂(x̂, K).

(ii) In addition to the conditions in case (i), if K is regular at x̂, then N is M-regular at
(x̂, ŷ), and for any y∗ ∈ Y ∗ satisfying F(ẑ)∗y∗ = ∇F(ẑ)∗(y∗(x̂ – ẑ)∗) and
sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < , we have

D∗
MN(x̂, ŷ)

(
y∗) = F(ẑ)∗y∗ + N(x̂, K).

(iii) In addition to the conditions in case (ii), if K has a compact base, then N is
N-regular at (x̂, ŷ), and for any y∗ ∈ Y ∗ satisfying F(ẑ)∗y∗ = ∇F(ẑ)∗(y∗(x̂ – ẑ)∗) and
sups∈S\{}

〈y∗ ,s〉
‖s‖ =: v < , we have

D∗
N N(x̂, ŷ)

(
y∗) = F(ẑ)∗y∗ + N(x̂, K).

Proof (i) Since F is Fréchet differentiable at ẑ, we get D̂∗F(ẑ)(y∗(x̂– ẑ)∗) = ∇F(ẑ)∗(y∗(x̂– ẑ)∗).
The result immediately follows from Theorem ..
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(ii) Since K is regular at x̂, we have N̂(x̂, K) = N(x̂, K). Then

D∗
MN(x̂, ŷ)

(
y∗) ⊂ F(ẑ)∗y∗ + N(x̂, K)

= F(ẑ)∗y∗ + N̂(x̂, K)

= D̂∗N(x̂, ŷ)
(
y∗)

⊂ D∗
MN(x̂, ŷ)

(
y∗).

Thus, we have

D∗
MN(x̂, ŷ)

(
y∗) = D̂∗N(x̂, ŷ)

(
y∗) = F(ẑ)∗y∗ + N(x̂, K),

which implies N is M-regular at (x̂, ŷ).
(iii) It can be proved similar to case (ii). This completes the proof. �
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