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Abstract
Leviatan has investigated the behavior of higher order derivatives of approximation
polynomials of a differentiable function f on [–1, 1]. Especially, when Pn is the best
approximation of f , he estimates the differences ‖f (k) – P(k)n ‖L∞([–1,1]), k = 0, 1, 2, . . . . In
this paper, we give the analogies for them with respect to the differentiable functions
on R.
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1 Introduction
Let R = (–∞,∞) and R

+ = [,∞). We say that f : (,∞) → R
+ is quasi-increasing in

(,∞) if there exists C >  such that f (x) ≤ Cf (y) for  < x < y. The notation f (x) ∼ g(x)
means that there are positive constants C, C such that for the relevant range of x,
C ≤ f (x)/g(x) ≤ C. A similar notation is used for sequences and sequences of functions.
Throughout C, C, C, . . . denote positive constants independent of n, x, t. The same sym-
bol does not necessarily denote the same constant in different occurrences. We denote the
class of polynomials with degree n by Pn.

First, we introduce some classes of weights. Levin and Lubinsky [] introduced the class
of weights on R as follows.

Definition . Let Q : R → [,∞) be a continuous even function, and satisfy the following
properties:

(a) Q′(x) >  for x >  and is continuous in R, with Q() = .
(b) Q′′(x) exists and is positive in R\{}.
(c) limx→∞ Q(x) = ∞.
(d) The even function

Tw(x) :=
xQ′(x)
Q(x)

, x �= 

is quasi-increasing in (,∞), with

Tw(x) ≥ � > , x ∈R\{}.
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(e) There exists C >  such that

Q′′(x)
|Q′(x)| ≤ C

|Q′(x)|
Q(x)

, a.e. x ∈ R.

Furthermore, if there also exist a compact subinterval J (� ) of R and C >  such
that

Q′′(x)
|Q′(x)| ≥ C

|Q′(x)|
Q(x)

, a.e. x ∈R\J ,

then we write w = exp(–Q) ∈F (C+).

For convenience, we denote T instead of Tw, if there is no confusion. Next, we give some
typical examples of F (C+).

Example . []
() If T(x) is bounded, then we call the weight w = exp(–Q(x)) the Freud-type weight

and we write w ∈F∗ ⊂F (C+).
() When T(x) is unbounded, then we call the weight w = exp(–Q(x)) the Erdös-type

weight: For α > , l ≥  we define

Q(x) := Ql,α(x) = expl
(|x|α)

– expl(),

where expl(x) = exp(exp(exp · · · exp x) · · · ) (l times). More generally, we define

Ql,α,m(x) = |x|m{
expl

(|x|α)
– α̃ expl()

}
, α + m > , m ≥ ,α ≥ ,

where α̃ =  if α = , and otherwise α̃ = . We note that Ql,,m gives a Freud-type
weight, and Ql,α,m (α > ) gives an Erdös-type weight.

() For α > , Qα(x) = ( + |x|)|x|α –  gives also an Erdös-type weight.

For a continuous function f : [–, ] →R, let

En(f ) = inf
P∈Pn

‖f – P‖L∞([–,]) = inf
P∈Pn

max
x∈[–,]

∣∣f (x) – P(x)
∣∣.

Leviatan [] has investigated the behavior of the higher order derivatives of approximation
polynomials for the differentiable function f on [–, ], as follows.

Theorem (Leviatan []) For r ≥  we let f ∈ C(r)[–, ], and let Pn ∈Pn denote the polyno-
mial of best approximation of f on [–, ]. Then for each  ≤ k ≤ r and every – ≤ x ≤ ,

∣
∣f (k)(x) – P(k)

n (x)
∣
∣ ≤ Cr

nk �–k
n (x)En–k

(
f (k)), n ≥ k,

where �n(x) :=
√

 – x/n + /n and Cr is an absolute constant which depends only on r.

In this paper, we will give an analogy of Leviatan’s theorem for some exponential-type
weight. In Section , we give the theorems in the space L∞(R), and we also make a cer-
tain assumption and some notations which are needed in order to state the theorems. In
Section , we give some lemmas and the proofs of the theorems.



Jung and Sakai Journal of Inequalities and Applications  (2015) 2015:268 Page 3 of 15

2 Theorems and preliminaries
First, we introduce some well-known notations. If f is a continuous function on R, then
we define

‖fw‖L∞(R) := sup
t∈R

∣∣f (t)w(t)
∣∣,

and for  ≤ p < ∞ we denote

‖fw‖Lp(R) :=
(∫

R

∣
∣f (t)w(t)

∣
∣p dt

)/p

.

Let  ≤ p ≤ ∞. If ‖wf ‖Lp(R) < ∞, then we write wf ∈ Lp(R), and here if p = ∞, we suppose
that f ∈ C(R) and lim|x|→∞ |w(x)f (x)| = . We denote the rate of approximation of f by

Ep,n(w, f ) := inf
P∈Pn

∥∥(f – P)w
∥∥

Lp(R).

The Mhaskar-Rakhmanov-Saff numbers ax is defined as follows:

x =

π

∫ 



axuQ′(axu)√
 – u

du, x > .

To write our theorems we need some preliminaries. We need further assumptions.

Definition . Let w = exp(–Q) ∈ F (C+) and let r ≥  be an integer. Then for  < λ <
(r + )/(r + ) we write w ∈ Fλ(Cr++) if Q ∈ C(r+)(R\{}) and there exist two constants
C >  and K ≥  such that for all |x| ≥ K ,

|Q′(x)|
Qλ(x)

≤ C and
∣
∣∣
∣
Q′′(x)
Q′(x)

∣
∣∣
∣ ∼

∣
∣∣
∣
Q(k+)(x)
Q(k)(x)

∣
∣∣
∣

for every k = , . . . , r and also

∣∣∣
∣
Q(r+)(x)
Q(r+)(x)

∣∣∣
∣ ≤ C

∣∣∣
∣
Q(r+)(x)
Q(r)(x)

∣∣∣
∣.

In particular, w ∈Fλ(C+) means that Q ∈ C()(R\{}) and

|Q′(x)|
Qλ(x)

≤ C and
∣
∣∣
∣
Q′′′(x)
Q′′(x)

∣
∣∣
∣ ≤ C

∣
∣∣
∣
Q′′(x)
Q′(x)

∣
∣∣
∣

hold for |x| ≥ K . In addition, let Fλ(C+) := F (C+).

From [], we know that Example .(), () satisfy all conditions of Definition .. Under
the same condition as of Definition . we obtain an interesting theorem as follows.

Theorem . ([], Theorems ., . and (.)) Let r be a positive integer,  < λ < (r +
)/(r + ) and let w = exp(–Q) ∈Fλ(Cr++). Then, for any μ,ν,α,β ∈R, we can construct a
new weight wμ,ν,α,β ∈Fλ(Cr++) such that

Tμ
w (x)

(
 + x)ν( + Q(x)

)α(
 +

∣∣Q′(x)
∣∣)βw(x) ∼ wμ,ν,α,β (x)
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on R, and for some c ≥ ,

an/c(w) ≤ an(wμ.ν,α,β) ≤ acn(w),

Twμ,ν,α,β (x) ∼ Tw(x)

hold on R\{}.

For a given μ ∈ R and w ∈ Fλ(C+) ( < λ < /), we let wμ ∈ F (C+) satisfy wμ(x) ∼
Tμ

w (x)w(x) (see Theorem . in []). Let Pn;f ,wμ ∈ Pn be the best approximation of f with
respect to the weight wμ, that is,

∥∥(f – Pn;f ,wμ )wμ

∥∥
L∞(R) = En(wμ, f ) := inf

P∈Pn

∥∥(f – P)wμ

∥∥
L∞(R).

Then we have the main result as follows.

Theorem . Let r ≥  be an integer. Let w = exp(–Q) ∈ Fλ(Cr++), where  < λ < (r +
)/(r + ). Suppose that f ∈ C(r)(R) with

lim|x|→∞ T /(x)f (r)(x)w(x) = .

Then there exists an absolute constant Cr >  which depends only on r such that, for  ≤
k ≤ r and x ∈R,

∣
∣(f (k)(x) – P(k)

n;f ,w(x)
)
w(x)

∣
∣ ≤ CrTk/(x)En–k

(
w/, f (k))

≤ CrTk/(x)
(

an

n

)r–k

En–r
(
w/, f (r)).

When w ∈F∗, we can replace w/ with cw (c is a constant) in the above.

Applying Theorem . with w or w–/, we have the following corollaries.

Corollary .
() Let w = exp(–Q) ∈Fλ(Cr++) and  < λ < (r + )/(r + ), r ≥ . We suppose that

f ∈ C(r)(R) with

lim|x|→∞ T /(x)f (r)(x)w(x) = ,

then for  ≤ k ≤ r we have

∥∥(
f (k) – P(k)

n;f ,w
)
w–k/

∥∥
L∞(R) ≤ CrEn–k

(
w/, f (k))

≤ Cr

(
an

n

)r–k

En–r
(
w/, f (r)).

() Let w = exp(–Q) ∈Fλ(Cr++),  < λ < (r + )/(r + ), r ≥ . We suppose that
f ∈ C(r)(R) with

lim|x|→∞ f (r)(x)w(x) = ,
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then for  ≤ k ≤ r we have
∥
∥(

f (k) – P(k)
n;f ,w–/

)
w–(k+)/

∥
∥

L∞(R) ≤ CrEn–k
(
w, f (k))

≤ Cr

(
an

n

)r–k

En–r
(
w, f (r)).

When w ∈F∗, we can replace wμ (μ = –k/, μ = –(k + )/,  ≤ k ≤ r, and μ = /) with
cw (c is a constant) in the above.

Corollary . Let r ≥  be an integer. Let w = exp(–Q) ∈ Fλ(Cr++),  < λ < (r + )/(r +
), and let w(r+)/f (r) ∈ L∞(R). Then, for each k ( ≤ k ≤ r) and the best approximation
polynomial Pn;f ,wk/ ;

∥∥(f – Pn;f ,wk/ )wk/
∥∥

L∞(R) = En(wk/, f ),

we have
∥∥(

f (k) – P(k)
n;f ,wk/

)
w

∥∥
L∞(R) ≤ CrEn–k

(
w(k+)/, f (k))

≤ Cr

(
an

n

)r–k

En–r
(
w(k+)/, f (r)).

When w ∈ F∗, we can replace wμ (μ = k/, μ = (k + )/,  ≤ k ≤ r) with cw (c is a con-
stant) in the above.

3 Proofs of theorems
We give the proofs of the theorems. First, we give some lemmas to prove the theorems.
We construct the orthonormal polynomials pn(x) = pn(w, x) of degree n for w(x), that is,

∫ ∞

–∞
pn

(
w, x

)
pm

(
w, x

)
w(x) dx = δmn (Kronecker delta).

Let fw ∈ L(R). The Fourier-type series of f is defined by

f̃ (x) :=
∞∑

k=

ak
(
w, f

)
pk

(
w, x

)
, ak

(
w, f

)
:=

∫ ∞

–∞
f (t)pk

(
w, t

)
w(t) dt.

We denote the partial sum of f̃ (x) by

sn(f , x) := sn
(
w, f , x

)
:=

n–∑

k=

ak
(
w, f

)
pk

(
w, x

)
.

Moreover, we define the de la Vallée Poussin means by

vn(f , x) :=

n

n∑

j=n+

sj
(
w, f , x

)
.

Theorem . (Theorem ., (.), Corollary ., (.) in []) Let w ∈Fλ(C+),  < λ < /,
and let  ≤ p ≤ ∞. When T /wf ∈ Lp(R), we have, for n ≥ ,

∥∥vn(f )w
∥∥

Lp(R) ≤ C
∥∥T /wf

∥∥
Lp(R),
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and so

∥∥(
f – vn(f )

)
w

∥∥
Lp(R) ≤ CEp,n

(
T /w, f

)
.

So, equivalently,

∥
∥vn(f )w

∥
∥

Lp(R) ≤ C‖w/f ‖Lp(R),

and so

∥∥(
f – vn(f )

)
w

∥∥
Lp(R) ≤ CEp,n(w/, f ). (.)

When w ∈F∗, we can replace w/ with cw.

Lemma . Let w ∈F (C+).
() (Lemma .(a) in []) Let L >  be fixed. Then, uniformly for t > ,

aLt ∼ at .

() (Lemma ., (.) in []) For x > , we have

∣
∣Q′(ax)

∣
∣ ∼ x

√
T(ax)
ax

and
∣
∣Q(ax)

∣
∣ ∼ x√

T(ax)
.

() (Proposition  in []) If T(x) is unbounded, then for any η >  there exists C(η) > 
such that for t ≥ ,

at ≤ C(η)tη.

To prove the results, we need the following notations. We set

σ (t) := inf

{
au :

au

u
≤ t

}
, t > 

and

�t(x) :=

√∣∣
∣∣ –

|x|
σ (t)

∣∣
∣∣ + T–/(σ (t)

)
, x ∈ R.

Define for fw ∈ Lp(R),  < p ≤ ∞,

ωp(f , w, t) := sup
<h≤t

∥
∥∥∥w(x)

{
f
(

x +
h

�t(x)

)
– f

(
x –

h

�t(x)

)}∥
∥∥∥

Lp(|x|≤σ (t))

+ inf
c∈R

∥
∥w(x)(f – c)(x)

∥
∥

Lp(|x|≥σ (t))

(see [, ]).
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Proposition . (cf. Theorem . in [], Corollary . in []) Let w ∈F (C+). Let  < p ≤
∞. Then for f : R →R such that fw ∈ Lp(R) (where for p = ∞, we require f to be continuous,
and fw to vanish at ±∞), we have, for n ≥ C,

Ep,n(w, f ) ≤ Cωp

(
f , w, C

an

n

)
,

where Cj, j = , , , do not depend on f and n.

Proof Damelin and Lubinsky [] or Damelin [] have treated a certain class E of weights
containing the ones satisfying conditions (a)-(d) in Definition . and

yQ′(y)
xQ′(x)

≤
(

Q(y)
Q(x)

)C

, y ≥ x > , (.)

where C >  is a constant, and they obtain this Proposition for w ∈ E. Therefore, we may
show F (C+) ⊂ E. In fact, from Definition .(d) and (e), we have, for y ≥ x > ,

Q′(y)
Q′(x)

= exp

(∫ y

x

Q′′(t)
Q′(t)

dt
)

≤ exp

(
C

∫ y

x

Q′(t)
Q(t)

dt
)

=
(

Q(y)
Q(x)

)C

and

y
x

= exp

(∫ y

x


t

dt
)

≤ exp

(

�

∫ y

x

Q′(t)
Q(t)

dt
)

=
(

Q(y)
Q(x)

) 
�

.

Therefore, we obtain (.) with C = C + 
�

, that is, we see F (C+) ⊂ E. �

Theorem . Let w ∈F (C+).
() If f is a function having bounded variation on any compact interval and if

∫ ∞

–∞
w(x)

∣∣df (x)
∣∣ < ∞,

then there exists a constant C >  such that, for every t > ,

ω(f , w, t) ≤ Ct
∫ ∞

–∞
w(x)

∣∣df (x)
∣∣,

and so

E,n(w, f ) ≤ C
an

n

∫ ∞

–∞
w(x)

∣
∣df (x)

∣
∣.

() If f is continuous and lim|x|→∞ |(√Twf )(x)| = , then we have

lim
t→

ω∞(f , w, t) = .

To prove this theorem we need the following lemma.
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Lemma . (Lemma .(b) in [] and Lemma  in []) Let w ∈ F (C+). Uniformly for
u >  large enough and |x|, |y| ≤ au such that

|x – y| ≤ t�t(x), t = au/u,

then

w(x) ∼ w(y).

Proof of Theorem . () Let g(x) := f (x) – f (). For t >  small enough let  < h ≤ t and
|x| ≤ σ (t) < σ (t). Hence we have �t(x) ≤  for |x| ≤ σ (t). Then by Lemma .,

∫

|x|≤σ (t)
w(x)

∣
∣∣
∣g

(
x +

h

�t(x)

)
– g

(
x –

h

�t(x)

)∣
∣∣
∣dx

=
∫

|x|≤σ (t)
w(x)

∣∣
∣∣

∫ x+ h
 �t (x)

x– h
 �t (x)

df (v)
∣∣
∣∣dx ≤ C

∫

|x|≤σ (t)

∣∣
∣∣

∫ x+ h
 �t (x)

x– h
 �t (x)

w(v) df (v)
∣∣
∣∣dx

≤
∫ ∞

–∞

∫ x+h

x–h
w(v)

∣∣df (v)
∣∣dx ≤

∫ ∞

–∞
w(v)

∫

v–h≤x≤v+h
dx

∣∣df (v)
∣∣

≤ h
∫ ∞

–∞
w(v)

∣∣df (v)
∣∣.

Hence we have
∫

|x|≤σ (t)
w(x)

∣
∣∣
∣g

(
x +

h

�t(x)

)
– g

(
x –

h

�t(x)

)∣
∣∣
∣dx ≤ t

∫ ∞

–∞
w(x)

∣∣df (x)
∣∣. (.)

Moreover, we see

inf
c∈R

∥∥w(x)(f – c)(x)
∥∥

L(|x|≥σ (t)) ≤ 
Q′(σ (t))

∥∥Q′(x)w(x)g(x)
∥∥

L(|x|≥σ (t)). (.)

From Lemma .(), for t =: au
u ,

Q′(σ (t)
)

= Q′(au) ∼ u
√

T(au)
au

∼
√

T(σ (t))
t

.

On the other hand, we have

∫ ∞


Q′(x)w(x)

∣∣g(x)
∣∣dx =

∫ ∞


Q′(x)w(x)

∣
∣∣∣

∫ x


dg(u)

∣
∣∣∣dx

≤
∫ ∞


Q′(x)w(x)

∫ x



∣
∣df (u)

∣
∣dx

= –w(x)
∫ x



∣∣df (u)
∣∣∣∣∞

 +
∫ ∞


w(u)

∣∣df (u)
∣∣.

Here we see
∣∣
∣∣–w(x)

∫ x



∣
∣df (u)

∣
∣
∣∣
∣∣ ≤

∫ x


w(u)

∣
∣df (u)

∣
∣.
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Therefore, we have

∫ ∞


Q′(x)w(x)

∣∣g(x)
∣∣dx ≤ 

∫ ∞


w(u)

∣∣df (u)
∣∣.

Similarly, for x <  we see

∫ 

–∞

∣∣Q′(x)w(x)g(x)
∣∣dx ≤ 

∫ 

–∞
w(x)

∣∣df (x)
∣∣.

Consequently, we have

∫ ∞

–∞

∣
∣Q′(x)w(x)g(x)

∣
∣dx ≤ 

∫ ∞

–∞
w(x)

∣
∣df (x)

∣
∣.

Hence we have

∥∥Q′wg
∥∥

L(R) ≤ 
∫ ∞

–∞
w(u)

∣∣df (u)
∣∣. (.)

Therefore, using (.) and (.), we have

inf
c∈R

∥∥w(x)(f – c)(x)
∥∥

L(|x|≥σ (t)) = O(t)
∫ ∞

–∞
w(x)

∣∣df (x)
∣∣. (.)

Consequently, by (.) and (.) we have

ω(f , w, t) ≤ Ct
∫ ∞

–∞
w(x)

∣
∣df (x)

∣
∣.

Hence, setting t = C
an
n , if we use Proposition ., then

E,n(w, f ) ≤ C
an

n

∫ ∞

–∞
w(x)

∣∣df (x)
∣∣.

() Given ε > , and let us take L = L(ε) >  such that

sup
|x|≥L

∣
∣w(x)f (x)

∣
∣ ≤ sup

|x|≥L

∣
∣
√

T(x)w(x)f (x)
∣
∣ < ε,

since T(x) > . Hence, if |x| ≥ L and  < t < t, then

∣∣
∣∣w(x)

{
f
(

x +
h

�t(x)

)
– f

(
x –

h

�t(x)

)}∣∣
∣∣

≤ C
[∣∣∣
∣

√

T
(

x +
h

�t(x)

)
w

(
x +

h

�t(x)

)
f
(

x +
h

�t(x)

)∣∣∣
∣

+
∣∣∣
∣

√

T
(

x –
h

�t(x)

)
w

(
x –

h

�t(x)

)
f
(

x –
h

�t(x)

)∣∣∣
∣

]

≤ Cε,
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where for the first inequality we used Lemma .(), and for the second inequality we used
the fact that |x ± h

 �t(x)| ≥ L. On the other hand,

lim
t→

sup
<h≤t

∥∥
∥∥w(x)

{
f
(

x +
h

�t(x)

)
– f

(
x –

h

�t(x)

)}∥∥
∥∥

L∞(|x|≤L)
= .

Finally, we will show

inf
c∈R

∥
∥w(f – c)

∥
∥

L∞(|x|≥σ (t)) → , t → . (.)

If we let t := an
n , then we see n → ∞ and σ (t) = an → ∞ as t → . Hence using

lim|x|→∞ |(√Twf )(x)| = , we have for |x| ≥ σ (t),

an < x → ∞ ⇒ ∣
∣f (x)w(x)

∣
∣ ≤ ∣

∣T /(x)f (x)w(x)
∣
∣ → 

and |cw(x)| ≤ cw(an) →  as t → . Therefore, (.) is proved. Consequently, we have the
result. �

Lemma . (cf. Lemma . in []) Let g be a real valued function on R satisfying
‖gw‖L∞(R) < ∞ and, for some n ≥ ,

∫ ∞

–∞
gPw dt = , P ∈Pn. (.)

Then we have

∥∥
∥∥w(x)

∫ x


g(t) dt

∥∥
∥∥

L∞(R)
≤ C

an

n
‖gw‖L∞(R). (.)

Especially, if w ∈Fλ(C+),  < λ < / and T /wf ′ ∈ L∞(R), then we have

∥∥
∥∥w(x)

∫ x



(
f ′(t) – vn

(
f ′)(t)

)
dt

∥∥
∥∥

L∞(R)
≤ C

an

n
En

(
w/, f ′). (.)

When w ∈F∗, we also have (.) replacing w/ with cw.

Proof We let

φx(t) =

{
w–(t),  ≤ t ≤ x;
, otherwise,

(.)

then we have, for arbitrary Pn ∈Pn,

∣
∣∣
∣

∫ x


g(t) dt

∣
∣∣
∣ =

∣
∣∣
∣

∫ ∞

–∞
g(t)φx(t)w(t) dt

∣
∣∣
∣

=
∣∣
∣∣

∫ ∞

–∞
g(t)

(
φx(t) – Pn(t)

)
w(t) dt

∣∣
∣∣. (.)
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Therefore, we have

∣
∣∣
∣

∫ x


g(t) dt

∣
∣∣
∣ ≤ ‖gw‖L∞(R) inf

Pn∈Pn

∫ ∞

–∞

∣∣φx(t) – Pn(t)
∣∣w(t) dt

= ‖gw‖L∞(R)E,n(w,φx).

Here, from Theorem . we see that

E,n(w,φx) ≤ C
an

n

∫ ∞

–∞
w(t)

∣
∣dφx(t)

∣
∣

≤ C
an

n

∫ x


w(t)

∣∣Q′(t)
∣∣w–(t) dt

= C
an

n

∫ x


Q′(t)w–(t) dt

≤ C
an

n
w–(x).

So, we have
∣
∣∣
∣w(x)

∫ x


g(t) dt

∣
∣∣
∣ ≤ ‖gw‖L∞(R)w(x)E,n(w,φx)

≤ C
an

n
‖gw‖L∞(R).

Therefore, we have (.). Next we show (.). Since

vn
(
f ′)(t) =


n

n∑

j=n+

sj
(
f ′, t

)
,

and, for any P ∈Pn, j ≥ n + ,

∫ ∞

–∞

(
f ′(t) – sj

(
f ′; t

))
P(t)w(t) dt = ,

we have
∫ ∞

–∞

(
f ′(t) – vn

(
f ′)(t)

)
P(t)w(t) dt = . (.)

Using (.) and (.), we have (.). �

Lemma . Let w = exp(–Q) ∈Fλ(C+),  < λ < /. Let ‖w/f ′‖L∞(R) < ∞, and let qn– ∈
Pn– (n ≥ ) be the best approximation of f ′ with respect to the weight w, that is,

∥
∥(

f ′ – qn–
)
w

∥
∥

L∞(R) = En–
(
w, f ′).

Now we set

F(x) := f (x) –
∫ x


qn–(t) dt,
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then there exists Sn ∈Pn such that

∥
∥w(F – Sn)

∥
∥

L∞(R) ≤ C
an

n
En

(
w/, f ′)

and

∥∥wS′
n

∥∥
L∞(R) ≤ CEn–

(
w/, f ′).

When w ∈F∗, we have the same results replacing w/ with cw.

Proof Let

Sn(x) = f () +
∫ x


vn

(
f ′ – qn–

)
(t) dt, (.)

then, by Lemma . and (.),

∥
∥w(F – Sn)

∥
∥

L∞(R)

=
∥∥
∥∥w

(
f –

∫ x


qn–(t) dt – f () –

∫ x


vn

(
f ′ – qn–

)
(t) dt

)∥∥
∥∥

L∞(R)

=
∥∥
∥∥w

(∫ x



[
f ′(t) – vn

(
f ′)(t)

]
dt

)∥∥
∥∥

L∞(R)
≤ C

an

n
En

(
w/, f ′).

Now by Theorem ., (.),

∥∥wS′
n

∥∥
L∞(R) =

∥∥w
(
vn

(
f ′ – qn–

))∥∥
L∞(R)

≤ ∥∥(
f ′ – vn

(
f ′))w

∥∥
L∞(R) +

∥∥(
f ′ – qn–

)
w

∥∥
L∞(R)

≤ En
(
w/, f ′) + En–

(
w, f ′) ≤ En–

(
w/, f ′). �

To prove Theorem . we need the following theorems with p = ∞.

Theorem . (Corollary . in []) Let w ∈ F (C+), and let r ≥  be an integer. Let  ≤
p ≤ ∞, and let wf (r) ∈ Lp(R). Then we have, for n ≥ r,

Ep,n(f , w) ≤ C
(

an

n

)k∥∥f (k)w
∥∥

Lp(R), k = , , . . . , r,

and equivalently,

Ep,n(w, f ) ≤ C
(

an

n

)k

Ep,n–k
(
w, f (k)).

Theorem . (Corollary . in []) Let r ≥  be an integer and w ∈ Fλ(Cr++),  < λ <
(r + )/(r + ), and let  ≤ p ≤ ∞. Then there exists a constant C >  such that, for any
 ≤ k ≤ r, any integer n ≥ , and any polynomial P ∈Pn,

∥∥P(k)w
∥∥

Lp(R) ≤ C
(

n
an

)k∥∥Tk/Pw
∥∥

Lp(R).
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Proof of Theorem . We show that for k = , , . . . , r,

∣∣(f (k)(x) – P(k)
n;f ,w

)
w(x)

∣∣ ≤ CTk/(x)En–k
(
w/, f (k)). (.)

If r = , then (.) is trivial. For some r ≥  we suppose that (.) holds, and let f ∈
C(r+)(R) be satisfying

lim|x|→∞ T /(x)f (r+)(x)w(x) = .

Then f ′ ∈ C(r)(R), and

lim|x|→∞ T /(x)(f ′)(r)(x)w(x) = .

So we may apply the induction assumption to f ′, for  ≤ k ≤ r. Let qn– ∈ Pn– be the
polynomial of best approximation of f ′ with respect to the weight w. Then from our as-
sumption we have, for  ≤ k ≤ r,

∣∣(f (k+)(x) – q(k)
n–(x)

)
w(x)

∣∣ ≤ CTk/(x)En––k
(
w/, f (k+)),

that is, for  ≤ k ≤ r + ,

∣
∣(f (k)(x) – q(k–)

n– (x)
)
w(x)

∣
∣ ≤ CT

k–
 (x)En–k

(
w/, f (k)). (.)

Let

F(x) := f (x) –
∫ x


qn–(t) dt = f (x) – Qn(x), (.)

then

∣∣F ′(x)w(x)
∣∣ ≤ CEn–

(
w, f ′).

As (.) we set Sn =
∫ x

 (vn(f ′)(t) – qn–(t)) dt + f (), then from Lemma .

∥∥(F – Sn)w
∥∥

L∞(R) ≤ C
an

n
En

(
w/, f ′) (.)

and

∥
∥S′

nw
∥
∥

L∞(R) ≤ CEn–
(
w/, f ′).

Here we apply Theorem . with the weight w–(k–)/. In fact, by Theorem . we have
w–(k–)/ ∈Fλ(Cr++). Then, noting an ∼ an from Lemma .(), we see

∣∣S(k)
n (x)w–(k–)/(x)

∣∣ ≤ C
(

n
an

)k–∥∥S′
nw

∥∥
L∞(R)

≤ C
(

n
an

)k–

En–
(
w/, f ′),
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that is,

∣∣S(k)
n (x)w(x)

∣∣ ≤ C
(

n
√

T(x)
an

)k–

En–
(
w/, f ′),  ≤ k ≤ r + . (.)

Let Rn ∈ Pn denote the polynomial of best approximation of F with w. By Theorem .
with w– k


again, for  ≤ k ≤ r + , we have

∣
∣(R(k)

n – S(k)
n (x)

)
w– k


(x)

∣
∣ ≤ C

(
n
an

)k∥
∥(Rn – Sn)w– k


(x)Tk/(x)

∥
∥

L∞(R)

≤ C
(

n
an

)k∥∥(Rn – Sn)w
∥∥

L∞(R) (.)

and by (.)

∥∥(Rn – Sn)w
∥∥

L∞(R) ≤ C
[∥∥(F – Rn)w

∥∥
L∞(R) +

∥∥(F – Sn)w
∥∥

L∞(R)

]

≤ C
[

En(w, F) +
an

n
En

(
w/, f ′)

]

≤ C
[

an

n
En–

(
w, f ′) +

an

n
En–

(
w/, f ′)

]

≤ C
an

n
En–

(
w/, f ′). (.)

Hence, from (.) and (.) we have, for  ≤ k ≤ r + ,

∣
∣(R(k)

n – S(k)
n (x)

)
w(x)

∣
∣ ≤ C

∣
∣Tk/(x)

∣
∣
∣
∣(R(k)

n – S(k)
n (x)

)
w– k


(x)

∣
∣

≤ C
(

n
√

T(x)
an

)k an

n
En–

(
w/, f ′). (.)

Therefore by (.), (.), and Theorem .,

∣∣R(k)
n (x)w(x)

∣∣ ≤ CTk/(x)
(

n
an

)k–

En–
(
w/, f ′)

≤ CTk/(x)En–k
(
w/, f (k)). (.)

Since En(w, F) = En(w, f ) and

En(w, F) =
∥
∥w(F – Rn)

∥
∥

L∞(R) =
∥
∥w(f – Qn – Rn)

∥
∥

L∞(R) (.)

(see (.)), we know that Pn;f ,w := Qn + Rn is the polynomial of best approximation of f
with w. Now, from (.), (.), and (.) we have, for  ≤ k ≤ r + ,

∣∣(f (k)(x) – P(k)
n;f .w(x)

)
w(x)

∣∣ =
∣∣(f (k)(x) – Q(k)

n (x) – R(k)
n (x)

)
w(x)

∣∣

≤ ∣
∣(f (k)(x) – q(k–)

n– (x)
)
w(x)

∣
∣ +

∣
∣R(k)

n (x)w(x)
∣
∣

≤ CTk/(x)En–k
(
w/, f (k)).
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For k =  it is trivial. Consequently, we have (.) for all r ≥ . Moreover, using Theo-
rem ., we conclude Theorem .. �

Proof of Corollary . It follows from Theorem .. �

Proof of Corollary . Applying Theorem . with wk/, we have, for  ≤ j ≤ r,

∥∥(
f (j) – P(j)

n;f ,wk/

)
w

∥∥
L∞(R) ≤ CEn–k

(
w(k+)/, f (j)).

Especially, when j = k, we obtain

∥
∥(

f (k) – P(k)
n;f ,wk/

)
w

∥
∥

L∞(R) ≤ CEn–k
(
w(k+)/, f (k)). �
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