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Abstract
In this paper, a kind of half-linear impulsive delay differential equations with damping
is studied. By employing a generalized Riccati technique and the impulsive differential
inequality, we derive several oscillation criteria which are either new or improve
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1 Introduction
Impulsive differential equations are used to simulate processes and phenomena observed
in control theory, physics, chemistry, population dynamics, biotechnologies, industrial
robotics, etc., and therefore their qualitative properties are important. The phenomenon
of oscillations is observed in ecology, physics, economic, etc. In [], Chen and Feng showed
a few examples and indicated that some of the oscillations did favor the stability of system,
but some might destroy the balance of the system. Oscillatory properties are so important
for the balance of the system that there are now quite a few results on oscillatory properties
of their solutions since recent years [–]. In particular, Agarwal et al. in [, ] discussed
oscillation theory of differential equations and nonoscillation theory of functional differ-
ential equations with applications. Chen and Feng in [] investigated oscillations of second
order nonlinear impulsive differential equation by impulsive differential inequality. From
then on, the authors in [–] generalized and improved the results of []. Furthermore, in
[–], the delay effect to impulsive equations is considered and some interesting results
of oscillations are obtained. Those papers have only considered first or second order dif-
ferential equations (delay differential equations) with impulses. Recently, some scholars
have been attracted by the problems of the oscillations of higher order differential equa-
tions and higher order impulsive differential equations and made relative advances therein
in [–]. For example, Grace et al. in [, ] first studied oscillations of higher order
nonlinear dynamic equations on time scales and got some interesting and exciting results.
Pan et al. in [] considered even order nonlinear differential equations with impulses of
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the form

⎧
⎪⎨

⎪⎩

x(n)(t) + f (t, x) = , t ≥ t, t �= tk ,
x(i)(t+

k ) = g[i]
k (x(i)(tk)), i = , , . . . , n – , k = , , . . . ,

x(i)(t+
 ) = x(i)

 , i = , , . . . , n – ,
()

where n is positive integer and  ≤ t < t < · · · < tk < · · · such that limk→∞ tk = ∞. They
obtained sufficient conditions which guaranteed oscillation of every solution of (). Wen
et al. in [] considered even order nonlinear differential equations with impulses of the
form

⎧
⎪⎨

⎪⎩

(r(t)x(n–)(t))′ + f (t, x) = , t ≥ t, t �= tk ,
x(i)(t+

k ) = g[i]
k (x(i)(tk)), i = , , . . . , n – , k = , , . . . ,

x(i)(t+
 ) = x(i)

 , i = , , . . . , n – ,
()

where n is a positive integer and  ≤ t < t < · · · < tk < · · · such that limk→∞ tk = ∞,
p(t) > . They generalized and improved the results in [–]. Pan in [] considered
nonlinear impulsive differential equations with damping of the form

⎧
⎪⎨

⎪⎩

(r(t)x(n–)(t))′ + q(t)x(n–)(t) + f (t, x(t)) = , t ≥ t, t �= tk ,
x(i)(t+

k ) = g[i]
k (x(i)(tk)), i = , , . . . , n – , k = , , . . . ,

x(i)(t+
 ) = x(i)

 , i = , , . . . , n – ,
()

where n is a positive integer and  ≤ t < t < · · · < tk < · · · such that limk→∞ tk = ∞. He
obtained sufficient conditions which guaranteed the oscillation of every solution of ().

References devoted to the study of the oscillations of higher order impulsive differential
equations are [–]. Impulsive delay differential equations may be used for the mathe-
matical simulation of processes which are characterized by the fact that their state changes
by jumps and by the dependence of the process on its history at each moment of time.
Those equations can more precisely describe the real processes of a system than impul-
sive differential equations. Therefore, it is necessary to consider both impulsive effect and
delay effect on the oscillation of a differential equation. Many useful results on oscillation
and nonoscillation of first order or second order impulsive delay differential equations
have been obtained in [–], but references devoted to the study of the oscillations of
higher order impulsive delay differential equations are relatively scarce.

This paper is motivated by several recent studies [–] of such higher order equa-
tions. Using impulsive differential inequality and the Riccati transformation, we study the
oscillatory properties of even order half-linear impulsive delay differential equation with
damping of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(r(t)|x(n–)(t)|α–x(n–)(t))′ + q(t)|x(n–)(t)|α–x(n–)(t)
+ f (t, x(t), x(t – τ )) = , t ≥ t, t �= tk ,

x(i)(t+
k ) = g[i]

k (x(i)(tk)), i = , , . . . , n – , k = , , . . . ,
x(i)(t+

 ) = x(i)
 , i = , , . . . , n – ,

x(t) = φ(t), t – τ ≤ t ≤ t,

()
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where

x(i)(tk) = lim
h→–

x(i–)(tk + h) – x(i–)(tk)
h

,

x(i)(t+
k
)

= lim
h→+

x(i–)(tk + h) – x(i–)(t+
k )

h
.

φ : [t – τ , t] → R has at most finite discontinuous points of the first kind and is left-
continuous at these points. α > , τ > ,  ≤ t < t < · · · < tk < · · · such that limk→∞ tk = ∞,
x()(t) = x(t), n is a positive integer.

Definition  A function x : [t – τ , t + γ ) → R (γ > ) is said to be a solution of () on
[t – τ , t + γ ) starting from (t,φ, x()

 , x()
 , . . . , x(n–)

 ) if
(i) x(i)(t) is continuous on [t, t + γ ) \ {tk , k ∈ N}, i = , , . . . , n – ,

(ii) x(t) = φ(t), t ∈ [t – τ , t], x(i)(t+
 ) = x(i)

 , i = , , . . . , n – ,
(iii) x(t) satisfies the first equality of () on [t, t + γ ) \ {tk , k ∈ N},
(iv) x(i)(t) has two-side limits and left-continuous at points tk , x(i)(tk) satisfies the

second equality of (), i = , , . . . , n – , k = , , . . . .

Remark  Let x(t) = x(t), x(t) = x′(t), . . . , xn–(t) = x(n–)(t). Then () can be changed
into a differential system with impulses. By the same method in [], one can get sufficient
conditions that can guarantee the solution of () exists on [t,∞). In the following, we
always assume the solution of () exists on [t,∞).

Definition  A solution of () is said to be nonoscillatory if it is eventually positive or
eventually negative. Otherwise, it is said to be oscillatory.

In this paper, we investigate the oscillatory properties of (). We first obtain two the-
orems to ensure every solution of () is oscillatory. The results extend and improve the
earlier publications. Next, we obtain three corollaries by Theorem  and Theorem , and
provide examples to show that although even order nonlinear delay differential equations
without impulses may have nonoscillatory solutions, adding impulses may lead to oscilla-
tory solutions. That is, impulses may change the oscillatory behavior of an equation.

2 Main results
We will establish oscillatory results based on combinations of the following conditions:

(A) r(t) >  and r(t), q(t) are both continuous on [t – τ ,∞), f (t, u, v) is continuous on
[t – τ ,∞) × (–∞,∞) × (–∞,∞), uf (t, u, v) >  (uv > ), and f (t, u, v)/ϕ(v) ≥ p(t)
(v �= ), where p(t) is positive and continuous on [t – τ ,∞) and for any t ≥ t, p(t)
is not always equal to  on [t,∞), ϕ is differentiable on (–∞,∞) such that xϕ(x) > 
(x �= ), ϕ′(x) ≥ .

(B) For k = , , . . . , g[i]
k (x) are continuous on (–∞,∞) and there exist positive numbers

a[i]
k , b[i]

k such that

a[i]
k ≤ g[i]

k (x)/x ≤ b[i]
k , i = , , , . . . , n – .
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(C) For i = , , . . . , n – ,

∫ ∞

t

∏

t<tk <s

a[i]
k

b[i–]
k

ds = ∞

and

∫ ∞

t


r 

α (s)

∏

t<tk <s

a[n–]
k

b[n–]
k

ds = ∞.

(D)
∫ ∞

t

∏
t<tk <s

a[n–]
k

b[n–]
k

exp(–
∫ s

t
r′(v)+q(v)

αr(v) dv) ds = ∞.

The main results of the paper are as follows.

Theorem  Assume that the conditions (A), (B), (C), and (D) hold. Suppose further that
a[]

k ≥  and

∫ ∞

t

∏

t<t,w<s


θ,w

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds = ∞, ()

where

θ,w =

⎧
⎪⎨

⎪⎩

, t,w = tk + τ �= tm (m > k),
(b[n–]

k )α , t,w = tk ,
(b[n–]

m )α , t,w = tk + τ = tm,
()

and t,w = tk or tk + τ (t = t, < t, < · · · < t,w < t,w+ < · · · ), then every solution of () is
oscillatory.

Theorem  Assume that the conditions (A), (B), (C), and (D) hold and that ϕ(ab) ≥
ϕ(a)ϕ(b) for ab > . Furthermore suppose that

∫ ∞

t

∏

t<t,w<t


μ,w

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds = ∞, ()

where

μ,w =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(b[n–]
m )α

ϕ(a[]
k )

, t,w = tk + τ = tm (m > k),

(b[n–]
k )α , t,w = tk and tk – τ �= tm ( < m < k),


ϕ(a[]
k )

, t,w = tk + τ �= tm (m > k),

(b[n–]
k )α

ϕ(a[]
m )

, t,w = tk and tk – τ = tm ( < m < k),

()

and t,w = tk or tk + τ (t = t, < t, < · · · < t,w < t,w+ < · · · ), then every solution of () is
oscillatory.

Remark  When α =  and not considering the delay effect, () reduces to (). Our Theo-
rem  and Theorem  generalize and contain results in []. When α = , q(t) =  and not
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considering a delay effect, () reduces to (). Our Theorem  and Theorem  are extensions
of Theorem , Theorem  of [], respectively.

3 Corollaries and examples
Corollary  Assume that the conditions (A), (B), (C), and (D) hold. Furthermore suppose
that a[]

k ≥ , b[n–]
k ≤  and

∫ ∞

t

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds = ∞, ()

then every solution of () is oscillatory.

Proof By a[]
k ≥ , b[n–]

k ≤ , we know that 
θ,w

≥ . Therefore

∫ t

t

∏

t<t,w<t


θ,w

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds ≥
∫ t

t

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds, ()

letting t → ∞, it follows from (), () that () holds. By Theorem , we see that all solu-
tions of () are oscillatory. �

Corollary  Assume that the conditions (A), (B), (C), and (D) hold and that there exists a
constant δ >  such that

a[]
k ≥ ,


(b[n–]

k )α
≥

(
tk+

tk

)δ

. ()

If

∫ ∞

t

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds = ∞, ()

then every solution of () is oscillatory.

Proof By a[]
k ≥ , 

(b[n–]
k )α

≥ ( tk+
tk

)δ , then for t ∈ (tw, tw+], we have

∫ t

t

∏

t<t,w<t


θ,w

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds

=
∫ t

t

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds +


(b[n–]
 )α

∫ t

t
p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds

+


(b[n–]
 b[n–]

 )α

∫ t

t

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds + · · ·

+


(b[n–]
 b[n–]

 · · ·b[n–]
w )α

∫ t

tw

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds

≥ 
(b[n–]

 )α

∫ t

t
p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds

+


(b[n–]
 b[n–]

 )α

∫ t

t

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds + · · ·
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+


(b[n–]
 b[n–]

 · · ·b[n–]
w )α

∫ t

tw

p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds

≥ 
tδ


[∫ t

t
tδ
p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds +
∫ t

t

tδ
p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds + · · ·

+
∫ t

tw

tδ
w+p(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds
]

≥ 
tδ


[∫ t

t
sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds +
∫ t

t

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds + · · ·

+
∫ t

tw

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds
]

=

tδ


∫ t

t
sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds, ()

letting t → ∞, it follows from (), () that () hold. By Theorem , we see that all solu-
tions of () are oscillatory. �

Corollary  Assume that the conditions (A), (B), (C), and (D) hold and that ϕ(ab) ≥
ϕ(a)ϕ(b) for ab > . If there exists a constant δ >  such that

tk+ – tk > τ ,
ϕ(a[]

k )
(b[n–]

k )α
≥

(
tk+

tk

)δ

()

and
∫ ∞

t

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds = ∞, ()

then every solution of () is oscillatory.

Corollary  can be deduced from Theorem . The proof is similar to that of Corollary 
and it is omitted.

Example  Consider the equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(|x(n–)(t)|x(n–)(t))′ – 
t |x(n–)(t)|x(n–)(t) + 

t x(t – 
 ) = , t ≥ 

 , t �= k,
x(k+) = x(k), x(i)(k+) = k

k+ x(i)(k), i = , , . . . , n – ; k = , , . . . ,
x( 

 ) = x, x(i)( 
 ) = x(i)

 ,
x(t) = φ(t), t ∈ [, 

 ],

()

where a[]
k = b[]

k = , a[i]
k = b[i]

k = k
k+ , i = , , . . . , n – ; q(t) = – 

t , p(t) = 
t , r(t) = , t = 

 ,
tk = k, τ = 

 , α = , ϕ(x) = x. It is easy to see that the conditions (A), (B), (C), and (D) hold.
Since 

(b[n–]
k ) = ( k+

k ) = ( tk+
tk

), we may let δ = , furthermore,

∫ ∞

t

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds =
∫ ∞




s 
s exp

(

–
∫ s





v

dv
)

ds

=
∫ ∞




exp

(

–
∫ s





v

dv
)

ds =
∫ ∞





s

ds = ∞.

By Corollary , every solution of () is oscillatory.
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Example  Consider the equation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(t|x(n–)(t)|α–x(n–)(t))′ – |x(n–)(t)|α–x(n–)(t)
+ 

t x(t – 
 ) = , t ≥ 

 , t �= k,
x(k+) = k+

k x(k), x(i)(k+) = x(i)(k), i = , , . . . , n – ; k = , , . . . ,
x( 

 ) = x, x(i)( 
 ) = x(i)

 ,
x(t) = φ(t), t ∈ [, 

 ],

()

where a[]
k = b[]

k = k+
k , a[i]

k = b[i]
k = , i = , , . . . , n – ; q(t) = –, p(t) = 

t , r(t) = t, t = 
 ,

tk = k, τ = 
 , tk+ – tk =  > 

 = τ , ϕ(x) = x. It is easy to see that the conditions (A), (B), (C),

and (D) hold. Since ϕ(a[]
k )

(b[n–]
k )α

= ( k+
k ) = ( tk+

tk
), we may let δ = , furthermore

∫ ∞

t

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds =
∫ ∞




s 
s exp

(

–
∫ s





v

dv
)

ds

=
∫ ∞




s exp

(

–
∫ s





v

dv
)

ds

=
∫ ∞




s exp

(

In



– Ins
)

ds

=
∫ ∞




s

s

ds

=



∫ ∞




ds = ∞.

By Corollary , every solution of () is oscillatory.

Example  Consider the equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t|x′′′(t)|x′′′(t))′ + 
 t–(t – 

 )– 
 x(t – 

 ) = , t ≥ 
 , t �= k,

x(k+) = k+
k x(k), x(i)(k+) = x(i)(k), i = , , . . . , n – ; k = , , . . . ,

x( 
 ) = x, x(i)( 

 ) = x(i)
 ,

x(t) = φ(t), t ∈ [, 
 ],

()

where a[]
k = b[]

k = k+
k , a[i]

k = b[i]
k = , i = , , ; r(t) = t, q(t) = , p(t) = 

 t–(t – 
 )– 

 , t = 
 ,

tk = k, τ = 
 , tk+ – tk =  > 

 = τ , α = , ϕ(x) = x. It is easy to see that the conditions (A),

(B), (C), and (D) hold. Since ϕ(a[]
k )

(b[n–]
k )α

= ( k+
k ) = ( tk+

tk
), we may let δ = , furthermore

∫ ∞

t

sδp(s) exp

(∫ s

t

q(v)
r(v)

dv
)

ds =
∫ ∞




s 


s–
(

s –



)– 


ds

=



∫ ∞




s
(

s –



)– 


ds

≥ 


∫ ∞





(s – 

 ) 


ds

= ∞.
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By Corollary , every solution of () is oscillatory. But the delay differential equation

(
t∣∣x′′′(t)

∣
∣x′′′(t)

)′ +



t–
(

t –



)– 


x
(

t –



)

= 

has a nonnegative solution x =
√

t. This example shows that impulses play an important
role in the oscillatory behavior of equations under perturbing impulses.

4 Preparatory lemmas
To prove Theorem  and Theorem , we need the following lemmas.

Lemma  (Lakshmikantham et al. []) Assume that

(H) m ∈ PC′(R+, R) and m(t) is left-continuous at tk , k = , , . . . .
(H) For tk , k = , , . . . and t ≥ t,

m′(t) ≤ p(t)m(t) + q(t), t �= tk ,

m
(
t+
k
) ≤ dkm(tk) + bk ,

where p, q ∈ PC(R+, R), dk ≥  and bk are real constants. Then for t ≥ t,

m(t) ≤ m(t)
∏

t<tk <t
dk exp

(∫ t

t

p(s) ds
)

+
∑

t<tk <t

( ∏

tk <tj<t
dj exp

(∫ t

tk

p(s) ds
))

bk

+
∫ t

t

∏

s<tk<t
dk exp

(∫ t

s
p(σ ) dσ

)

q(s) ds. ()

Lemma  Suppose that the conditions (A), (B), and (C) hold and x(t) is a solution of ().
We have the following statements:

(a) If there exists some T ≥ t such that x(n–)(t) >  and (r(t)|x(n–)(t)|α–x(n–)(t))′ ≥ 
for t ≥ T , then there exists some T ≥ T such that x(n–)(t) >  for t ≥ T.

(b) If there exist i ∈ {, , . . . , n – } and some T ≥ t such that x(i)(t) >  and
x(i+)(t) ≥  for t ≥ T , then there exists some T ≥ T such that x(i–)(t) >  for t ≥ T.

Proof (a) Without loss of generality, we may assume that T = t, x(n–)(t) >  and
(r(t)|x(n–)(t)|α–x(n–)(t))′ ≥  for t ≥ t. We first prove that there exists some j such
that x(n–)(tj) >  for tj ≥ t. If this is not true, then for any tk > t, we have x(n–)(tk) ≤ .
Since x(n–)(t) is increasing on intervals of the form (tk , tk+], we see that x(n–)(t) ≤  for
t ≥ t. Since r(t)|x(n–)(t)|α–x(n–)(t) is increasing on intervals of the form (tk , tk+], we
see that for (t, t],

r(t)
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) ≥ r(t)

∣
∣x(n–)(t+


)∣
∣α–x(n–)(t+


)
,

that is,

x(n–)(t) ≥ r 
α (t)

r 
α (t)

x(n–)(t+

)
.
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In particular,

x(n–)(t) ≥ r 
α (t)

r 
α (t)

x(n–)(t+

)
.

Similarly, for (t, t], we have

x(n–)(t) ≥ r 
α (t)

r 
α (t)

x(n–)(t+

) ≥ r 

α (t)
r 

α (t)
a[n–]

 x(n–)(t) ≥ r 
α (t)

r 
α (t)

a[n–]
 x(n–)(t+


)
.

By induction, we know that

x(n–)(t) ≥ r 
α (t)

r 
α (t)

∏

t<tk <t
a[n–]

k x(n–)(t+

)
, t �= tk . ()

From the condition (B), we have

x(n–)(t+
k
) ≥ b[n–]

k x(n–)(tk), t > t, k = , , . . . . ()

Set m(t) = –x(n–)(t). Then from () and (), we see that

m′(t) ≤ –
r 

α (t)
r 

α (t)

∏

t<tk <t
a[n–]

k x(n–)(t+

)
, t > t, t �= tk ,

and

m
(
t+
k
) ≤ b[n–]

k m(tk), k = , , . . . .

It follows from Lemma  that

m(t) ≤ m
(
t+

) ∏

t<tk <t
b[n–]

k – x(n–)(t+

)
r


α (t)

∫ t

t


r 

α (s)

∏

s<tk<t
b[n–]

k

∏

t<tk<t
a[n–]

k ds

=
∏

t<tk<t
b[n–]

k

{

m
(
t+

)

– x(n–)(t+

)
r


α (t)

∫ t

t


r 

α (s)

∏

t<tk <s

a[n–]
k

b[n–]
k

ds
}

.

That is,

x(n–)(t) ≥
∏

t<tk<t
b[n–]

k

{

x(n–)(t+

)

+ x(n–)(t+

)
r


α (t)

∫ t

t


r 

α (s)

∏

t<tk<s

a[n–]
k

b[n–]
k

ds
}

. ()

Note that a[i]
k > , b[i]

k > , and the second equality of the condition (B) holds. Thus we get
x(n–)(t) >  for all sufficiently large t. The relation x(n–)(t) ≤  leads to a contradiction.
So there exists some j such that tj > T and x(n–)(tj) > . Since x(n–)(t) is increasing on
(tj+λ–, tj+λ], λ = , , . . . , for (tj, tj+], we have

x(n–)(t) ≥ x(n–)(t+
j
) ≥ a[n–]

j x(n–)(tj) > .
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Similarly, for (tj+, tj+],

x(n–)(t) ≥ x(n–)(t+
j+

) ≥ a[n–]
j+ x(n–)(tj+) ≥ a[n–]

j+ a[n–]
j x(n–)(tj) > .

We can easily prove that, for any positive integer λ ≥  and t ∈ (tj+λ, tj+λ+],

x(n–)(t) ≥ a[n–]
j a[n–]

j+ · · ·a[n–]
j+λ x(n–)(tj) > .

Thus x(n–)(t) >  for t ≥ tj. So there exists T ≥ T such that x(n–)(t) >  for t ≥ T. The
proof of (a) is complete.

(b) Assume that for any tk > T , we have x(i–)(tk) ≤ . By x(i)(t) > , x(i+)(t) ≥ , t ∈
(tk , tk+], we see that x(i)(t) is nondecreasing on (tk , tk+]. For t ∈ (t, t], we have

x(i)(t) ≥ x(i)(t+

)
.

In particular,

x(i)(t) ≥ x(i)(t+

)
.

Similarly, for t ∈ (t, t], we have

x(i)(t) ≥ x(i)(t+

) ≥ a[i]

 x(i)(t) ≥ a[i]
 x(i)(t+


)
.

By induction, we know that

x(i)(t) ≥
∏

t<tk <t
a[i]

k x(i)(t+

)
, t > t, t �= tk . ()

From the condition (ii), we have

x(i–)(t+
k
) ≥ b[i–]

k x(i–)(tk), k = , , . . . . ()

Set u(t) = –x(i–)(t). Then from () and (), we see that

u′(t) ≤ –
∏

t<tk <t
a[i]

k x(i)(t+

)
, t > t, t �= tk ,

and

u
(
t+
k
) ≤ b[i–]

k u(tk), k = , , . . . .

It follows from Lemma  that

u(t) ≤ u
(
t+

) ∏

t<tk <t
b[i–]

k – x(i)(t+

)
∫ t

t

∏

s<tk <t
b[i–]

k

∏

t<tk <t
a[i]

k ds

=
∏

t<tk <t
b[i–]

k

{

u
(
t+

)

– x(i)(t+

)
∫ t

t

∏

t<tk<s

a[i]
k

b[i–]
k

ds
}

.
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That is,

x(i–)(t) ≥
∏

t<tk<t
b[i–]

k

{

x(i–)(t+

)

+ x(i)(t+

)
∫ t

t

∏

t<tk <s

a[i]
k

b[i–]
k

ds
}

. ()

Note that a[i]
k > , b[i]

k > , and the first equality of the condition (B) holds. Thus we get
x(i–)(t) >  for all sufficiently large t. The relation x(i–)(t) ≤  leads to a contradiction. So
there exists some j such that tj > T and x(i–)(tj) > . Then

x(i–)(t+
j
) ≥ a[i–]

j x(i–)(tj) > .

Since x(i)(t) > , we see that x(i–)(t) is increasing on (tj+m–, tj+m], m = , , . . . . For (tj, tj+],
we have

x(i–)(t) ≥ x(i–)(t+
j
)

> .

In particular,

x(i–)(tj+) ≥ x(i–)(t+
j
)

> .

Similarly, for (tj+, tj+], we have

x(i–)(t) ≥ x(i–)(t+
j+

) ≥ a(i–)
j+ x(i–)(tj+) > .

By induction, for (tj+m–, tj+m], we have x(i–)(t) > . So when t ≥ tj+, we have

x(i–)(t) > .

Summing up the above discussion, we know that there exists some T ≥ T such that

x(i–)(t) > , t ≥ T.

The proof of Lemma  is complete. �

Remark  We may prove in a similar manner the following statements:

(a′) If we replace the condition (a) in Lemma  ‘x(n–)(t) >  and (r(t)|x(n–)(t)|α– ×
x(n–)(t))′ ≥  for t ≥ T ’ with ‘x(n–)(t) <  and (r(t)|x(n–)(t)|α–x(n–)(t))′ ≤  for
t ≥ T ’, under the conditions (A), (B), and (C), then there exists some T ≥ T such that
x(n–)(t) <  for t ≥ T.

(b′) If we replace the condition (b) in Lemma  ‘x(i)(t) >  and x(i+)(t) ≥  for t ≥ T ’ with
‘x(i)(t) <  and x(i+)(t) ≤  for t ≥ T ’ under the conditions (A), (B), and (C), then there
exists some T ≥ T such that x(i–)(t) <  for t ≥ T.

Lemma  Let x = x(t) be a solution of () and suppose that the conditions (A), (B), and (C)
hold.

(a) If there exists some T ≥ t such that x(t) >  and (r(t)|x(n–)(t)|α–x(n–)(t))′ <  for
t ≥ T , then x(n–)(t) >  for all sufficiently large t.
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(b) If there exist i ∈ {, , . . . , n – } and some T ≥ t such that x(t) >  and x(i)(t) <  for
t ≥ T , then x(i–)(t) >  for all sufficiently large t.

Proof (a) We first prove that x(n–)(t) >  for any tk ≥ T . If this is not true, then there exists
some tj ≥ T such that x(n–)(tj) ≤ . Since r(t) >  and r(t)|x(n–)(t)|α–x(n–)(t) is strictly
decreasing on (tj+m–, tj+m] for m = , , . . . and for t ∈ (tj, tj+], we have

r(t)
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) < r(tj)

∣
∣x(n–)(t+

j
)∣
∣α–x(n–)(t+

j
)

≤ (
a[n–]

j
)αr(tj)

∣
∣x(n–)(tj)

∣
∣α–x(n–)(tj) ≤ .

Let β = r(tj)|x(n–)(tj)|α–x(n–)(tj) < , we have

r(t)
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) <

(
a[n–]

j
)α

β < .

Similarly, for t ∈ (tj+, tj+], we have

r(t)
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) < r(tj+)

∣
∣x(n–)(t+

j+
)∣
∣α–x(n–)(t+

j+
)

≤ (
a[n–]

j
)α(

a[n–]
j+

)α
β ≤ .

We can easily prove that, for any positive integer n ≥  and t ∈ (tj+n, tj+n+], we have

r(t)
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) <

(
a[n–]

j a[n–]
j+ · · ·a[n–]

j+n
)α

β ≤ .

Hence, x(n–)(t) <  for t ≥ tj+. By the result (a′) of Remark , for sufficiently large t, we
have x(n–)(t) < . Using the result (b′) of Remark  repeatedly, for all sufficiently large t,
we get x(t) < . This is contrary with x(t) >  for t ≥ T . Hence, we have x(n–)(tk) >  for
any tk ≥ T . So we get x(n–)(t) >  for all sufficiently large t.

(b) We first prove that x(i–)(tk) >  for any tk ≥ T . If this is not true, then there ex-
ists some tj ≥ T such that x(i–)(tj) < . Since x(i–)(t) is strictly monotony decreasing on
(tj+n, tj+n+] for n = , , , . . . and for t ∈ (tj, tj+], we have

x(i–)(t) < x(i–)(t+
j
) ≤ a[i–]

j x(i–)(tj) ≤ .

Similarly, for t ∈ (tj+, tj+], we have

x(i–)(t) < x(i–)(t+
j+

) ≤ a[i–]
j a[i–]

j+ x(i–)(tj) ≤ .

We can easily prove that, for any positive integer n ≥  and t ∈ (tj+n, tj+n+], we have

x(i–)(t) < a[i–]
j a[i–]

j+ · · ·a[i–]
j+n x(i–)(tj) ≤ .

Hence, x(i–)(t) <  for t ≥ tj+. By the result (b′) of Remark , for sufficiently large t, we
have x(i–)(t) < . Similarly, by using the result (b′) of Remark  again, we can conclude
that for all sufficiently large t, x(t) < . That is contrary with x(t) >  for t ≥ T . Hence, we
have x(i–)(tk) >  for any tk ≥ T . So we get x(i–)(t) >  for all sufficiently large t. The proof
of Lemma  is complete. �
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Lemma  Let x = x(t) be a solution of (). Suppose that T ≥ t and x(t) >  for t ≥ T . If the
conditions (A), (B), (C), and (D) hold, then there exist some T ′ ≥ T and l ∈ {, , . . . , n – }
such that for t ≥ T ′,

{
x(i)(t) > , i = , , . . . , l;
(–)(i–)x(i)(t) > , i = l + , . . . , n – .

()

Proof Let x(t) >  for t ≥ T . We first prove that x(n–)(tk) >  for any tk ≥ T . If this is not
true, then there exists some tj ≥ T such that x(n–)(tj) ≤ . By () and the condition (A),
for t ∈ (tj+m–, tj+m], m = , , . . . , we have

(∣
∣x(n–)(t)

∣
∣α–x(n–)(t)

)′ +
r′(t) + q(t)

r(t)
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) +

f (t, x(t), x(t – τ ))
r(t)

= ,

that is,

(
∣
∣x(n–)(t)

∣
∣α–x(n–)(t) exp

∫ t

tj

r′(s) + q(s)
r(s)

ds
)′

= –
f (t, x(t), x(t – τ ))

r(t)
exp

∫ t

tj

r′(s) + q(s)
r(s)

ds

≤ –
p(t)ϕ(x(t – τ ))

r(t)
exp

∫ t

tj

r′(s) + q(s)
r(s)

ds ≤ . ()

Let s(t) = |x(n–)(t)|α–x(n–)(t) exp
∫ t

tj
r′(s)+q(s)

r(s) ds, we have s′(t) ≤ , s(t) is monotonically
decreasing on (tj+m–, tj+m], m = , , . . . .

For t ∈ (tj, tj+], we have

s(t) ≤ s
(
t+
j
) ≤ (

a[n–]
j

)αs(tj) ≤ ,

particularly, we have

s(tj+) ≤ (
a[n–]

j
)αs(tj) ≤ .

Similarly, for t ∈ (tj+, tj+], we have

s(t) ≤ s
(
t+
j+

) ≤ (
a[n–]

j+
)αs(tj+) ≤ (

a[n–]
j+

)α(
a[n–]

j
)αs(tj) ≤ .

By induction, for t ∈ (tj+m–, tj+m], m = , , . . . , we obtain

s(t) ≤ s
(
t+
j+m–

) ≤ (
a[n–]

j+m–
)α · · · (a[n–]

j+
)α(

a[n–]
j

)αs(tj)

=
∏

tj<tk<t

(
a[n–]

k
)αs(tj) ≤ . ()

Since s(t) ≤ , s′(t) ≤ , s(t) is not always equal to  on any interval [t,∞), we have s(t) < 
for sufficiently large t, therefore, we get x(n–)(t) <  for sufficiently large t, without loss of
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generality, we may let x(n–)(t) <  for t ≥ tj. Let s(tj) = –γ α (γ > ), using (), we have

∣
∣x(n–)(t)

∣
∣α–x(n–)(t) exp

∫ t

tj

r′(s) + q(s)
r(s)

ds ≤
∏

tj<tk <t

(
a[n–]

k
)αs(tj).

By the above equality, we obtain

∣
∣x(n–)(t)

∣
∣α–x(n–)(t) ≤ –γ α

∏

tj<tk <t

(
a[n–]

k
)α

exp

(

–
∫ t

tj

r′(s) + q(s)
r(s)

ds
)

.

Noting that x(n–)(t) <  for t ≥ tj, we can get

–
∣
∣x(n–)(t)

∣
∣α ≤ –γ α

∏

tj<tk<t

(
a[n–]

k
)α

exp

(

–
∫ t

tj

r′(s) + q(s)
r(s)

ds
)

.

That is,

x(n–)(t) ≤ –γ
∏

tj<tk <t
a[n–]

k exp

(

–
∫ t

tj

r′(s) + q(s)
αr(s)

ds
)

< , ()

by Lemma , we have x(n–)(t) >  for sufficiently large t, without loss of generality, let
x(n–)(t) > , t ≥ tj. In view of the condition (B), we have

x(n–)(t+
k
) ≤ b[n–]

k x(n–)(tk), k = j + , j + , . . . . ()

By () and (), applying Lemma , we obtain

x(n–)(t) ≤ x(n–)(t+
j
) ∏

tj<tk <t
b[n–]

k

– γ

∫ t

t

∏

s<tk<t
b[n–]

k

∏

tj<tk <s
a[n–]

k exp

(

–
∫ s

tj

r′(v) + q(v)
αr(v)

dv
)

ds

=
∏

tj<tk <t
b[n–]

k

[

x(n–)(t+
j
)

– γ

∫ t

t

∏

tj<tk<s

a[n–]
k

b[n–]
k

exp

(

–
∫ s

tj

r′(v) + q(v)
αr(v)

dv
)

ds
]

, ()

letting t → ∞, applying () and the condition (D), we get x(n–)(t) < , which is con-
tracted with x(n–)(t) > , t ≥ tj. So we have x(n–)(tk) >  for any tk ≥ T . Since x(n–)(t) > 
for t ≥ tj, here, without loss of generality, we may let x(n–)(t) >  for t ≥ t. Then x(n–)(t)
is strictly increasing on (tk , tk+]. If for any tk , x(n–)(tk) < , then x(n–)(t) <  for t ≥ T. If
there exists some tj such that x(n–)(tj) ≥ , since x(n–)(t) is strictly monotony increasing
and a[n–]

k > , then x(n–)(t) >  for t > tj. Thus there exists T ≥ T such that x(n–)(t) > 
for t ≥ T. So one of the following statements holds:

(A) x(n–)(t) > , x(n–)(t) > , t ≥ T;
(B) x(n–)(t) > , x(n–)(t) < , t ≥ T.
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If (A) holds, by the result (b) of Lemma , x(n–)(t) >  for all sufficiently large t. Using
the result (b) of Lemma  repeatedly, for all sufficiently large t, we can conclude that

x(n–)(t) > , x(n–)(t) > , . . . , x′(t) > , x(t) > .

If (B) holds, by Lemma , we have for all sufficiently large t. Similarly, there exists some
T ≥ T such that one of the following statements holds:

(A) x(n–)(t) > , x(n–)(t) > , t ≥ T;
(B) x(n–)(t) > , x(n–)(t) < , t ≥ T.

Repeating the discussion above, we can see eventually that there exist some T ′ ≥ T and
l ∈ {, , . . . , n – } such that for t ≥ T ′,

{
x(i)(t) > , i = , , . . . , l;
(–)(i–)x(i)(t) > , i = l + , . . . , n – .

The proof is complete. �

Remark  We may prove in a similar manner the following statements.
If we replace the condition in Lemma  ‘x(t) >  for t ≥ T ’ with ‘x(t) <  for t ≥ T ’,

and under the conditions (A), (B), (C), and (D), then there exist some T ′ ≥ T and l ∈
{, , . . . , n – } such that, for t ≥ T ′,

{
x(i)(t) < , i = , , . . . , l;
(–)(i–)x(i)(t) < , i = l + , . . . , n – .

()

5 Proofs of main theorems
We now turn to the proofs of Theorem  and Theorem .

Proof of Theorem  If () has a nonoscillatory solution x = x(t), without loss of generality,
let x(t) >  (t ≥ t). By Lemma , there exist T ≥ t and an integer l ∈ {, , . . . , n – } such
that for t ≥ T ,

x(t) > , x′(t) > , x(n–)(t) > . ()

Let

u(t) =
r(t)|x(n–)(t)|α–x(n–)(t)

ϕ(x(t – τ ))
. ()

We see that u(t+
k ) ≥  (k = , , . . .), u(t) >  for t ≥ T . By (), (), and the condition (A),

we get

u′(t) =
–q(t)|x(n–)(t)|α–x(n–)(t) – f (t, x(t), x(t – τ ))

ϕ(x(t – τ ))

–
r(t)|x(n–)(t)|α–x(n–)(t)ϕ′(x(t – τ ))x′(t – τ )

ϕ(x(t – τ ))
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≤ –q(t)|x(n–)(t)|α–x(n–)(t) – f (t, x(t), x(t – τ ))
ϕ(x(t – τ ))

≤ –
q(t)
r(t)

u(t) – p(t), t �= t,w. ()

It follows from the conditions (B), a()
k ≥ , and ϕ′(x) ≥  that

u
(
t+
k
)

=
r(t+

k )|x(n–)(t+
k )|α–x(n–)(t+

k )
ϕ(x(tk – τ )+)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b[n–]
k )αr(tk )|x(n–)(tk )|α–x(n–)(tk )

ϕ(x(tk –τ ))

= (b[n–]
k )αu(tk), tk – τ �= tm ( < m < k),

(b[n–]
k )αr(tk )|x(n–)(tk )|α–x(n–)(tk )

ϕ(a[]
m x(tk –τ ))

≤ (b[n–]
k )αr(tk )|x(n–)(tk )|α–x(n–)(tk )

ϕ(x(tk–τ ))

= (b[n–]
k )αu(tk), tk – τ = tm ( < m < k),

()

u
(
(tk + τ )+)

=
r((tk + τ )+)|x(n–)((tk + τ )+)|α–x(n–)((tk + τ )+)

ϕ(x(t+
k ))

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(tk +τ )|x(n–)(tk +τ )|α–x(n–)(tk+τ )
ϕ(a[]

k x(tk ))

≤ r(tk +τ )|x(n–)(tk +τ )|α–x(n–)(tk +τ )
ϕ(x(tk ))

= u(tk + τ ), tk + τ �= tm (k < m),
r(tm)|x(n–)(t+

m)|α–x(n–)(t+
m)

ϕ(a[]
k x(tk ))

≤ (b[n–]
m )αr(tm)|x(n–)(tm)|α–x(n–)(tm)

ϕ(a[]
k x(tk ))

≤ (b[n–]
m )αr(tk +τ )|x(n–)(tk +τ )|α–x(n–)(tk +τ )

ϕ(x(tk ))

= (b[n–]
m )αu(tk + τ ), tk + τ = tm (k < m).

()

So we get

u/(t) ≤ –
q(t)
r(t)

u(t) – p(t), t �= t,w,

u
(
t+
,w

) ≤ θ,wu(t,w),

where t,w = tk or tk + τ (t = t, < t, < · · · < t,w < t,w+ < · · · ) and θ,w is defined by ().
Applying Lemma , we obtain

u(t) ≤ u
(
T+) ∏

T<tk <t

θ,w exp

(∫ t

T
–

q(s)
r(s)

ds
)

–
∫ t

T

∏

s<tk<t
θ,wp(s) exp

(∫ t

s
–

q(v)
r(v)

dv
)

ds

≤
∏

T<tk<t

θ,w exp

(∫ t

T
–

q(s)
r(s)

ds
)

×
[

u
(
T+)

–
∫ t

T

∏

T<tk <s


θ,w

p(s) exp

(∫ s

T

q(v)
r(v)

dv
)

ds
]

. ()
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It is easy to see from () and () that u(t) <  for sufficiently large t. This is contrary
to u(t) >  for t ≥ T . Thus every solution of () is oscillatory. The proof of Theorem  is
complete. �

Proof of Theorem  If () has a nonoscillatory solution x = x(t), without loss of generality,
let x(t) >  (t ≥ t). By Lemma , there exists T ≥ t and an integer l ∈ {, , . . . , n – }
such that for t ≥ T ,

x(t) > , x′(t) > , x(n–)(t) > .

Let u(t) be defined by (), then u(t+
k ) ≥  (k = , , . . .), u(t) >  for t ≥ T .

By (), and the condition (A), we also can get

u′(t) ≤ –
q(t)
r(t)

u(t) – p(t), t �= t,w. ()

It follows from the conditions (B), ϕ(ab) ≥ ϕ(a)ϕ(b) (ab > ), and ϕ′(x) ≥  that

u
(
t+
k
)

=
r(t+

k )|x(n–)(t+
k )|α–x(n–)(t+

k )
ϕ(x(tk – τ )+)

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b[n–]
k )αr(tk )|x(n–)(tk )|α–x(n–)(tk )

ϕ(x(tk –τ ))

= (b[n–]
k )αu(tk), tk – τ �= tm ( < m < k),

(b[n–]
k )αr(tk )|x(n–)(tk )|α–x(n–)(tk )

ϕ(a[]
m x(tk –τ ))

≤ (b[n–]
k )αr(tk )|x(n–)(tk )|α–x(n–)(tk )

ϕ(a[]
m )ϕ(x(tk –τ ))

= (b[n–]
k )α

ϕ(a[]
m )

u(tk), tk – τ = tm ( < m < k),

()

u
(
(tk + τ )+)

=
r((tk + τ )+)|x(n–)((tk + τ )+)|α–x(n–)((tk + τ )+)

ϕ(x(t+
k ))

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(tk +τ )|x(n–)(tk +τ )|α–x(n–)(tk+τ )
ϕ(a[]

k x(tk ))

≤ r(tk +τ )|x(n–)(tk +τ )|α–x(n–)(tk +τ )
ϕ(a[]

k )ϕ(x(tk ))

= 
ϕ(a[]

k )
u(tk + τ ), tk + τ �= tm (k < m),

r(tm)|x(n–)(t+
m)|α–x(n–)(t+

m)
ϕ(a[]

k x(tk ))

≤ (b[n–]
m )αr(tm)|x(n–)(tm)|α–x(n–)(tm)

ϕ(a[]
k x(tk ))

≤ (b[n–]
m )αr(tk +τ )|x(n–)(tk +τ )|α–x(n–)(tk +τ )

ϕ(a[]
k )ϕ(x(tk ))

= (b[n–]
m )α

ϕ(a[]
k )

u(tk + τ ), tk + τ = tm (k < m).

()

So we have

u′(t) ≤ –
q(t)
r(t)

u(t) – p(t), t �= t,w,

u
(
t+
,w

) ≤ μ,wu(t,w),
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where t,w = tk or tk + τ (t = t, < t, < · · · < t,w < t,w+ < · · · ) and μ,w is defined by ().
Applying Lemma , we obtain

u(t) ≤ u
(
T+) ∏

T<tk <t

μ,w exp

(∫ t

T
–

q(s)
r(s)

ds
)

–
∫ t

T

∏

s<tk<t
μ,wp(s) exp

(∫ t

s
–

q(v)
r(v)

dv
)

ds

≤
∏

T<tk<t

μ,w exp

(∫ t

T
–

q(s)
r(s)

ds
)

×
[

u
(
T+)

–
∫ t

T

∏

T<tk <s


μ,w

p(s) exp

(∫ s

T

q(v)
r(v)

dv
)

ds
]

. ()

It is easy to see from () and () that u(t) <  for sufficiently large t. This is contrary
to u(t) >  for t ≥ T . Thus every solution of () is oscillatory. The proof of Theorem  is
complete. �
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