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1 Introduction and the main theorem
The classical Hardy inequalities in one dimension are stated as
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and its dual inequality
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where  < p < ∞ and r > ; see [, ] for instance. The constant ( p
r )p is best-possible in both

inequalities (.) and (.). A higher dimensional variant of (.) and (.) is
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for all f ∈ W 
p(Rn), where n ≥  and  < p < n, and the constant p

n–p in (.) is also optimal.
For the critical case p = n, the inequality (.) makes no sense, and instead the inequality

∥∥∥∥ f
|x|( + | log |x||)
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Ln(B)

≤ C‖f ‖W 
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holds for all f ∈ W 
n(Rn), where n ≥ , B := {x ∈ R

n; |x| < }, and the constant C de-
pends only on n (see [] for instance). There are a number of both mathematical and
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physical applications of Hardy type inequalities. Among others, we refer the reader to
[–].

In a recent paper [], the authors established the logarithmic Hardy type inequality on
the two dimensional ball BR := {x ∈ R

; |x| < R} with R > , by taking into account the be-
havior of W 

 (BR) functions on the boundary ∂BR = {x ∈ R
; |x| = R}. Indeed, the following

inequality was proved.

Theorem (Theorem  in []) Let n =  and R > . Then the inequality

(∫
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|f (x) – f (R x
|x| )|

| log R
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dx
|x|

) 
 ≤ 
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(.)

holds for all f ∈ W 
 (BR).

The purpose of this paper is to extend the inequality (.) to the higher dimensional
cases n ≥  in terms of the Lorentz-Zygmund type spaces in R

n. To this end, we first recall
the Lorentz-Zygmund spaces.

For n ∈N and  ≤ p, q ≤ ∞, the Lorentz spaces are defined by

Lp,q
(
R
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f ∈ L,loc
(
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,

where
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∣∣f (x)

∣∣)q dx
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) 
q

with the usual modification when q = ∞. If a function f is non-negative, radially symmetric
and non-increasing with respect to the radial direction, then the norm ‖f ‖Lp,q(Rn) coincides
with the Lorentz norm in terms of the rearrangement of f . In fact, it follows that
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where f ∗ denotes the symmetric decreasing rearrangement of f , and ωn is the volume of
the unit ball in R

n.
Furthermore, the Lorentz-Zygmund spaces on BR with R >  are defined by

Lp,q,λ(BR) :=
{

f ∈ L,loc(BR);‖f ‖Lp,q,λ(BR) < +∞}
,

where λ ∈R and

‖f ‖Lp,q,λ(BR) :=
(∫

BR
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We then define the Sobolev-Lorentz-Zygmund spaces by

W Lp,q,λ(BR) :=
{

f ∈ Lp,q,λ(BR);∇f ∈ Lp,q,λ(BR)
}
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endowed with the norm ‖ · ‖W Lp,q,λ(BR) := ‖ · ‖Lp,q,λ(BR) + ‖∇ · ‖Lp,q,λ(BR), and W 
Lp,q,λ(BR) :=

C∞
 (BR)

‖·‖W Lp,q,λ(BR) . Note that the special case W Lp,p,(BR) coincides with the classical
Sobolev space W 

p(BR). As a further generalization, the Lorentz-Zygmund spaces involving
the double logarithmic weights can be introduced by
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,

where λ,λ ∈R and
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The Sobolev-Lorentz-Zygmund spaces W Lp,q,λ,λ (BR) and W 
Lp,q,λ,λ (BR) are defined

similarly to above.
We next introduce the Lorentz-Zygmund spaces in R

n having the scaling properties.
The Lorentz-Zygmund spaces Lp,q,λ(Rn) are defined by

Lp,q,λ
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,
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.

Similarly, the spaces Lp,q,λ,λ (Rn) are defined by

Lp,q,λ,λ

(
R

n) :=
{

f ∈ L,loc
(
R
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,

where
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.

Remark The space Lp,q,λ,λ (Rn) extends the spaces Lp,q,λ(Rn) and Lp,q(Rn) in the sense
that Lp,q,λ,(Rn) = Lp,q,λ(Rn) and Lp,q,,(Rn) = Lp,q(Rn). Moreover, remark that the space
Lp,q,λ,λ (Rn) has a scaling property in the sense that ‖δlf ‖Lp,q,λ,λ (Rn) = l

n
p ‖f ‖Lp,q,λ,λ (Rn),

where (δlf )(x) := f ( x
l ) for l > .

In addition, the Sobolev-Lorentz-Zygmund spaces W Lp,q,λ,λ (Rn) are defined in the
same manner as above. We refer to [] for an enlightening exposition concerning these
functional spaces.

Finally, in order to state the main theorems in this paper, we need to introduce the
Lorentz-Zygmund type spaces Lp,q,λ(Rn) taking into account the behavior of functions
on spheres defined by

Lp,q,λ
(
R

n) :=
{

f ∈ L,loc
(
R

n);‖f ‖Lp,q,λ(Rn) < +∞}
,
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where

‖f ‖Lp,q,λ(Rn) := sup
R>

(∫
Rn

(
|x| n

p

∣∣∣∣log
R
|x|

∣∣∣∣
λ∣∣∣∣f (x) – f

(
R

x
|x|

)∣∣∣∣
)q dx

|x|n
) 

q
.

Furthermore, we define the Lorentz-Zygmund type spaces Lp,q,λ,λ (Rn) by

Lp,q,λ,λ
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,

where
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Remark The spaces Lp,q,λ(Rn) and Lp,q,λ,λ (Rn) have the same scaling property as
in the space Lp,q,λ,λ (Rn). Namely, it follows that ‖δlf ‖Lp,q,λ(Rn) = l

n
p ‖f ‖Lp,q,λ(Rn) and

‖δlf ‖Lp,q,λ,λ (Rn) = l
n
p ‖f ‖Lp,q,λ,λ (Rn), where (δlf )(x) := f ( x

l ) for l > .

We are now in a position to state the main theorems.

Theorem . Let n ∈ N,  < α < ∞ and max{,α – } < β < ∞. Then the continuous em-
bedding

W Ln,β , β–α
β

(
R

n) ↪→L∞,β ,– α
β

(
R

n)

holds. In particular, for any R > , the inequality
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β

(.)

holds for all f ∈ W Ln,β , β–α
β

(Rn), where the embedding constant β

α– in (.) is best-possible.

Remark Denoting W L,,(R) = W 
 (R) and restricting the functions in W 

 (R) on BR,
we see that the special case n = α = β =  in (.) yields (.) obtained in [].

Our next aim is to consider the limiting case α =  in (.). However, the inequality (.)
with α =  makes no sense since the weight | log 

|x| |–|x|–n is not locally integrable at the
origin. To overcome this difficulty, we need the aid of a logarithmic weight to recover the
corresponding double logarithmic Hardy type inequality. Our next theorem now reads as
follows.

Theorem . Let n ∈ N,  < α < ∞ and max{,α – } < β < ∞. Then the continuous em-
bedding

W Ln,β , β–
β

, β–α
β

(
R

n) ↪→L∞,β ,– 
β

,– α
β

(
R

n)
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holds. In particular, for any R > , the inequality

(∫
Rn

χBeR (x)|f (x) – f (R x
|x| )|β + χBc
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(x)|f (x) – f (eR x
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holds for all f ∈ W Ln,β , β–
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(Rn), where the embedding constant β

α– in (.) is best-
possible.

Remark Remark that we do not need to subtract the boundary value of functions on |x| =
eR in the integrand on the left-hand side of (.) in spite of the fact that the integrand on
the right-hand side has singularities on |x| = R, |x| = eR, and |x| = eR.

This paper is organized as follows. Section  is devoted to establishing the inequalities
(.) in Theorem . and (.) in Theorem .. We shall prove the optimality of the em-
bedding constants in the two inequalities (.) and (.) in Section .

2 Proof of inequalities (1.5) and (1.6)
In this section, we shall prove inequalities (.) and (.).

Proof of (.) in Theorem . We first prove (.) for f ∈ C∞
 (Rn). We introduce polar co-

ordinates (r,ω) = (|x|, x
|x| ) ∈ (,∞) × Sn– and the Lebesgue measure σ on the unit sphere

Sn–. We write the integral on the left-hand side of (.) restricted on BR in polar coordi-
nates and then by integration by parts to obtain

∫
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Re
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where the boundary value at r = R vanishes since

log
R
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t

≥
R
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R
r
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≥ 

and

∣∣f (rω) – f (Rω)
∣∣ ≤ ‖∇f ‖L∞(Rn)(R – r)
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for  < r ≤ R, and β – α +  >  by assumption. By the Hölder inequality, we have

∫ R




r(log R

r )α

∫
Sn–
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∣∣β dσ (ω) dr
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β
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rβ–
(

log
R
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β

.

This implies
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In the same manner as above, we have
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|x| )|β

| log R
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dx
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. (.)

Thus combining (.) with (.), we obtain (.) for f ∈ C∞
 (Rn).

Now we prove (.) for f ∈ W Ln,β , β–α
β

(Rn). For f ∈ W Ln,β , β–α
β

(Rn), we choose a se-

quence {fj}j∈N ⊂ C∞
 (Rn) such that fj → f in W Ln,β , β–α

β
(Rn) as j → ∞ and almost every-

where by density. Since the inequality (.) holds for fj – fk ∈ C∞
 (Rn), we see that {(fj)#

R}j∈N
is a Cauchy sequence in Lβ (Rn; dx

|x|n ), where we define

f #
R (x) :=

f (x) – f (R x
|x| )

| log R
|x| |

α
β

for f ∈ L,loc(Rn). Then there exists a function gR ∈ Lβ (Rn; dx
|x|n ) such that (fj)#

R → gR in
Lβ (Rn; dx

|x|n ) as j → ∞. The inclusion relationship

{
x ∈R

n \ {} : fj

(
R

x
|x|

)
�→ f

(
R

x
|x|

)}
⊂

⋃
r>

{
x ∈R

n \ {} : fj

(
r

x
|x|

)
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(
r

x
|x|

)}

=
{

x ∈R
n \ {} : fj(x) �→ f (x)

}

implies that fj(R x
|x| ) → f (R x

|x| ) almost everywhere, and that f #
R = gR. Therefore, the inequal-

ity (.) holds for all f ∈ W Ln,β , β–α
β

(Rn). �



Machihara et al. Journal of Inequalities and Applications  (2015) 2015:281 Page 7 of 13

In order to prove (.) in Theorem ., we first show the following proposition.

Proposition . Let n ∈ N,  < α < ∞ and max{,α – } < β < ∞. Then, for any R > , the
inequality

(∫
BeR

|f (x) – f (R x
|x| )|β

| log | log eR
|x| ||α| log eR

|x| |
dx
|x|n

) 
β

≤ β

α – 

(∫
BeR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∣∣ x

|x| · ∇f (x)
∣∣∣∣
β

dx
) 

β

(.)

holds for all f ∈ C∞
 (Rn).

Proof We first consider the integrals in (.) restricted on BR. Using polar coordinates and
integration by parts, we see

∫
BR

|f (x) – f (R x
|x| )|β

| log | log eR
|x| ||α| log eR

|x| |
dx
|x|n

=
∫ R




r(log eR

r )(log(log eR
r ))α

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω) dr

=


α – 

[(
log

(
log

eR
r

))–α+ ∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω)

]r=R

r=

–


α – 

∫ R



(
log

(
log

eR
r

))–α+ d
dr

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω) dr

= –
β

α – 

∫ R



(
log

(
log

eR
r

))–α+

Re
∫

Sn–

∣∣f (rω) – f (Rω)
∣∣β–

× (
f (rω) – f (Rω)

)
ω · (∇f )(rω) dσ (ω) dr,

where the boundary value at r = R vanishes since

log

(
log

eR
r

)
=

∫ log eR
r



dt
t

≥ log eR
r – 

log eR
r

≥ R – r
R log eR

r

and

∣∣f (rω) – f (Rω)
∣∣ ≤ ‖∇f ‖L∞(Rn)(R – r)

for  < r ≤ R, and β – α +  >  by the assumption. By the Hölder inequality, we have

∫ R




r(log eR

r )(log(log eR
r ))α

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω) dr

≤ β

α – 

∫ R




(log(log eR

r ))α–

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β–∣∣ω · (∇f )(rω)

∣∣dσ (ω) dr

=
β

α – 

∫ R





r
β–
β (log eR

r )
β–
β r– β–

β (log eR
r )– β–

β (log(log eR
r ))

(β–)α
β (log(log eR

r ))
α–β
β
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×
∫

Sn–

∣∣f (rω) – f (Rω)
∣∣β–∣∣ω · (∇f )(rω)

∣∣dσ (ω) dr

≤ β

α – 

(∫ R



∫
Sn–

|f (rω) – f (Rω)|β
r(log eR

r )(log(log eR
r ))α

dσ (ω) dr
) β–

β

×
(∫ R



∫
Sn–

rβ–
(

log
eR
r

)β–(
log

(
log

eR
r

))β–α∣∣ω · (∇f )(rω)
∣∣β dσ (ω) dr

) 
β

,

which implies

(∫
BR

|f (x) – f (R x
|x| )|β

| log | log eR
|x| ||α| log eR

|x| |
dx
|x|n

) 
β

≤ β

α – 

(∫
BR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∣∣ x

|x| · ∇f (x)
∣∣∣∣
β

dx
) 

β

. (.)

Next, we consider the integrals in (.) restricted on BeR \ BR. Using polar coordinates
and integration by parts, we see

∫
BeR\BR

|f (x) – f (R x
|x| )|β

| log | log eR
|x| ||α| log eR

|x| |
dx
|x|n

=
∫ eR

R


r(log eR

r )(log((log eR
r )–))α

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω) dr

= –


α – 

[(
log

((
log

eR
r

)–))–α+ ∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω)

]r=eR

r=R

+


α – 

∫ eR

R

(
log

((
log

eR
r

)–))–α+ d
dr

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω) dr

=
β

α – 

∫ eR

R

(
log

((
log

eR
r

)–))–α+

Re
∫

Sn–

∣∣f (rω) – f (Rω)
∣∣β–

× (
f (rω) – f (Rω)

)
ω · (∇f )(rω) dσ (ω) dr,

where the boundary value at r = R vanishes since

log

((
log

eR
r

)–)
=

∫ (log eR
r )–



dt
t

≥
(

log
eR
r

)((
log

eR
r

)–

– 
)

=  – log
eR
r

≥ r – R
R

and

∣∣f (rω) – f (Rω)
∣∣ ≤ ‖∇f ‖L∞ (r – R)

for R ≤ r < eR, and β – α +  >  by the assumption. By the Hölder inequality, we have

∫ eR

R


r(log eR

r )(log((log eR
r )–))α

∫
Sn–

∣∣f (rω) – f (Rω)
∣∣β dσ (ω) dr

≤ β

α – 

∫ eR

R

(
log

((
log

eR
r

)–))–α+
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×
∫

Sn–

∣∣f (rω) – f (Rω)
∣∣β–∣∣ω · (∇f )(rω)

∣∣dσ (ω) dr

=
β

α – 

×
∫ eR

R



r
β–
β (log eR

r )
β–
β r– β–

β (log eR
r )– β–

β (log((log eR
r )–))

(β–)α
β (log((log eR

r )–))
α–β
β

×
∫

Sn–

∣∣f (rω) – f (Rω)
∣∣β–∣∣ω · (∇f )(rω)

∣∣dσ (ω) dr

≤ β

α – 

(∫ eR

R

∫
Sn–

|f (rω) – f (Rω)|β
r(log eR

r )(log((log eR
r )–))α

dσ (ω) dr
) β–

β

×
(∫ eR

R

∫
Sn–

rβ–
(

log
eR
r

)β–(
log

((
log

eR
r

)–))β–α

× ∣∣ω · (∇f )(rω)
∣∣β dσ (ω) dr

) 
β

,

which implies

(∫
BeR\BR

|f (x) – f (R x
|x| )|β

| log | log eR
|x| ||α| log eR

|x| |
dx
|x|n

) 
β

≤ β

α – 

(∫
BeR\BR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∣∣ x

|x| · ∇f (x)
∣∣∣∣
β

dx
) 

β

. (.)

Thus combining (.) with (.), we obtain (.). �

We can prove a dual inequality of (.) in a similar way as in Proposition . stated as
follows.

Proposition . Let n ∈ N,  < α < ∞ and max{,α – } < β < ∞. Then, for any R > , the
inequality

(∫
Bc

R

|f (x) – f (eR x
|x| )|β

| log | log R
|x| ||α| log R

|x| |
dx
|x|n

) 
β

≤ β

α – 

(∫
Bc

R

|x|β–n
∣∣∣∣log

R
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
R
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∣∣ x

|x| · ∇f (x)
∣∣∣∣
β

dx
) 

β

holds for all f ∈ C∞
 (Rn).

We shall show (.) in Theorem . by combining Proposition . with Proposition ..

Proof of Theorem . By considering a density argument as used in the proof of Theo-
rem ., it suffices to prove (.) for f ∈ C∞

 (Rn). Applying Proposition . with R replaced
by eR, we obtain

(∫
Bc

eR

|f (x) – f (eR x
|x| )|β

| log | log eR
|x| ||α| log eR

|x| |
dx
|x|n

) 
β

≤ β

α – 

(∫
Bc

eR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∣∣ x

|x| · ∇f (x)
∣∣∣∣
β

dx
) 

β

. (.)
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Thus from (.) and (.), we obtain (.) for f ∈ C∞
 (Rn), and then for f ∈

W Ln,β , β–
β

, β–α
β

(Rn). �

3 Optimality of the embedding constant
In this section, we shall prove that the embedding constant β

α– is best-possible in the
inequalities (.) in Theorem . and (.) in Theorem ..

First, we consider the optimality of β

α– in (.). As a direct consequence of (.), we
obtain

(∫
BR

|f (x)|β
| log R

|x| |α
dx
|x|n

) 
β ≤ β

α – 

(∫
BR

|x|β–n
∣∣∣∣log

R
|x|

∣∣∣∣
β–α∣∣∇f (x)

∣∣β dx
) 

β

(.)

for all f ∈ W 
Ln,β , β–α

β
(BR). Therefore, it suffices to prove the optimality of β

α– in (.).
Define a sequence of functions {fm} for large m ∈N by

fm(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(log(mR))
α–
β when |x| ≤ 

m ,

(log R
|x| )

α–
β when 

m ≤ |x| ≤ R
 ,

(log )
α–
β 

R (R – |x|) when R
 ≤ |x| ≤ R.

We can easily check fm ∈ W 
Ln,β , β–α

β
(BR). More precisely, we calculate the norm

‖fm‖W L
n,β , β–α

β

(BR) below. Letting f̃m(r) := fm(x) with r = |x| ≥ , we have

f̃ ′
m(r) =

⎧⎪⎪⎨
⎪⎪⎩

 when r < 
m ,

– α–
β

r–(log R
r )

α–
β

– when 
m < r < R

 ,

–(log )
α–
β 

R when R
 < r < R.

Thus a direct calculation yields

∫
BR

|x|β–n
∣∣∣∣log

R
|x|

∣∣∣∣
β–α∣∣∇fm(x)

∣∣β dx

= nωn

∫ R



∣∣∣∣log
R
r

∣∣∣∣
β–α∣∣f̃ ′

m(r)
∣∣βrβ– dr

= nωn

(
α – 

β

)β ∫ R



m

(
log

R
r

)–

r– dr

+ nωn(log )α–
(


R

)β ∫ R

R


(
log

R
r

)β–α

rβ– dr

= nωn

(
α – 

β

)β(
log

(
log(mR)

)
– log(log )

)

+ nωnβ (log )α–
∫ log 


sβ–αe–βs ds

=: nωn

(
α – 

β

)β(
log

(
log(mR)

)
– log(log )

)
+ nωnCα,β , (.)



Machihara et al. Journal of Inequalities and Applications  (2015) 2015:281 Page 11 of 13

where note that the last integral in (.) is finite by the assumption β – α > –. On the
other hand, we see

∫
BR

|fm(x)|β
| log R

|x| |α
dx
|x|n

= nωn

∫ R



|f̃m(r)|β
| log R

r |α
dr
r

= nωn
(
log(mR)

)α–
∫ 

m



(
log

R
r

)–α

r– dr

+ nωn

∫ R



m

(
log

R
r

)–

r– dr

+ nωn(log )α–
(


R

)β ∫ R

R


(R – r)β
(

log
R
r

)–α

r– dr

=:
nωn

α – 
+ nωn

(
log

(
log(mR)

)
– log(log )

)
+ nωnCR,α,β . (.)

Here, by applying the inequality log R
r ≥ R–r

R for all r ≤ R, we can estimate CR,α,β as follows:

CR,α,β ≤ β+(log )α–R–β+α–
∫ R

R


(R – r)β–α dr

= β+(log )α–R–β+α–
∫ R




sβ–α ds =

α(log )α–

β – α + 
,

where we have used β –α + >  by the assumption. Summing up (.) and (.), we obtain

∫
BR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∇fm(x)

∣∣β dx

×
(∫

BR

|fm(x)|β
| log | log eR

|x| ||α| log eR
|x| |

dx
|x|n

)–

→
(

α – 
β

)β

as m → ∞, which implies that the constant β

α– in (.) is best-possible.
We next consider the optimality of β

α– in (.) in Theorem .. As a direct consequence
of (.), we obtain

(∫
BR

|f (x)|β
| log | log eR

|x| ||α| log eR
|x| |

dx
|x|n

) 
β

≤ β

α – 

(∫
BR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∇f (x)

∣∣β dx
) 

β

(.)

for all f ∈ W 
Ln,β , β–

β
, β–α

β
(BR). In order to prove that the constant β

α– in (.) is best-
possible, we take a sequence of functions {fm} for large m ∈N defined by

fm(x) :=

⎧⎪⎪⎨
⎪⎪⎩

(log(log(meR)))
α–
β when |x| ≤ 

m ,

(log(log eR
|x| ))

α–
β when 

m ≤ |x| ≤ R
 ,

(log(log(e)))
α–
β 

R (R – |x|) when R
 ≤ |x| ≤ R.
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Then a direct calculation yields

∫
BR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∇fm(x)

∣∣β dx

= nωn

(
α – 

β

)β(
log

(
log

(
log(meR)

))
– log

(
log

(
log(e)

)))
+ nωnCα,β , (.)

where

Cα,β := (e)β
(
log

(
log(e)

))α–
∫ log(log(e))


sβ–αeβ(s–es) ds.

Note that the assumption β – α > – implies Cα,β < +∞. Furthermore, we see

∫
BR

|fm(x)|β
| log | log eR

|x| ||α| log eR
|x| |

dx
|x|n

=
nωn

α – 
+ nωn

(
log

(
log

(
log(meR)

))
– log

(
log

(
log(e)

)))
+ nωnCR,α,β , (.)

where

CR,α,β :=
(
log

(
log(e)

))α–
(


R

)β ∫ R

R


(R – r)β
(

log

(
log

eR
r

))–α(
log

eR
r

)–

r– dr.

Utilizing the elementary inequality log(log eR
r ) ≥ R–r

R for all r ≤ R and the assumption β –
α +  > , we easily see that CR,α,β < +∞. Hence, from (.) and (.), we obtain

∫
BR

|x|β–n
∣∣∣∣log

eR
|x|

∣∣∣∣
β–∣∣∣∣log

∣∣∣∣log
eR
|x|

∣∣∣∣
∣∣∣∣
β–α∣∣∇fm(x)

∣∣β dx

×
(∫

BR

|fm(x)|β
| log | log eR

|x| ||α| log eR
|x| |

dx
|x|n

)–

→
(

α – 
β

)β

as m → ∞, which implies that the constant β

α– in (.) is best-possible.
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