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Abstract
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1 Introduction
In , Marcinkiewicz [] introduced the integral on one-dimensional Euclidean space
R, which is today called the Marcinkiewicz integral, and conjectured that it is bounded
on Lp([, π ]),  < p < ∞. Zygmund in [] proved the Marcinkiewicz conjecture. In ,
Stein [] generalized the above Marcinkiewicz integral to the higher-dimensional case. Let
� be homogeneous of degree zero in R

n, n ≥ , integrable and have mean value zero on
the unit sphere Sn–. The higher-dimensional Marcinkiewicz integral is then defined by

M�(f )(x) =
{∫ ∞



∣∣∣∣
∫

|x–y|≤t

�(x – y)
|x – y|n– f (y) dy

∣∣∣∣
 dt

t

} 


, x ∈R
n.

Stein [] proved that if � ∈ Lipα(Sn–) for some α ∈ (, ], then M� is bounded on Lp(Rn)
for p ∈ (, ] and also bounded from L(Rn) to L,∞(Rn). Since then, many papers focused
on the boundedness of this operator on various function spaces. We refer the reader to
[–] for its developments and applications.

The main purpose of this paper is to establish the bound of the commutator generated by
the Marcinkiewicz integral and the RBMO(μ) function on the non-homogeneous metric
measure spaces.

During the past  to  years, considerable attention has been paid to the study of the
classical theory of harmonic analysis on Euclidean spaces with non-doubling measures
only satisfying the polynomial growth condition (see [–]). To be precise, let μ be a

© 2015 Yonghui and Jiang. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-015-0783-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0783-4&domain=pdf
mailto:zhoujiangshuxue@126.com


Yonghui and Jiang Journal of Inequalities and Applications  (2015) 2015:259 Page 2 of 18

positive Radon measure on R
d with satisfies the polynomial growth condition that, for all

x ∈R
d and r > ,

μ
(
B(x, r)

) ≤ crn, (.)

where c is a positive constants and  < n ≤ d, and B(x, r) is the open ball centered at x and
having radius r. The analysis associated with such non-doubling measure μ has proved to
play a striking role in solving the long-standing open Painlevé’s problem and Vitushkin’s
conjecture by Tolsa []. The non-doubling measure μ may not satisfy the well-known
doubling condition, which is a key assumption in harmonic analysis on spaces of homo-
geneous type in the sense of Coifman and Weiss [, ]. To unify both spaces of ho-
mogeneous type and the metric spaces endowed with measures satisfying the polynomial
growth condition, Hytönen [] introduced a new class of metric measure spaces satisfy-
ing both the so-called geometrically doubling and the upper doubling condition, which are
called non-homogeneous metric measure spaces (see Definition . below). Many clas-
sical results have been proved still valid if the underlying spaces are non-homogeneous
metric measure spaces (see [–]). From now on, we always assume that (X , d,μ) is a
non-homogeneous metric measure spaces in the sense of Hytönen []. In this setting,
Hytönen [] introduced the space RBMO(μ), and Hytönen and Martikainen [] estab-
lished a version of the Tb theorem. About Marcinkiewicz integral, Lin and Yang [] have
proved that the Lp(μ)-boundedness with p ∈ (,∞) is equivalent to either of its bounded-
ness from L(μ) into L,∞(μ) or from the atomic Hardy space H(μ) (see []) to L(μ).
They also showed that if the Marcinkiewicz integral is bounded from H(μ) to L(μ), then
it is bounded from L∞(μ) to RBLO(μ) (see []), which is a proper subset of RBMO(μ).
These results essentially improve the existing results in [].

Now we recall some necessary notions and notation.
The following notion of the geometrically doubling is well known in analysis on met-

ric spaces, which was originally introduced by Coifman and Weiss in [, ] and is also
known as metrically doubling.

Definition . A metric space (X , d) is said to be geometrically doubling if there exists
some N ∈N such that, for all balls B(x, r) ⊂X , there exists a finite ball covering {B(xi, r

 )}i

of B(x, r) such that the cardinality of this covering is at most N.

Remark . Let (X , d) be a metric space. In [], Hytönen showed that the following
statements are mutually equivalent:

() (X , d) is geometrically doubling.
() For any ε ∈ (, ) and any ball B(x, r) ⊂X , there exists a finite ball covering

{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most Nε
–n,

where n = log N.
() For any ε ∈ (, ) and any ball B(x, r) ⊂X contains at most Nε

–n centers of disjoint
balls {B(xi, εr)}i.

() There exists M ∈N such that any ball B(x, r) ⊂X contains at most M centers {xi}i

of disjoint balls {B(xi, r/)}M
i=.

Definition . A metric measure space (X , d,μ) is said to be upper doubling if μ is a
Borel measure on X and there exist a dominating function λ : X × (,∞) → (,∞) and a
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positive constant cλ such that, for each x ∈X , r → λ(x, r) is non-decreasing and

μ
(
B(x, r)

) ≤ λ(x, r) ≤ cλλ(x, r/), for all x ∈X , r > . (.)

It was proved in [] that there exists a dominating function λ̃ related to λ satisfying
the property that there exists a positive constant cλ̃ such that λ̃ ≤ λ, cλ̃ ≤ cλ and, for all
x, y ∈ X , r >  with d(x, y) ≤ r, λ̃(x, r) ≤ cλ̃λ̃(y, r). Based on this, in this paper, we always
assume that the dominating function λ also satisfies it.

The following coefficients δ(B, S) for all ball B and S were introduced in [] as analogs
of Tolsa’s number KB,S in [].

Definition . For all balls B ⊂ S, let

δ(B, S) =  +
∫

(S–B)

dμ(x)
λ(cB, d(x, cB))

, (.)

where above and in that follows, for a ball B = B(cB, rB) and ρ > , ρB = B(cB,ρrB).

Remark . The following discrete version KB,S of δ(B, S) was first introduced by Bui and
Duong [] in non-homogeneous metric measure spaces, which is more close to the quan-
tity KB,S introduced by Tolsa [] in the setting of non-doubling measures. For all balls
B ⊂ S, let KB,S be defined by

KB,S =  +
NB,S∑
i=

μ(iB)
λ(cB, irB)

, (.)

where NB,S denote the smallest integer satisfying NB,S rB ≥ rs. Obviously δ(B, S) � KB,S . As
was pointed out by Bui and Duong [], it is not true that δ(B, S) ∼ KB,S .

Definition . Let α,β ∈ (,∞). A ball B ⊂X is called (α,β)-doubling if μ(αB) ≤ βμ(B).

It was proved in [] that if a metric measure space (X , d,μ) is upper doubling and
α,β ∈ (,∞) satisfying β > clog α

λ = αv, then, for any ball B, there exists some j ∈ N ∪ {}
such that αjB is (α,β)-doubling. Moreover, let (X , d,μ) be geometrically doubling, β > αn

with n = log N and μ a Borel measure on X which is finite on bounded sets. Hytönen
[] also showed that for μ-almost every x ∈X , there exist arbitrary small (α,β)-doubling
balls centered at x. Furthermore, the radii of these balls may be chosen to be of the form
α–jB for j ∈N and any preassigned number r > . Throughout this paper, for any α ∈ (,∞)
and ball B, the smallest (α,βα)-doubling ball of the form αjB with j ∈ N is denoted by B̃α ,
where

βα = max
{
αn,αv} + n + v.

In what follows, by a doubling ball we mean a (,β)-doubling ball and B̃ is simply
denoted by B̃.

Now we recall the definition of RBMO(μ) from [].
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Definition . Let ρ ∈ (,∞). A function f ∈ L
loc(μ) is said to be in the space RBMO(μ)

if there exist a positive constant c and, for any ball B ⊂X , a number fB such that


μ(ρB)

∫
B

∣∣f (x) – fB
∣∣dμ(x) ≤ c

and, for any two balls B ⊂ S,

|fB – fS| ≤ cδB,S.

The infimum of the positive constant c is defined to be the RBMO(μ) norm of f and denote
by ‖f ‖RBM(μ).

In [], it follows that the definition of RBMO(μ) is independent of the choice of ρ ∈
(,∞).

The following equivalent characterization of RBMO(μ) was established in [].

Lemma . Let ρ ∈ (,∞) and f ∈ L
loc(μ). Then the following statements are equivalent:

() f ∈ RBMO(μ);
() there exist a positive constant c and, for any ball B ⊂X , such that


μ(ρB)

∫
B

∣∣f (x) – mB̃f
∣∣dμ(x) ≤ c

and, for any doubling balls B ⊂ S,

|mB – mS| ≤ cδB,S.

Moreover, let ‖f ‖∗ be the infimum of the positive constant c in (). Then there exists a con-
stant c̃ such that ‖f ‖∗

c̃ ≤ ‖f ‖RBMO(μ) ≤ c̃‖f ‖∗.

Now we give the definition of Marcinkiewicz integral (see []).

Definition . Let K be a locally integrable function on (X ×X )\{(x, x) : x ∈X }. Assume
that there exists a positive constant c such that, for all x, y ∈X with x �= y,

∣∣K(x, y)
∣∣ ≤ c

d(x, y)
λ(x, d(x, y))

(.)

and, for all y, y′ ∈X ,

∫
d(x,y)≥d(y,y′)

[∣∣K(x, y) – K
(
x, y′)∣∣ +

∣∣K(y, x) – K
(
y′, x

)∣∣] 
d(x, y)

dμ(x) ≤ c. (.)

The Marcinkiewicz integral Mf associated to the above kernel K is defined by setting, for
all x ∈X ,

M(f )(x) =
[∫ ∞



∣∣∣∣
∫

d(x,y)<t
K(x, y)f (y) dμ(y)

∣∣∣∣
 dt

t

] 


. (.)
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We show that the commutator Mb, associating with b ∈ RBMO(μ) and M, which is
defined by

Mb(f )(x) = [b,M](f )(x) = b(x)M(f )(x) – M(bf )(x), x ∈X . (.)

In [], the authors have proven that the Marcinkiewicz integral M is bounded from
Lp(μ) to Lp(μ),  < p < ∞. Our main result is as follows.

Theorem . Let K satisfy (.) and the following Hörmander-type condition:

sup
r>,d(y,y′)≤r

∞∑
i=

i
∫

ir<d(x,y)≤i+r

[∣∣K(x, y) – K
(
x, y′)∣∣

+
∣∣K(y, x) – K

(
y′, x

)∣∣] 
d(x, y)

dμ(x) ≤ c. (.)

If M is bounded on L(μ), then, for any b ∈ RBMO(μ), the commutator Mb is bounded
on Lp(μ) with the bound no more than cp‖b‖RBMO(μ), where  < p < ∞.

Remark . The Hörmander-type condition (.) is slightly stronger than (.).

The organization of this paper is as follows. In Section , we introduce the sharp maxi-
mal operator M#, associated with KB,S and prove Lemma .. This technical lemma is of
independent interest. Section  is devoted to the proof of Theorem ..

Throughout this paper, we denote c a positive constant which is independent of the
main parameters involved, but may vary from line to line. For any ball B ⊂ X , we denote
its center and radius by cB and rB. mBf means that 

μ(B)
∫

B f (y) dμ(y).

2 The sharp maximal function
For a locally integrable function f , let M#f be the sharp maximal function of f , namely, for
x ∈X ,

M#f (x) = sup
x∈B


μ(B)

∫
B

∣∣f (y) – mB̃f
∣∣dμ(y) + sup

(B,S)∈
x

|mBf – mSf |
KB,S

, (.)

where 
x = {(B, S) : x ∈ B ⊂ S and B, S are doubling balls}.
For  < r < ∞, let M#

r f (x) = [M#(|f |r)(x)] 
r for x ∈ X . A simple computation proves that

if  < r < ,

M#
r f (x) ≤ crM#f (x), (.)

where cr >  is independent of f and x.
We recall some results in [].

Lemma .
() Let p ∈ (,∞), r ∈ (, p) and ρ ∈ [,∞). The following maximal operators defined,

respectively, by setting, for all f ∈ L
loc(μ) and x ∈X :

Mr,ρ f (x) = sup
x∈B

{


μ(ρB)

∫
B

∣∣f (y)
∣∣r dμ(y)

} 
r
,
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Nf (x) = sup
x∈B:doubling


μ(B)

∫
B

∣∣f (y)
∣∣dμ(y),

and

Mρ f (x) = sup
x∈B


μ(ρB)

∫
B

∣∣f (y)
∣∣dμ(y)

are bounded on Lp(μ) and also bounded from L(μ) to L,∞(μ).
() For all f ∈ L

loc(μ) it holds true that |f (x)| ≤ Nf (x) for μ-almost every x ∈X .

In Lemma ., if  < r < , using the Hölder inequality, we have Mr,ρ f (x) < Mρ f (x). So
Lemma . is right when  < r < .

We also need the following Calderón-Zygmund decomposition theorem obtained by
Bui and Duong []. Let γ be a fixed positive constant satisfying that γ > max{c log 

λ , n}
where cλ is as in Definition . and n as in Remark ..

Lemma . Let p ∈ [,∞), f ∈ Lp(μ) and t ∈ (,∞) (t > γ

p ‖f ‖Lp(μ)

[μ(X )]/p when μ(X ) < ∞). Then
() there exists a family of finite overlapping balls {Bj}j, pairwise disjoint,


μ(Bj)

∫
Bj

∣∣f (x)
∣∣p dμ(x) >

tp

γ
for all j,


μ(ηBj)

∫
ηBj

∣∣f (x)
∣∣p dμ(x) ≤ tp

γ
for all j and all η ∈ (,∞),

and

∣∣f (x)
∣∣ ≤ t for μ-almost every x ∈X \

(⋃
j

Bj

)
;

() for each j, let Sj be a ( × , clog ×+
λ )-doubling ball of the family {( × )kBj}k∈N,

and ωj =
χBj∑
k χBk

. Then there exists a family {ϕj}j of functions such that, for each j,
supp(ϕj) ⊂ Sj, ϕj has a constant sign on Sj,

∫
X

ϕj(x) dμ(x) =
∫

Bj

f (x)ωj(x) dμ(x),

∑
j

∣∣ϕj(x)
∣∣ ≤ γt for μ-almost every x ∈X ,

where γ is some positive constant depending only on (X ,μ), and there exists a
positive constant c, independent of f , t and j such that, when p = , it holds true that

‖ϕj‖L∞(μ)μ(Sj) ≤ c
∫
X

∣∣f (x)ωj(x)
∣∣dμ(x)

and, if p ∈ (,∞), it holds true that

{∫
Sj

∣∣ϕj(x)
∣∣p dμ(x)

}/p[
μ(Sj)

]/p′ ≤ c
tp–

∫
X

∣∣f (x)ωj(x)
∣∣p dμ(x).
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The following John-Nirenberg inequality was established by Hytönen in [].

Lemma . let (X , d,μ) be geometrically doubling and upper doubling. For every ρ > ,
there is a constant c so that, for every f ∈ RBMO(μ) and every ball B,

μ
(
x ∈ B :

∣∣f (x) – fB
∣∣ > t

) ≤ μ(ρB) exp
(
–ct/‖f ‖RBMO(μ)

)
,

where fB can be seen in definition of RBMO(μ).

From Lemma ., it is easy to prove that there are two positive c, c such that, for any
ball B and b ∈ RBMO(μ),


μ(ρB)

∫
B

exp

( |b(x) – mB̃(b)|
c‖b‖RBMO(μ)

)
dμ(x) ≤ c. (.)

Lemma . There is a constant c such that, for any a >  and t, t > ,

tt ≤ c
[
t log( + at) + a– exp t

]
.

This lemma had been established in [].
We also need some useful properties of KB,S , which were proved in [, ].

Lemma .
() For all balls B ⊂ R ⊂ S, KB,R ≤ KB,S .
() For any ρ ∈ [,∞), there exists a positive constant cρ , depending only on ρ , such that,

for all balls B ⊂ S with rS ≤ ρrB, KB,S ≤ cρ .
() There exists a positive constant c, such that, for all balls B, KB,B̃ ≤ c.
() There exists a positive constant c, depending on cλ, such that, for all balls B ⊂ R ⊂ S,

KB,S ≤ KB,R + cKR,S .
() There exists a positive constant c, depending on cλ, such that, for all balls B ⊂ R ⊂ S,

KR,S ≤ cKB,S .

Now we give and prove the main result about the sharp maximal function M#.

Lemma . Let K satisfy (.) and the Hörmander-type condition (.). We have s ∈ (,∞),
p ∈ (,∞) and b ∈ L∞(μ). If M is bounded on L(μ), then there is a positive constant c
such that, for all f ∈ L∞(μ) ∩ Lp (μ) and for all x ∈X ,

M#
[
Mb(f )

]
(x) ≤ c

[‖b‖RBMO(μ)Ms,
[
M(f )

]
(x) + ‖b‖RBMO(μ)‖f ‖L∞(μ)

]
.

Proof Without loss of generality, we may assume ‖b‖RBMO(μ) = . To prove Lemma ., it
suffices to prove that


μ(B)

∫
B

∣∣Mb(f )(y) – hB
∣∣dμ(y) ≤ cMs,

[
M(f )

]
(x) + ‖f ‖L∞(μ) (.)

for all x ∈ B and

|hB – hS| ≤ c(KB,S)[Ms,
[
M(f )

]
(x) + ‖f ‖L∞(μ)

]
(.)
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for all balls B ⊂ S with x ∈ B, where B is an arbitrary ball and S is a doubling ball,

hB = mB
[
M

((
b – mB̃(b)

)
f χX \ 

 B
)]

and

hS = mS
[
M

((
b – mS(b)

)
f χX \ 

 S
)]

.

To prove (.), for a fixed ball B, x ∈ B and f ∈ L∞(μ), we write

f (y) = f (y)χ 
 B(y) + f (y)χX \ 

 B(y) = f(y) + f(y)

and

Mb(f )(y) =
(
b(y)–mB̃(b)

)
M(f )(y)–M

((
b(y)–mB̃(b)

)
f
)
(y)–M

((
b(y)–mB̃(b)

)
f

)
(y).

So we can write


μ(B)

∫
B

∣∣Mb(f )(y) – hB
∣∣dμ(y)

≤ 
μ(B)

∫
B

∣∣b(y) – mB̃(b)
∣∣M(f )(y) dμ(y)

+


μ(B)

∫
B
M

((
b(y) – mB̃(b)

)
f
)
(y) dμ(y)

+


μ(B)

∫
B

∣∣M((
b(y) – mB̃(b)

)
f

)
(y) – hB

∣∣dμ(y)

= A + A + A.

By the Hölder inequality and Corollary . in [], we see that

A ≤ 

μ(B)

s + 

s′

[∫
B

∣∣b(y) – mB̃(b)
∣∣s′ dμ(y)

]/s′[∫
B

(
M(f )

)s(y)
]/s

≤ Ms,
[
M(f )

]
(x).

To estimate A, from the Hölder inequality, the L(μ)-boundedness of M and Corol-
lary . in [], it follows that

A ≤ μ(B)/

μ(B)

[∫
B

∣∣M[(
b(y) – mB̃(b)

)
f
]
(y)

∣∣ dμ(y)
]/

≤
[


μ(B)

∫
B

∣∣(b(y) – mB̃(b)
)
f(y)

∣∣ dμ(y)
]/

≤ μ(B)–/∥∥(
b(y) – m ̃

 B(b)
)
f(y)

∥∥
L(μ) + μ(B)–/∥∥(

m ̃
 B(b) – mB̃(b)

)
f(y)

∥∥
L(μ)

≤ ‖f ‖L∞(μ)

[


μ(B)

∫

 B

∣∣b(y) – m ̃
 B(b)

∣∣ dμ(y)
]/
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+ c‖f ‖L∞(μ)

[
μ( 

 B)
μ(B)

]/

≤ c‖f ‖L∞(μ),

where we use the fact that |m ̃
 B(b) – mB̃(b)| ≤ c(KB,̃B + K 

 B, ̃
 B + KB, 

 B) ≤ c.
To obtain (.), we still need to estimate A. Set

M(x, y) =
(∫ ∞



[∫
d(y,z)≤t≤d(x,z)

∣∣K(y, z)
(
b(z) – mB̃(b)

)
f(z)

∣∣dμ(z)
] dt

t

)/

,

M(x, y) =
(∫ ∞



[∫
d(x,z)≤t≤d(y,z)

∣∣K(y, z)
(
b(z) – mB̃(b)

)
f(z)

∣∣dμ(z)
] dt

t

)/

,

and

M(x, y) =
(∫ ∞



[∫
max{d(y,z),d(x,z)}

∣∣(K(y, z) – K(x, z)
)(

b(z) – mB̃(b)
)
f(z)

∣∣dμ(z)
] dt

t

)/

.

For any x, y ∈X , we have (see also [], p.)

∣∣M[(
b – mB̃(b)

)
f

]
(y) – M

[(
b – mB̃(b)

)
f

]
(x)

∣∣ ≤
∑

i=

Mi(x, y).

Applying the Minkowski inequality and (.) we conclude that, for all x, y ∈ B,

M(x, y) ≤
∫

d(y,z)<d(x,z)

∣∣K(y, z)f(z)
(
b(z) – mB̃(b)

)∣∣[∫
d(y,z)≤t<d(x,z)

dt
t

]/

dμ(z)

≤ c
∫
X \B

r/
B

d(z, cB)/
|b(z) – mB̃(b)|
λ(cB, d(z, cB))

f (z) dμ(z)

≤ c
∞∑
i=

∫
iB\i–B

r/
B

d(z, cB)/

|m̃iB(b) – mB̃(b)|
λ(cB, d(z, cB))

f (z) dμ(z)

+
∞∑
i=

∫
iB\i–B

r/
B

d(z, cB)/

|m̃iB(b) – b(z)|
λ(cB, d(z, cB))

f (z) dμ(z)

≤ c
∞∑
i=

i(–i/) 
λ(cB, i–rB)

∫
iB

∣∣f (z)
∣∣dμ(z)

+
∞∑
i=

(–i/) 
λ(cB, i–rB)

∫
iB

∣∣m̃iB(b) – b(z)
∣∣∣∣f (z)

∣∣dμ(z)

≤ c‖f ‖L∞(μ)

∞∑
i=

i(–i/) μ(i+B)
λ(cB, i–rB)

≤ c‖f ‖L∞(μ),

where we use the doubling condition of λ, |m̃iB(b) – mB̃(b)| ≤ ci and λ(cB, d(x, cB)) �
λ(x, d(x, cB)) � λ(x, d(x, y)) for y ∈ B and x ∈X \ kB (k > ).
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Similarly, M(x, y) ≤ c‖f ‖L∞(μ). Now for all x, y ∈ B, by the Minkowski inequality we have

M(x, y)

≤
∫
X

∣∣(K(y, z) – K(x, z)
)
f(z)

(
b(z) – mB̃(b)

)∣∣[∫
max{d(y,z),d(x,z)}≤t

dt
t

]/

dμ(z)

≤ c
∫
X

∣∣(K(y, z) – K(x, z)
)
f(z)

(
b(z) – mB̃(b)

)∣∣ 
d(y, z)

dμ(z)

≤ c‖f ‖L∞(μ)

∞∑
i=

∫
iB\i–B

∣∣(K(y, z) – K(x, z)
)(

b(z) – m̃iB(b)
)∣∣ 

d(y, z)
dμ(z)

+ c‖f ‖L∞(μ)

∞∑
i=

∫
iB\i–B

∣∣(K(y, z) – K(x, z)
)(

m̃iB(b)
)

– mB̃(b)
∣∣ 
d(y, z)

dμ(z)

= M + M.

In Lemma ., we write a = iμ(i+B), t = |K (y,z)–K (x,z)|
d(y,z) , and t =

|b(z)–m
̃iB

|
c

. From this we
have

M(x, y) ≤ c‖f ‖L∞(μ)

∞∑
i=

∫
iB\i–B

|K(y, z) – K(x, z)|
d(y, z)

∣∣b(z) – m̃iB(b)
∣∣dμ(z)

≤ c‖f ‖L∞(μ)

∞∑
i=

∫
iB\i–B

[ |K(y, z) – K(x, z)|
d(y, z)

log

[
 + iμ

(
i+B

)

× |K(y, z) – K(x, z)|
d(y, z)

]
+


iμ(i+B)

exp

( |b(z) – m̃iB|
c

)]
dμ(z)

≤ c‖f ‖L∞(μ)

∞∑
i=

i
∫

iB\i–B

|K(y, z) – K(x, z)|
d(y, z)

log

(
 +

μ(i+B)
λ(cB, d(y, z))

)
dμ(z)

+ c‖f ‖L∞(μ)

∞∑
i=

∫
iB\i–B


iμ(i+B)

exp

( |b(z) – m̃iB|
c

)
dμ(z)

≤ c‖f ‖L∞(μ)

∞∑
i=

i
∫

iB\i–B

|K(y, z) – K(x, z)|
d(y, z)

dμ(z)

+ c‖f ‖L∞(μ)

∞∑
i=


i


μ(i+B)

∫
iB

exp

( |b(z) – m̃iB|
c

)
dμ(z)

≤ c‖f ‖L∞(μ),

where we use (.). For M we estimate

M ≤ c‖f ‖L∞(μ)

∞∑
i=

∣∣m̃iB(b)) – mQ̃(b)
∣∣ ∫

iB\i–B

∣∣(K(y, z) – K(x, z)
)∣∣ 

d(y, z)
dμ(z)

≤ c‖f ‖L∞(μ)

∞∑
i=

i
∫

iB\i–B

∣∣(K(y, z) – K(x, z)
)∣∣ 

d(y, z)
dμ(z)

≤ c‖f ‖L∞(μ).
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Combining these estimates above, we get

A ≤ 
μ(B)

∫
B

∣∣M((
b(y) – mB̃(b)

)
f

)
(y) – hB

∣∣dμ(y)

≤ c


μ(B)


μ(B)

∫
B

∫
B

∑
i=

Mi(x, y) dμ(x) dμ(y)

≤ c‖f ‖L∞(μ).

So the estimate (.) is proved.
Now we prove (.). Consider two balls B ⊂ S with x ∈ B and let N = NB,S + , where S is

a doubling ball. Write |hB – hS| as

|hB – hS|
≤ ∣∣mS

[
M

((
b – mB̃(b)

)
f χX \N B

)]
– mB

[
M

((
b – mB̃(b)

)
f χX \N B

)]∣∣
+

∣∣mS
[
M

((
b – mS(b)

)
f χX \N B

)]
– mS

[
M

((
b – mB̃(b)

)
f χX \N B

)]∣∣
+

∣∣mB
[
M

((
b – mB̃(b)

)
f χN B\ 

 B
)]∣∣ +

∣∣mS
[
M

((
b – mS(b)

)
f χN B\ 

 S
)]∣∣

= B + B + B + B.

As in the estimate for the A, we have B ≤ c‖f ‖L∞(μ). To estimate B, for y ∈X , we get

B ≤ ∣∣mS
[
M

((
b – mS(b)

)
f χX \N B

)]
– mS

[
M

((
b – mB̃(b)

)
f χX \N B

)]∣∣
≤ cmS

∣∣(mS(b) – mB̃(b)
)
M(f χX \N B)

∣∣
≤ c

KB,S + KB,̃B

μ(S)

∫
S
M(f χX \N B)(y) dμ(y)

≤ c
KB,S

μ(S)
μ(S)/s′

(∫
S
Ms(f χX \N B)(y) dμ(y)

)/s

≤ cKB,SMs,
[
M(f )

]
.

For y ∈ R, we have

B ≤ ∣∣mS
[
M

((
b – mS(b)

)
f χN B\ 

 S
)]∣∣

≤
∫
X

∣∣K(y, z)
∣∣∣∣b(z) – mS(b)

∣∣∣∣f (z)χN B\ 
 S

∣∣(∫
d(y,z)<t

dt
t

)/

dμ(z)

≤ c
∫
X

|b(z) – mS(b)|
λ(y, d(y, z))

∣∣f (z)χN B\ 
 S

∣∣dμ(z)

≤ c‖f ‖L∞(μ)

∫
N B

|b(z) – mS(b)|
λ(cB, N rB)

dμ

≤ c‖f ‖L∞(μ)


λ(cB, N rB)

∫
N B

∣∣mS(b) – m̃S(b)
∣∣ +

∣∣b(z) – m̃S
∣∣dμ(z)

≤ c‖f ‖L∞(μ)


μ(S)

∫
S

∣∣b(z) – m̃S
∣∣dμ(z) + c‖f ‖L∞(μ)

∣∣mS(b)
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– m̃S(b)
∣∣ μ(N B)
λ(cB, N rB)

≤ c‖f ‖L∞(μ),

where we have used |mS(b) – m̃S(b)| ≤ c(KS,S + KS,̃S) ≤ c.
In order to estimate B, for y ∈ B, we get

∣∣mB
[
M

((
b – mB̃(b)

)
f χN B\ 

 B
)]

(y)
∣∣

≤ ∣∣mB
[
M

((
b – mB̃(b)

)
f χN B\B

)]
(y) – mB

[
M

((
b – mB̃(b)

)
f χB\ 

 B
)]

(y)
∣∣

≤
∫

B\ 
 B

∣∣K(y, z)
∣∣∣∣b(z) – mB̃(b)

∣∣∣∣f (z)
∣∣(∫

d(y,z)<t

dt
t

)/

dμ(z)

+
∫

N B\B

∣∣K(y, z)
∣∣∣∣b(z) – mB̃(b)

∣∣∣∣f (z)
∣∣(∫

d(y,z)<t

dt
t

)/

dμ(z)

≤ c‖f ‖L∞(μ)

∫
B\ 

 B

|b(z) – mB̃(b)|
λ(y, d(y, z))

dμ(z) + c‖f ‖L∞(μ)

∫
N B\B

|b(z) – mB̃(b)|
λ(y, d(y, z))

dμ(z)

≤ c‖f ‖L∞(μ)
μ(B)

λ(cB, rB)


μ(B)

∫
B

∣∣b(z) – mB̃(b)
∣∣dμ(z)

+ c‖f ‖L∞(μ)

N–∑
k=

∫
k+B\k B

|b(z) – mB̃(b)|
λ(y, d(y, z))

dμ(z)

≤ c‖f ‖L∞(μ) + c‖f ‖L∞(μ)

N–∑
k=

μ(k+B)
λ(cB, k+rB)


μ(k+B)

∫
k+B

∣∣b(z) – m˜k+B
(b)

∣∣dμ(z)

+ c‖f ‖L∞(μ)

N–∑
k=

μ(k+B)
λ(cB, k+rB)


μ(k+B)

∫
k+B

∣∣m˜k+B
(b) – mB̃(b)

∣∣dμ(z)

≤ c‖f ‖L∞(μ) + c‖f ‖L∞(μ)

N–∑
k=

μ(k+B)
λ(cB, k+rB)

(cKB,k+B + )

≤ cK
B,S‖f ‖L∞(μ).

That is to say, B ≤ cK
B,S‖f ‖L∞(μ).

Combining the estimates through B to B establishes (.), which completes the proof
of Lemma .. �

3 Proof of Theorem 1.10
In this section, we prove Theorem .. Let  < r < , we prove that, for any p ∈ (,∞),
b ∈ L∞(μ), and all bounded functions f with compact support,

μ
({

x ∈X : M#
r
[
Mb(f )

]
(x) > λ

}) ≤ cλ–p‖b‖p
RBMO(μ)‖f ‖p

Lp(μ). (.)

Once (.) is established, it follows from the Marcinkiewicz interpolation theorem that

∥∥M#
r
[
Mb(f )

]∥∥
Lp(μ) ≤ c‖b‖RBMO(μ)‖f ‖Lp(μ). (.)
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This via Theorem . in [] states that, for any p ∈ (,∞), b ∈ L∞(μ), and all bounded
functions f with compact support and integral zero,

∥∥Mb(f )]
∥∥

Lp(μ) ≤ c‖b‖RBMO(μ)‖f ‖Lp(μ). (.)

In [], Theorem ., the authors show the density in Lp(μ) of bounded functions with
compact support and integral zero. Similar to [], Lemma ., using the truncation argu-
ment, a routine argument leads to (.) for all b ∈ RBMO(μ) and f ∈ Lp(μ).

Now we prove (.). Without loss of generality, we assume that ρ =  in Lemma . and
‖b‖RBMO(μ) = . For each fixed t >  and bounded function f with compact support, apply-
ing the Calderón-Zygmund decomposition to |f |p at level tp as Lemma ., we decompose
f (x) = g(x) + h(x), where

g(x) = f (x)χX \⋃i Bi (x) +
∑

i

ϕi(x), h(x) =
∑

i

[
ωi(x)f (x) – ϕi(x)

]
=

∑
i

hi(x).

It is obvious that ‖g‖L∞(μ) ≤ ct. Using Lemma .() we have

∥∥∥∥
∑

i

ϕi

∥∥∥∥
p

Lp(μ)
≤

∥∥∥∥
∑

i

|ϕi|
∥∥∥∥

p–

L∞(μ)

∥∥∥∥
∑

i

ϕi

∥∥∥∥
L(μ)

≤ ctp–
∑

i

(∫
Ri

∣∣ϕi(x)
∣∣p dμ(x)

)/p

μ(Si)/p′

≤ c
∑

i

∫
Bi

∥∥f (x)
∥∥p dμ(x) ≤ c‖f ‖p

p.

That is to say, ‖g‖Lp(μ) ≤ c‖f ‖Lp(μ). Using (.) and Lemma . we have

μ
({

x ∈X : M#
r
(
Mb(g)

)
(x) > ct

})
≤ cμ

({
x ∈X : Ms,

(
M(g)

)
(x) > t

})
≤ ct–p∥∥Ms,

(
M(g)

)∥∥p
Lp(μ) ≤ ct–p‖f ‖p

Lp(μ),

where  < s < p.
Similar to [], Section ., we have, for any f ,

M#
r f (x) ≤ Mr,(f )(x) + Nr(f )(x) ≤ cMr,(f )(x).

From this we write

μ
({

x ∈X : M#
r
[
Mb(h)

]
(x) > t

})

≤ μ

({
x ∈X : Mr,

[
M

(∑
i

(
b – m̃Bi (b)

)
hi

)]
(x) > ct

})

+ μ

({
x ∈X : Mr,

[∑
i

∣∣b – m̃Bi (b)
∣∣M(hi)

]
(x) > t/

})

= D + D.
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According to the weak type - estimate for Mρ , we have, for any λ > ,

λμ
({

x ∈X : Mr,(g)(x) > λ
}) ≤ c sup

δ>cλ
δμ

({
x ∈X :

∣∣g(x)
∣∣ > cδ

})
.

Taking  < p < p, it follows that

D ≤ t– sup
δ>ct

δμ

({
x ∈X : M

(∑
i

(
b – mB̃(b)

)
hi

)
(x) > cδ

})

≤ ct–p

∥∥∥∥
∑

i

(
b – m̃Bi (b)

)
hi

∥∥∥∥
p

Lp (μ)

≤ ct–p

∥∥∥∥
∑

i

(
b – m̃Bi (b)

)
f ωi

∥∥∥∥
p

Lp (μ)
+ ct–p

∥∥∥∥
∑

i

(
b – m̃Bi (b)

)
ϕi

∥∥∥∥
p

Lp (μ)

≤ D + D.

For D, it follows that

D ≤ ct–p
∑

i

[∫
Bi

∣∣f (x)
∣∣pdμ(x)

]p/p[∫
Bi

∣∣b(x) – m̃Bi (b)
∣∣p(p/p)′ dμ(x)

]–p/p

≤ ct–p
∑

i

[∫
Bi

∣∣f (x)
∣∣p dμ(x)

]p/p

μ
(
Bi

)–p/p

≤ ct–p
∑

i

∫
Bi

∣∣f (x)
∣∣p dμ(x)

[∫
Bi

∣∣f (x)
∣∣pdμ(x)

]p/p–

μ
(
Bi

)–p/p

≤ ct–p‖f ‖p
Lp(μ),

where we use Lemma .(). To estimate D, by the fact
∑

i ϕi ≤ ct, we have

D ≤ c
∥∥∥∥
∑

i

(
b – m̃Bi (b)

)
ϕit–

∥∥∥∥
p

Lp (μ)

≤ c
∥∥∥∥
[∑

i

t–|ϕi|
∣∣b – m̃Bi (b)

∣∣p
]/p[∑

i

∣∣t–ϕi
∣∣]/p′


∥∥∥∥

p

Lp (μ)

≤ c
∥∥∥∥
[∑

i

t–|ϕi|
∣∣b – m̃Bi (b)

∣∣p
]/p∥∥∥∥

p

Lp (μ)

≤ ct–
∑

i

∫
Ri

∣∣ϕi(x)
∣∣∣∣b(x) – m̃Bi (b)

∣∣p dμ(x)

≤ ct–
∑

i

(∫
Ri

∣∣ϕi(x)
∣∣p dμ(x)

)/p(∫
Ri

∣∣b(x) – mR̃i (b)
∣∣pp′

dμ(x)
)/p′

+ ct–
∑

i

∫
Ri

∣∣ϕi(x)
∣∣∣∣mR̃i (b) – m̃Bi (b)

∣∣p dμ(x)

≤ ct–
∑

i

(∫
Ri

∣∣ϕi(x)
∣∣p dμ(x)

)/p

μ(Ri)/p′
+ ct–

∑
i

∫
Ri

∣∣ϕi(x)
∣∣dμ(x)
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≤ ct–p
∑

i

∫
Bi

∣∣f (x)
∣∣p dμ(x) + ct–

∑
i

(∫
Ri

∣∣ϕi(x)
∣∣p dμ(x)

)/p

μ(Si)/p′

≤ ct–p‖f ‖p
Lp(μ).

In order to estimate D, we write

D ≤ ct–
∑

i

∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣M(hi)(x) dμ(x)

+ ct–
∑

i

∫
Si

∣∣b(x) – m̃Bi (b)
∣∣M(ϕi)(x) dμ(x)

+ ct–
∑

i

∫

 Bi

∣∣b(x) – m̃Bi (b)
∣∣M(ωif )(x) dμ(x)

+ ct–
∑

i

∫
Si\ 

 Bi

∣∣b(x) – m̃Bi (b)
∣∣M(ωif )(x) dμ(x)

= D + D + D + D.

For each i, we have

∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣M(hi)(x) dμ(x)

≤
∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣[∫ d(x,cSi )+rSi



∣∣∣∣
∫

d(x,y)<t
K(x, y)hi(y) dμ(y)

∣∣∣∣
 dt

t

]/

dμ(x)

+
∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣[∫ ∞

d(x,cSi )+rSi

∣∣∣∣
∫

d(x,y)<t
K(x, y)hi(y) dμ(y)

∣∣∣∣
 dt

t

]/

dμ(x)

= D
 + D

.

Using

∣∣m
˜k+Si

(b) – m̃Bi (x)
∣∣ ≤ c(KBi ,̃Bi + KBi ,Si + KSi ,k+Si + K

k+Si , ˜k+Si
) ≤ ck,

we get

D
 ≤

∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣ ∫

X

∣∣K(x, y)hi(y)
∣∣(∫ d(x,cSi )+rSi

d(x,y)

dt
t

)/

dμ(y) dμ(x)

≤ c
∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣ ∫

X

∣∣hi(y)
∣∣ r/

Si

d(x, cSi )/λ(x, d(x, cSi ))
dμ(y) dμ(x)

= c‖hi‖L(μ)

∑
j

∫
j+Si\jSi

∣∣b(x) – m̃Bi (b)
∣∣ r/

Si

d(x, cSi )/λ(x, d(x, cSi ))
dμ(x)

≤ c‖hi‖L(μ)
∑

j

∫
j+Si\jSi

∣∣b(x) – m
˜j+Si

(b)
∣∣ r/

Ri

d(x, cSi )/λ(x, d(x, cSi ))
dμ(x)

+ c‖hi‖L(μ)

∑
j

∣∣m
˜j+Si

(b) – m̃Bi (b)
∣∣
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×
∫

j+Si\jSi

r/
Si

d(x, cSi )/λ(x, d(x, cSi ))
dμ(x)

≤ c‖hi‖L(μ)

∑
j

(j + )
r/

Si
μ(j+Si)

(jrSi )/λ(cSi , jrSi )

≤ c‖hi‖L(μ).

By the vanishing moment of hi, it follows that

D
 ≤

∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣ ∫

X

∣∣[K(x, y) – K(x, cRi )
]
hi(y)

∣∣

×
(∫ ∞

d(x,cSi )+rSi

dt
t

)/

dμ(y) dμ(x)

≤ c
∫
X \Si

∣∣b(x) – m̃Bi (b)
∣∣ ∫

X

∣∣[K(x, y) – K(x, cRi )
]
hi(y)

∣∣ 
d(x, cSi )

dμ(y) dμ(x)

≤
∫
X

hi(y)
[∑

j

∫
j+Si\jSi

|[K(x, y) – K(x, cSi )|
d(x, cSi )

× (∣∣b(x) – mj+Si

∣∣ + |mj+Si – m̃Bi |
)

dμ(x)
]

dμ(y)

≤ c‖hi‖L(μ).

But

‖hi‖L(μ) ≤ c
(∫

Bi

∣∣f (x)
∣∣p dμ(x)

)/p

μ(Bi)/p′
+

(∫
Si

∣∣ϕ(x)
∣∣pdμ(x)

)/p

μ(Si)/p′

≤ ct–p‖f ‖p
Lp(μ),

so D ≤ ct–t–p‖f ‖p
Lp(μ) ≤ ct–p‖f ‖p

Lp(μ).
For D, it follows from the Lp(μ) boundedness of M that

D ≤ ct–
∑

i

∫
Si

∣∣b(x) – m̃Bi (b)
∣∣M(ϕi)(x) dμ(x)

+ ct–
∑

i

∣∣m̃Bi (b) – m̃Bi (b)
∣∣ ∫

Si

M(ϕi)(x) dμ(x)

≤ ct–
∑

i

(∫
Si

∣∣b(x) – m̃Bi (b)
∣∣p′

dμ(x)
)/p′∥∥M(ϕi)

∥∥
Lp(μ)

+ ct–
∑

i

∥∥M(ϕi)
∥∥

Lp(μ)μ(Si)/p′

≤ ct–
∑

i

(∫
Si

ϕi(x) dμ(x)
)/p

μ
(
Si

)/p′

≤ ct–t–p
∑

i

∫
Bi

∣∣f (x)
∣∣p dμ(x) ≤ ct–p‖f ‖p

Lp(μ).
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Similar to D, we have

D ≤ ct–
∑

i

(∫

 Bi

∣∣b(x) – m̃Bi (b)
∣∣p′

dμ(x)
)/p′∥∥M(ωif )

∥∥
Lp(μ)

≤ ct–
∑

i

μ(Si)/p′ ‖ωif ‖Lp(μ)

≤ ct–
∑

i

t–p‖ωif ‖Lp(μ)

∫
Bi

∣∣f (x)
∣∣p dμ(x)

(∫
Si

∣∣ϕi(x)p∣∣dμ(x)
)–

≤ ct–p‖f ‖Lp(μ).

Next we estimate D. If supp f ⊂ B for some ball then, for any ρ >  and x ∈ X \ ρB, we
have

M(f )(x) ≤ c
∫

B

∣∣K(x, y)f (y)
∣∣(∫ ∞

d(x,y)

dt
t

)/

dμ(y)

≤ c
∫

B

|f (y)|
λ(x, d(x, y))

≤ c
λ(cB, d(x, cB))

∫
B

∣∣f (y)
∣∣dμ(y).

For any i we write Si = ( × )ki Bi. It follows that

D ≤ t–
∑

i

∫
Si\ 

 Bi

|b(x) – m̃Bi (b)|
λ(cBi , d(x, cBi ))

∫
Bi

∣∣f (y)ωi(y)
∣∣dμ(y) dμ(x)

≤ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)∫
Si\Si

|b(x) – m̃Bi (b)|
λ(cBi , d(x, cBi ))

dμ(x)

+ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)∫
Si\ 

 Bi

|b(x) – m̃Bi (b)|
λ(cBi , d(x, cBi ))

dμ(x)

≤ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)∫
Si\Si

|b(x) – m̃Si (b)| + |m̃Si (b) – m̃Bi (b)|
λ(cBi , d(x, cBi ))

dμ(x)

+ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)

×
ki–∑
j=

∫
j+Bi\jBi

|b(x) – m̃Si (b)| + |m̃Si (b) – m̃Bi (b)|
λ(cBi , d(x, cBi ))

dμ(x)

≤ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)(
 +

μ(Si)
λ(cBi , rSi )

)

+ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)[
 +

ki–∑
j=

μ(j+Bi)
λ(cBi , j+rBi )

KBi ,Si

]

≤ ct–
∑

i

(∫
Bi

∣∣f (y)
∣∣dμ(y)

)
≤ ct–

∑
i

(∫
Bi

∣∣f (y)
∣∣p dμ(y)

)/p

μ(Bi)/p′

≤ ct–p‖f ‖p
Lp(μ).
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Combining these estimates for the term D, D, D, and D yields the desired estimate
for D. So we complete the proof of Theorem ..
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