
Yao and Lin Journal of Inequalities and Applications  (2015) 2015:264 
DOI 10.1186/s13660-015-0786-1

R E S E A R C H Open Access

The moment of maximum normed
randomly weighted sums of martingale
differences
Mei Yao1,2,3* and Lu Lin1,3

*Correspondence:
ymwalzn@163.com
1Shandong University Qilu
Securities Institute for Financial
Studies, Shandong University, Jinan,
China
2School of Mathematics, Hefei
University of Technology, Hefei,
China
Full list of author information is
available at the end of the article

Abstract
By using some inequalities and properties of martingale differences, we investigate
the moment of maximum normed randomly weighted sums of martingale
differences under some weakly conditions. A sufficient condition to the moment of
this stochastic sequence with maximum norm is presented in this paper.

MSC: 60F15; 60F25

Keywords: random weighted; maximum normed; martingale differences

1 Introduction
Let {Xn, n ≥ } be a sequence, independent and identically distributed with EX = . De-
note Sn =

∑n
i= Xi, n ≥ . For  < r <  and p > , it is well known that

⎧
⎪⎨

⎪⎩

E|X|r < ∞, if p < r,
E[|X|r log( + |X|)] < ∞, if p = r,
E|X|p < ∞, if p > r,

(.)

E
(

sup
n≥

∣
∣
∣
∣

Xn

n/r

∣
∣
∣
∣

p)

< ∞, (.)

E
(

sup
n≥

∣
∣
∣
∣

Sn

n/r

∣
∣
∣
∣

p)

< ∞ (.)

are all equivalent. Marcinkiewicz and Zygmund [] obtain (.) ⇒ (.) for the case p ≥ r =
, Burkerholder [] gets (.) ⇒ (.) for the case p = r = , Gut [] proves that (.)-(.) are
equivalent in the case p ≥ r, and Choi and Sung [] show that (.)-(.) are equivalent in
the case p < r. For  < r <  and p > , Chen and Gan [] prove that (.)-(.) are equivalent
under the dependent case such as ρ-mixing random variables.

By using the method of dominated by a nonnegative random variable, we investigate
the randomly weighted sums of martingale differences under some weakly conditions.
A sufficient condition to (.) and (.) is presented. To a certain extent, we generalize
the result of Chen and Gan [] for ρ-mixing random variables to the case of randomly
weighted sums of martingale differences. For the details, please see our main result of
Theorem . in Section .
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Recall that the sequence {Xn, n ≥ } is stochastically dominated by a nonnegative ran-
dom variable X if

sup
n≥

P
(|Xn| > t

) ≤ CP(X > t) for some positive constant C and all t ≥ 

(see Adler and Rosalsky [] and Adler et al. []). A bound on tail probabilities for quadratic
forms in independent random variables is seen by using the following condition. There ex-
ist C >  and γ >  such that for all n ≥  and all x ≥ , we have P(|Xn| ≥ x) ≤ C

∫ ∞
x e–γ t dt.

For details, see Hanson and Wright [] and Wright [].
Meanwhile, the definition of martingale differences can be found in many books such

as Stout [], Hall and Heyde [], Shiryaev [], Gut [], and so on. There are many re-
sults of martingale differences. For example, Ghosal and Chandra [] gave the complete
convergence of martingale arrays; Stoica [, ] investigated the Baum-Katz-Nagaev-type
results for martingale differences; Wang et al. [] also studied the complete moment con-
vergence for martingale differences; Yang et al. [] obtained the complete convergence
for the moving average process of martingale differences; Yang et al. [] investigated the
complete moment convergence for randomly weighted sums of martingale differences,
etc.

On the other hand, randomly weighted sums have been an attractive research topic in
the literature of applied probability. For example, Thanh and Yin [] studied the almost
sure and complete convergence of randomly weighted sums of independent random ele-
ments in Banach spaces; Thanh et al. [] investigated the convergence analysis of double-
indexed and randomly weighted sums of mixing processes and gave its application to state
observers of linear-time-invariant systems; Kevei and Mason [] and Hormann and Swan
[] studied the asymptotic properties of randomly weighted sums and self-normalized
sums; Cabrera et al. [] and Shen et al. [] investigated the conditional convergence for
randomly weighted sums; Gao and Wang [] and Tang and Yuan [] investigated the
randomly weighted sums of random variables and have given an application to ruin the-
ory and capital allocation; Chen [] obtained some asymptotically results of randomly
weighted sums of dependent random variables with dominated variation, and so on.

Throughout the paper, I(A) is the indicator function of set A and C, C, C, . . . denote
some positive constants not depending on n. The following lemmas are our basic tech-
niques to prove our results.

Lemma . (cf. Hall and Heyde (Theorem . in [])) If {Xi,Fi,  ≤ i ≤ n} is a martingale
difference and p > , then there exists a constant C depending only on p such that

E

(

max
≤k≤n

∣
∣
∣
∣
∣

k∑

i=

Xi

∣
∣
∣
∣
∣

p)

≤ C

{

E

( n∑

i=

E
(
X

i |Fi–
)
)p/

+ E
(

max
≤i≤n

|Xi|p
)
}

, n ≥ .

Lemma . (cf. Adler and Rosalsky (Lemma  in []) and Adler et al. (Lemma  in []))
Let {Xn, n ≥ } be a sequence of random variables, which is stochastically dominated by a
nonnegative random variable X. Then, for any α >  and b > , the following two statements
hold:

E[|Xn|αI(|Xn| ≤ b)] ≤ C{E[XαI(X ≤ b)] + bαP(X > b)},
E[|Xn|αI(|Xn| > b)] ≤ CE[XαI(X > b)],



Yao and Lin Journal of Inequalities and Applications  (2015) 2015:264 Page 3 of 13

where C and C are positive constants not depending on n. Consequently, for all n ≥ , one
has E|Xn|α ≤ CEXα , where C is a positive constant not depending on n.

2 The main result and its proof
Theorem . Let  < r < ,  < p < , and {Xn,Fn, n ≥ } be a martingale difference se-
quence, which is stochastically dominated by a nonnegative random variable X such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for p < r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CEXr < ∞, if r > ,

for p = r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CE[Xr log( + X)] < ∞, if r > ,

for p > r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < p < ,
CE[X log( + X)] < ∞, if p = ,
CEXp < ∞, if p > .

(.)

Assume that {An, n ≥ } is an independent sequence of random variables, which is also
independent of the sequence {Xn, n ≥ }. In addition, it is assumed that

n∑

i=

EA
i = O(n). (.)

Let Sn =
∑n

i= AiXi, n ≥ . Then one has the result (.), which implies the result (.).

Remark . In Theorem ., {AnXn,Fn, n ≥ } may be not a martingale difference, since
An is not required to be measurable with respect to Fn–. We use the property of inde-
pendence and the method of martingales to study the moments of maximum normed (.)
and (.) and give a sufficient condition (.) for them.

Proof It can be argued that

E
(

sup
n≥

∣
∣
∣
∣

Sn

n/r

∣
∣
∣
∣

p)

=
∫ ∞


P
(

sup
n≥

∣
∣
∣
∣

Sn

n/r

∣
∣
∣
∣ > t/p

)

dt

≤ p/r +
∫ ∞

p/r

∞∑

k=

P
(

max
k–≤n<k

∣
∣
∣
∣

Sn

n/r

∣
∣
∣
∣ > t/p

)

dt

≤ p/r +
∫ ∞

p/r

∞∑

k=

P
(

max
≤n≤k

|Sn| > (k–)/rt/p
)

dt
(
let s = (k–)p/rt

)

= p/r + p/r
∞∑

k=

–kp/r
∫ ∞

kp/r
P
(

max
≤n≤k

|Sn| > s/p
)

ds. (.)

Let G = {∅,�}, Gn = σ (X, . . . , Xn), n ≥ , and Xsi = XiI(|Xi| ≤ s/p), where s/p > . It can be
argued that

AiXi = AiXiI
(|Xi| > s/p) +

[
AiXsi – E(AiXsi|Gi–)

]
+ E(AiXsi|Gi–),  ≤ i ≤ n.
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Then

∞∑

k=

–kp/r
∫ ∞

kp/r
P
(

max
≤n≤k

|Sn| > s/p
)

ds

≤
∞∑

k=

–kp/r
∫ ∞

kp/r
P

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

AiXiI
(|Xi| > s/p)

∣
∣
∣
∣
∣

> s/p/

)

ds

+
∞∑

k=

–kp/r
∫ ∞

kp/r
P

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

[
AiXsi – E(AiXsi|Gi–)

]
∣
∣
∣
∣
∣

> s/p/

)

ds

+
∞∑

k=

–kp/r
∫ ∞

kp/r
P

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

E(AiXsi|Gi–)

∣
∣
∣
∣
∣

> s/p/

)

ds

=: I + I + I. (.)

Combining Hölder’s inequality with (.), we have

n∑

i=

E|Ai| ≤
( n∑

i=

EA
i

)/( n∑

i=



)–/

= O(n). (.)

In view of {An, n ≥ } is independent of the sequence {Xn, n ≥ }; by Markov’s inequality,
(.), and Lemma ., we get

I ≤ 
∞∑

k=

–kp/r
∫ ∞

kp/r
s–/pE

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

AiXiI
(|Xi| > s/p)

∣
∣
∣
∣
∣

)

ds

≤ 
∞∑

k=

–kp/r
∫ ∞

kp/r
s–/p

( k
∑

i=

E|Ai|E|Xi|I
(|Xi| > s/p)

)

ds

≤ C

∞∑

k=

k–kp/r
∞∑

m=k

∫ (m+)p/r

mp/r
s–/pE

[
XI

(
X > s/p)]ds

≤ C

∞∑

k=

k–kp/r
∞∑

m=k

mp/r–m/rE
[
XI

(
X > m/r)]

= C

∞∑

m=

mp/r–m/rE
[
XI

(
X > m/r)]

m∑

k=

k–kp/r

≤

⎧
⎪⎨

⎪⎩

C
∑∞

m= m–m/rE[XI(X > m/r)], if p < r,
C

∑∞
m= mm–m/rE[XI(X > m/r)], if p = r,

C
∑∞

m= mp/r–m/rE[XI(X > m/r)], if p > r.
(.)

For the case p < r, if  < r < , then

∞∑

m=

m–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m–m/r
∞∑

k=m

E
[
XI

(
k/r < Y ≤ (k+)/r)]
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=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

m(–/r)

≤ C

∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CEX.

If r = , then

∞∑

m=

m–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

E
[
XI

(
X > m)]

=
∞∑

m=

∞∑

k=m

E
[
XI

(
k < X ≤ k+)]

=
∞∑

k=

E
[
XI

(
k < X ≤ k+)]

k∑

m=

 =
∞∑

k=

kE
[
XI

(
k < X ≤ k+)]

≤ C

∞∑

k=

E
[
X log( + X)I

(
k < X ≤ k+)]

≤ CE
[
X log( + X)

]
.

Otherwise, for r > , one has

∞∑

m=

m–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

m–m/r

≤ C

∞∑

k=

k–k/rE
[
XI

(
k/r < X ≤ (k+)/r)]

≤ C

∞∑

k=

E
[
XrI

(
k/r < X ≤ (k+)/r)] ≤ CEXr .

Similarly, for the case p = r, if  < r < , then

∞∑

m=

mm–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

mm–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

mm(–/r)

≤ C

∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CEX.
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If r = , then

∞∑

m=

mm–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m
∞∑

k=m

E
[
XI

(
k < X ≤ k+)]

=
∞∑

k=

E
[
XI

(
k < X ≤ k+)]

k∑

m=

m ≤ C

∞∑

k=

kE
[
XI

(
k < X ≤ k+)]

≤ C

∞∑

k=

E
[
X log( + X)I

(
k < X ≤ k+)] ≤ CE

[
X log( + X)

]
.

Otherwise, for r > , it follows that

∞∑

m=

mm–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

mm–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

≤
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]k

k∑

m=

m–m/r

≤ C

∞∑

k=

kk–k/rE
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CE

[
Xr log( + X)

]
.

On the other hand, for the case p > r, if  < p < , then

∞∑

m=

mp/r–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m(p–)/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

m(p–)/r

≤ C

∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CEX.

If p = , then

∞∑

m=

mp/r–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=
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=
∞∑

k=

kE
[
XI

(
k/r < X ≤ (k+)/r)]

≤ CEX log( + X).

For p > , one has

∞∑

m=

mp/r–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m(p–)/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

m(p–)/r

≤ C

∞∑

k=

k(p–)/rE
[
XI

(
k/r < X ≤ (k+)/r)]

≤ C

∞∑

k=

E
[
XpI

(
k/r < X ≤ (k+)/r)] ≤ CEXp.

Consequently, in view of (.), the conditions of Theorem ., and the inequalities above,
we have

I ≤

⎧
⎪⎨

⎪⎩

C
∑∞

m= m–m/rE[XI(X > m/r)], if p < r,
C

∑∞
m= mm–m/rE[XI(X > m/r)], if p = r,

C
∑∞

m= mp/r–m/rE[XI(X > m/r)], if p > r

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for p < r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CEXr < ∞, if r > ,

for p = r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CE[Xr log( + X)] < ∞, if r > ,

for p > r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < p < ,
CE[X log( + X)] < ∞, if p = ,
CEXp < ∞, if p > .

(.)

It can be checked that for the fixed real numbers a, . . . , an,

{
aiXsi – E(aiXsi|Gi–),Gi,  ≤ i ≤ n

}

is also a martingale difference. So one has by Lemma .

E

{

max
≤n≤k

n∑

i=

[
AiXsi – E(AiXsi|Gi–)

]
}

= E

{

E

(

max
≤n≤k

n∑

i=

[
aiXsi – E(aiXsi|Gi–)

]
)∣

∣
∣A = a, . . . , An = an

}
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≤ CE

{ k
∑

i=

E
(
a

i X
si
)∣∣
∣A = a, . . . , An = an

}

= C

k
∑

i=

EA
i EX

si, (.)

by using the fact that {A, . . . , An} is independent of {Xs, . . . , Xsn}. Consequently, by
Markov’s inequality, (.), (.), and Lemma ., one can check that

I ≤ C

∞∑

k=

–kp/r
∫ ∞

kp/r
s–/pE

{

max
≤n≤k

n∑

i=

[
AiXsi – E(AiXsi|Gi–)

]
}

ds

≤ C

∞∑

k=

–kp/r
∫ ∞

kp/r
s–/p

( k
∑

i=

EA
i EX

si

)

ds

≤ C

∞∑

k=

–kp/r+k
∫ ∞

kp/r
s–/pE

[
XI

(
X ≤ s/p)]ds

+ C

∞∑

k=

–kp/r+k
∫ ∞

kp/r
P
(
X > s/p)ds

=: CI + CI. (.)

For I, it follows that

I =
∞∑

k=

–kp/r+k
∞∑

m=k

∫ (m+)p/r

mp/r
s–/pE

[
XI

(
X ≤ s/p)]ds

≤
∞∑

k=

–kp/r+k
∞∑

m=k

mp/r–m/rE
[
XI

(
X ≤ (m+)/r)]

=
∞∑

m=

m(p–)/rE
[
XI

(
X ≤ (m+)/r)]

m∑

k=

k(–p/r).

If p < r, one has by r < 

∞∑

m=

m(p–)/rE
[
XI

(
X ≤ (m+)/r)]

m∑

k=

k(–p/r)

≤ C

∞∑

m=

m(r–)/rE
[
XI

(
X ≤ (m+)/r)]

= C

∞∑

m=

m(r–)/rE
[
XI

(
X ≤ /r)]

+ C

∞∑

m=

m(r–)/r
m∑

i=

E
[
XI

(
i/r < X ≤ (i+)/r)]

≤ C + C

∞∑

i=

E
[
XI

(
i/r < X ≤ (i+)/r)]

∞∑

m=i

m(r–)/r
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≤ C + C(–r)/r
∞∑

i=

(i+)(r–)/rE
[
XI

(
i/r < X ≤ (i+)/r)]

≤ C + CEXr .

For the case p = r, by r < , one has

∞∑

m=

m(p–)/rE
[
XI

(
X ≤ (m+)/r)]

m∑

k=

k(–p/r)

≤ C

∞∑

m=

mm(r–)/rE
[
XI

(
X ≤ (m+)/r)]

= C

∞∑

m=

mm(r–)/rE
[
XI

(
X ≤ /r)]

+ C

∞∑

m=

mm(r–)/r
m∑

i=

E
[
XI

(
i/r < X ≤ (i+)/r)]

≤ C + C

∞∑

i=

E
[
XI

(
i/r < X ≤ (i+)/r)]

∞∑

m=i

mm(r–)/r

≤ C + C(–r)/r
∞∑

i=

i(i+)(r–)/rE
[
XI

(
i/r < X ≤ (i+)/r)]

≤ C + CE
[
Xr log( + X)

]
.

For the case p > r, it can be checked by p <  that

∞∑

m=

m(p–)/rE
[
XI

(
Y ≤ (m+)/r)] ≤ CEXp.

Consequently, it follows that

I ≤

⎧
⎪⎨

⎪⎩

C
∑∞

m= m(r–)/rE[XI(X ≤ (m+)/r)], if p < r,
C

∑∞
m= mm(r–)/rE[XI(X ≤ (m+)/r)], if p = r,

C
∑∞

m= m(p–)/rE[XI(Y ≤ (m+)/r)], if p > r

≤

⎧
⎪⎨

⎪⎩

C + CEXr < ∞, if p < r,
C + CE[Xr log( + X)] < ∞, if p = r,
CEXp < ∞, if p > r.

(.)

On the other hand, similar to the proofs of (.) and (.), we obtain

I ≤
∞∑

k=

k–kp/r
∫ ∞

kp/r
s–/pE

[
XI

(
X > s/p)]ds

≤ C

∞∑

m=

mp/r–m/rE
[
XI

(
X > m/r)]

m∑

k=

k–kp/r

≤

⎧
⎪⎨

⎪⎩

C
∑∞

m= m–m/rE[XI(X > m/r)], if p < r,
C

∑∞
m= mm–m/rE[XI(X > m/r)], if p = r,

C
∑∞

m= mp/r–m/rE[XI(X > m/r)], if p > r.
(.)
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For the case p < r, if  < r < , then

∞∑

m=

m–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

m(–/r)

≤ C

∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CEX.

If r = , then

∞∑

m=

m–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

E
[
XI

(
X > m)]

=
∞∑

m=

∞∑

k=m

E
[
XI

(
k < X ≤ k+)]

=
∞∑

k=

E
[
XI

(
k < X ≤ k+)]

k∑

m=

 ≤
∞∑

k=

kE
[
XI

(
k < X ≤ k+)]

≤ C

∞∑

k=

E
[
X log( + X)I

(
k < X ≤ k+)] ≤ CE

[
X log( + X)

]
.

Otherwise, for r > , we have

∞∑

m=

m–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

m–m/r

≤ C

∞∑

k=

k–k/rE
[
XI

(
k/r < X ≤ (k+)/r)]

≤ C

∞∑

k=

E
[
XrI

(
k/r < X ≤ (k+)/r)] ≤ CEXr .

Similarly, for the case p = r, if  < r < , then

∞∑

m=

mm–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

mm–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]
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=
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

mm(–/r)

≤ C

∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CEX.

For r = , it follows that

∞∑

m=

mm–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

m
∞∑

k=m

E
[
XI

(
k < X ≤ k+)]

=
∞∑

k=

E
[
XI

(
k < X ≤ k+)]

k∑

m=

m ≤ C

∞∑

k=

kE
[
XI

(
k < X ≤ k+)]

≤ C

∞∑

k=

E
[
X log( + X)I

(
k < X ≤ k+)] ≤ CE

[
X log( + X)

]
.

Otherwise, for r > , it follows that

∞∑

m=

mm–m/rE
[
XI

(
X > m/r)]

=
∞∑

m=

mm–m/r
∞∑

k=m

E
[
XI

(
k/r < X ≤ (k+)/r)]

≤
∞∑

k=

E
[
XI

(
k/r < X ≤ (k+)/r)]

k∑

m=

mm–m/r

≤ C

∞∑

k=

kk–k/rE
[
XI

(
k/r < X ≤ (k+)/r)] ≤ CE

[
Xr log( + X)

]
.

Therefore, by (.) for case p > r, (.), and the inequalities above, we obtain

I ≤

⎧
⎪⎨

⎪⎩

C
∑∞

m= m–m/rE[XI(X > m/r)], if p < r,
C

∑∞
m= mm–m/rE[XI(X > m/r)], if p = r,

C
∑∞

m= mp/r–m/rE[XI(X > m/r)], if p > r

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for p < r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CEXr < ∞, if r > ,

for p = r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CE[Xr log( + X)] < ∞, if r > ,

for p > r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < p < ,
CE[X log( + X)] < ∞, if p = ,
CEXp < ∞, if p > .

(.)
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Obviously, it can be seen that {Xn,Gn, n ≥ } is also a martingale difference, since
{Xn,Fn, n ≥ } is a martingale difference. Combining with the fact that {An, n ≥ } is inde-
pendent of {Xn, n ≥ }, we have

E(AiXi|Gi–) = E
[
E(AiXi|Gi)|Gi–

]
= E

[
XiE(Ai|Gi)|Gi–

]

= EAiE[Xi|Gi–] = , a.s.,  ≤ i ≤ n.

In view of the proofs of (.), (.), and the inequality above, we obtain by Markov’s in-
equality and (.)

I ≤ 
∞∑

k=

–kp/r
∫ ∞

kp/r
s–/pE

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

E(AiXsi|Gi–)

∣
∣
∣
∣
∣

)

ds

= 
∞∑

k=

–kp/r
∫ ∞

kp/r
s–/pE

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

E
(
AiXiI

(|Xi| ≤ s/p)|Gi–
)
∣
∣
∣
∣
∣

)

ds

= 
∞∑

k=

–kp/r
∫ ∞

kp/r
s–/pE

(

max
≤n≤k

∣
∣
∣
∣
∣

n∑

i=

E
(
AiXiI

(|Xi| > s/p)|Gi–
)
∣
∣
∣
∣
∣

)

ds

≤ 
∞∑

k=

–kp/r
∫ ∞

kp/r
s–/p

k
∑

i=

E|Ai|E|Xi|I
(|Xi| > s/p)ds

≤ C

∞∑

k=

k–kp/r
∫ ∞

kp/r
s–/pE

[
XI

(
X > s/p)]ds

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for p < r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CEXr < ∞, if r > ,

for p = r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < r < ,
CE[X log( + X)] < ∞, if r = ,
CE[Xr log( + X)] < ∞, if r > ,

for p > r,

⎧
⎪⎨

⎪⎩

CEX < ∞, if  < p < ,
CE[X log( + X)] < ∞, if p = ,
CEXp < ∞, if p > .

(.)

Consequently, in view of (.), (.), (.), (.)-(.), (.), and (.), one has (.).
By (.), it is easy to get (.). �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the manuscript.

Author details
1Shandong University Qilu Securities Institute for Financial Studies, Shandong University, Jinan, China. 2School of
Mathematics, Hefei University of Technology, Hefei, China. 3School of Mathematics, Shandong University, Jinan, China.

Acknowledgements
The authors are deeply grateful to the editor and two anonymous referees, whose insightful comments and suggestions
have contributed substantially to the improvement of this paper. This work is supported by the National Natural Science
Foundation of China (11171188), National Social Science Fund of China (14ATJ005), the Humanities and Social Science



Yao and Lin Journal of Inequalities and Applications  (2015) 2015:264 Page 13 of 13

Planning Foundation of Ministry of Education of China (14YJCZH155) and the Fundamental Scientific Research Funds for
the Central Universities (2015HGZX0018).

Received: 12 April 2015 Accepted: 13 August 2015

References
1. Marcinkiewicz, J, Zygmund, A: Sur les fonctions independantes. Fundam. Math. 29, 60-90 (1937)
2. Burkerholder, DL: Successive conditional expectations of an integrable function. Ann. Math. Stat. 33(3), 887-893

(1962)
3. Gut, A: Moments of the maximum of normed partial sums of random variables with multidimensional indices.

Z. Wahrscheinlichkeitstheor. Verw. Geb. 64, 205-220 (1979)
4. Choi, BD, Sung, SH: On moment conditions for the supremum of normed sums. Stoch. Process. Appl. 26, 99-106

(1987)
5. Chen, PY, Gan, SX: On moments of the maximum of normed partial sums of ρ-mixing random variables. Stat. Probab.

Lett. 78(10), 1215-1221 (2008)
6. Adler, A, Rosalsky, A: Some general strong laws for weighted sums of stochastically dominated random variables.

Stoch. Anal. Appl. 5(1), 1-16 (1987)
7. Adler, A, Rosalsky, A, Taylor, RL: Strong laws of large numbers for weighted sums of random elements in normed

linear spaces. Int. J. Math. Math. Sci. 12(3), 507-530 (1989)
8. Hanson, DL, Wright, FT: A bound on tail probabilities for quadratic forms in independent random variables. Ann.

Math. Stat. 42(3), 1079-1083 (1971)
9. Wright, FT: A bound on tail probabilities for quadratic forms in independent random variables whose distributions

are not necessarily symmetric. Ann. Probab. 1(6), 1068-1070 (1973)
10. Stout, WF: Almost Sure Convergence. Academic Press, New York (1974)
11. Hall, P, Heyde, CC: Martingale Limit Theory and Its Application. Academic Press, New York (1980)
12. Shiryaev, AN: Probability, 2nd edn. Springer, New York (1996)
13. Gut, A: Probability: A Graduate Course. Springer, Berlin (2005)
14. Ghosal, S, Chandra, TK: Complete convergence of martingale arrays. J. Theor. Probab. 11(3), 621-631 (1998)
15. Stoica, G: Baum-Katz-Nagaev type results for martingales. J. Math. Anal. Appl. 336(2), 1489-1492 (2007)
16. Stoica, G: A note on the rate of convergence in the strong law of large numbers for martingales. J. Math. Anal. Appl.

381(2), 910-913 (2011)
17. Wang, XJ, Hu, SH, Yang, WZ, Wang, XH: Convergence rates in the strong law of large numbers for martingale

difference sequences. Abstr. Appl. Anal. 2012, Article ID 572493 (2012)
18. Yang, WZ, Hu, SH, Wang, XJ: Complete convergence for moving average process of martingale differences. Discrete

Dyn. Nat. Soc. 2012, Article ID 128492 (2012)
19. Yang, WZ, Wang, YW, Wang, XH, Hu, SH: Complete moment convergence for randomly weighted sums of martingale

differences. J. Inequal. Appl. 2013, 396 (2013)
20. Thanh, LV, Yin, G: Almost sure and complete convergence of randomly weighted sums of independent random

elements in Banach spaces. Taiwan. J. Math. 15(4), 1759-1781 (2011)
21. Thanh, LV, Yin, G, Wang, LY: State observers with random sampling times and convergence analysis of

double-indexed and randomly weighted sums of mixing processes. SIAM J. Control Optim. 49(1), 106-124 (2011)
22. Kevei, P, Mason, DM: The asymptotic distribution of randomly weighted sums and self-normalized sums. Electron.

J. Probab. 17, 46 (2012)
23. Hormann, S, Swan, Y: A note on the normal approximation error for randomly weighted self-normalized sums. Period.

Math. Hung. 67(2), 143-154 (2013)
24. Cabrera, MO, Rosalsky, A, Volodin, A: Some theorems on conditional mean convergence and conditional almost sure

convergence for randomly weighted sums of dependent random variables. Test 21(2), 369-385 (2012)
25. Shen, AT, Wu, RC, Chen, Y, Zhou, Y: Conditional convergence for randomly weighted sums of random variables based

on conditional residual h-integrability. J. Inequal. Appl. 2013, 122 (2013)
26. Gao, QW, Wang, YB: Randomly weighted sums with dominated varying-tailed increments and application to risk

theory. J. Korean Stat. Soc. 39(3), 305-314 (2010)
27. Tang, QH, Yuan, ZY: Randomly weighted sums of subexponential random variables with application to capital

allocation. Extremes 17(3), 467-493 (2014)
28. Chen, DY: Randomly weighted sums of dependent random variables with dominated variation. J. Math. Anal. Appl.

420(2), 1617-1633 (2014)


	The moment of maximum normed randomly weighted sums of martingale differences
	Abstract
	MSC
	Keywords

	Introduction
	The main result and its proof
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


