
Withers and Nadarajah Journal of Inequalities and Applications  (2015) 2015:254 
DOI 10.1186/s13660-015-0771-8

R E S E A R C H Open Access

Approximate moments of extremes
Christopher S Withers1* and Saralees Nadarajah2

*Correspondence:
kit.withers@gmail.com
1Industrial Research Limited, Lower
Hutt, New Zealand
Full list of author information is
available at the end of the article

Abstract
LetMn,i be the ith largest of a random sample of size n from a cumulative distribution
function F on R = (–∞,∞). Fix r ≥ 1 and let Mn = (Mn,1, . . . ,Mn,r)′. If there exist bn and
cn > 0 such that as n → ∞, (Mn,1 – bn)/cn

L→ Y1 ∼ G say, a non-degenerate

distribution, then as n → ∞, Yn = (Mn – bnr)/cn
L→ Y, where for Zi = – logG(Yi),

Z = (Z1, . . . ,Zr)′ has joint probability density function exp(–zr) on 0 < z1 < · · · < zr <∞
and r is the r-vector of ones. The moments of Y are given for the three possible forms
of G. First approximations for the moments of Mn are obtained when these exist.
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1 Introduction
For  ≤ i ≤ n let Mn,i be the ith largest of a random sample of size n from a cumulative dis-
tribution function F on R. Fix r ≥  and let Mn = (Mn,, . . . , Mn,r)′ and Yn = (Yn,, . . . , Yn,r)′,
where

Yn,i = (Mn,i – bn,i)/cn,i, ()

and bn,i, cn,i >  are constants. There are three possible non-degenerate limits in distri-
bution for Yn, say Y = YI = (YI,, . . . , YI,r)′ for I = , , . We take bn,i ≡ bn, = bn say and
cn,i ≡ cn, = cn say. The notation YI conflicts with Yn but is simple and clear as dependence
on n is always indicated by a subscript n.

The need for approximations for the moments of Mn based on the moments of Y arises
in many applied areas. For example, in solutions of stochastic traveling salesman problems
(Leipala []); modeling fire protection and insurance problems (Ramachandran []); mod-
eling extreme wind gusts (Revfeim and Hessell []); determining failures of jack-ups under
environmental loading (van de Graaf et al. []); and determining the asymptotic cost of
algorithms and combinatorial structures such as trie, digital search tree, leader election,
adaptive sampling, counting algorithms, trees related to the register function, composi-
tion of integers, some structures represented by Markov chains (column-convex polyomi-
noes, Carlitz compositions), runs and number of distinct values of some multiplicity-in
sequences of geometrically distributed random variables (Louchard and Prodinger []).

The aim of this note is to provide approximations for the moments of Mn. Most of
the results presented are new to the best of our knowledge. The results are organized
as follows. In Section , we briefly review the possible forms for the non-degenerate

© 2015 Withers and Nadarajah. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://dx.doi.org/10.1186/s13660-015-0771-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-015-0771-8&domain=pdf
mailto:kit.withers@gmail.com


Withers and Nadarajah Journal of Inequalities and Applications  (2015) 2015:254 Page 2 of 10

limit YI = (YI,, . . . , YI,r)′ for I = , , . For r =  these forms are well known. For exam-
ple, P(Y, ≤ x) = exp{– exp(–x)} on R. In Section , we give the moments mj(Y) = E[Yj]
and μj(Y) = E{[Y – E(Y)]j} for each of these forms. Here, yj =

∏r
i= yji

i . For example, let-
ting �(·) denote the gamma function and ψ(z) = (d/dz) log�(z) the digamma function, we
show that

E
[
Y j

I,r
]

=

⎧
⎪⎨

⎪⎩

(–)j�(j)(r)/(r – )!, I = ,
Mr(–jα–) for r > jα–, I = ,
(–)jMr(jα–), I = ,

where

Mr(t) = �(r + t)/(r – )! ()

for r + 	(e(t)) > , 	(z) denoting the real part of z, and ω(j)(·) denoting ω(j)(t) = djω(t)/dtj.
We also show that for  ≤ s ≤ r, the covariance between YI,s and YI,r is

covar(YI,s, YI,r) =

⎧
⎪⎨

⎪⎩

ψ ()(r), I = ,
cs,r(α) for r > α–, s > α–, I = ,
cs,r(–α), I = ,

where cs,r(α) = �(r – α–)/{(s – )!(s – α–)r–s} – Mr(–α–)Ms(–α–), (x)j = x(x + ) · · · (x +
j – ), and that the j.th order cumulant of Y is

κj(Y) = (–)j.ψ (j.–)(r) ()

for jr 
= , where j. =
∑r

i= ji. This is a remarkable result as () does not depend on j except
via j.. These results appear to be all new except for E[Y,r] and the moments of Y,, Y,.

In Section , we give bn,, cn,, and first approximations for Mn and its moments when
these exist, for the most important classes of tail behavior for F . These classes cover all
the examples we have come across. For r =  these results extend those of McCord [] and
verify a conjecture of his concerning μ(Mn,).

As well as the notation above, we use n = log n, n = log n, 〈x〉j = x(x – ) · · · (x – j + ),
var(Z) = variance of Z, J = Jacobian, C = the set of all complex numbers, corr(Z, Z) = the
correlation between Z and Z, ρs,r = the correlation between the sth and rth components
of a vector of variables, and supn = supremum over all possible values of n. Also α(x) ≈ β(x)
means that α(x) and β(x) are approximately equal.

2 A brief review
Fisher and Tippett [] showed that if Yn, of () has a non-degenerate limit in distribution,
Y, then for some b and c > , (Y – b)/c ∼ G(y) has only three possible forms, known
as EV, EV, and EV: Y, ∼ G(y) = exp{– exp(–y)} on R or Y, ∼ G(y) = G(y,α) =
exp(–y–α) on (,∞), where α > , or Y, ∼ G(y) = G(y,α) = exp{–(–y)α} on (–∞, ),
where α > . Note the representation

Y, = exp(Y,/α), Y, = –Y –
, = – exp(α/Y,). ()
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Since we may take c =  and b =  without loss of generality, this gives the represen-
tation (with bn = bn,, cn = cn,) Mn, = bn + cn(Y + op()). So, for example, by Theo-
rem . of Billingsley [], E[Mn,] = bn + cn{E[Y] + o()} when E[Y 

n,] is bounded and
μj(Mn,) = cj

n{μj(Y) + o()} when E[|Yn,|j+ε] is bounded for some ε > . Fisher and Tippett
[] also essentially showed that

E
[
exp(tY,)

]
= �( – t) ()

for 	(e(t)) <  so that E[Y j
,] = (–)j�(j)() for j ≥ , E[Y,] = –ψ() = γ , Euler’s constant,

and for j ≥ , κj(Y,) = (j – )!Sj, where Sj =
∑∞

i= i–j since log�( – t) = γ t +
∑∞

j= Sjtj/j. For
example, S = π/ = ψ ()() = . · · · .

Gumbel [], p. tabled μj and κj for Y, for j ≤ . From (), () we obtain

E
[
Y t

,
]

= �( – t/α)

for 	(e(t)) < α and

E
[
(–Y,)t] = �( + t/α)

for 	(e(t)) > –α, as noted on p. and  of Gumbel []. For example,E[Y,] = �(–α–)
if α > , var[Y,] = �( – α–) – �( – α–) if α > , E[Y,] = –�( + α–) and var[Y,] =
�( + α–) – �( + α–).

If we have N observations distributed as Yn, we can estimate cn, bn, α by assuming a
choice of I and using maximum likelihood or moment estimates on

P(Mn, ≤ x) ≈ G
(
(x – bn)/cn

)
, ()

where G = GI . Gumbel [] does this in Sections ..-.. for I =  for the maximum
likelihood method, and in Sections ..-.. for I =  for the moment method. See also
Kotz and Johnson [], p.. A better approach is to avoid assuming a choice of I (but
still assuming that a non-degenerate limit exists) by replacing G in () by the generalized
extreme value cumulative distribution function:

G(y) = exp
[
–
{

 – k(y – ξ )/σ
}/k], ()

where σ > , y < ξ + σ /k if k > , y > ξ + σ /k if k < , σ denotes the scale parame-
ter, ξ denotes the location parameter and k denotes the shape parameter. Furthermore,
G(y) = G(y) as k →  if ξ = , σ = ; G(y) = G(y) if ξ = , σ = /α, k = –/α; G(y) = G(y) if
ξ = –, σ = k = /α. For n ≤ , an estimation of ξ , σ , k using L-moments is more efficient
than using maximum likelihood estimates: see Hosking et al. [].

Gnedenko [] gave necessary and sufficient conditions on F that LYn, → G for I =
,  or . This is Theorem .. of Leadbetter et al. []; appropriate choices of bn and
an = c–

n in each is given by their Corollary ... A choice of bn, cn can be found by setting
un = bn + cnx in their result (p.) so that

n
[
 – F(un)

] → t ∈ [,∞] if and only if P(Mn, ≤ un) → exp(t). ()
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Table 1 Some examples

X ∼ F(x) Support i α bn cn

exponential (0,∞) 1 n1 1
logistic R 1 n1 1
normal R 1 Bn (2n1)1/2

log-normal (0,∞) 1 B′
n (2n1)–1/2B′

n
1 – exp(1/x) (–∞, 1) 1 –n–11 n–21
Pareto 1 – (a/x)α (a,∞) 2 α 0 an1/α

Cauchy R 2 1 0 n–1

uniform (0,1) 3 1 1 n–1

1 – (x0 – x)α (x0 – 1, x0) 3 α x0 n–1/α

{1 – exp(–x)}/{1 – exp(–x0)} (0, x0) 3 1 x0 {exp(x0) – 1}/n
G1 R 1 1 1
G2 (0,∞) 2 α 0 n1/α

G3 (–∞, 0) 3 α 0 n–1/α

They gave the examples in Table . (The logistic is from Stuart and Ord [].) Recall n =
log n and n = log n. In Table ,

Bn = (n)/{ – (n + log π )/(n)
}

()

and B′
n = exp(Bn). Leadbetter et al. [] also noted that no non-degenerate limit exists for

an F Poisson or a geometric cumulative distribution function. The last three results in
Table  are exact, not asymptotic, since if F = GI , then

F(x)n =

⎧
⎪⎨

⎪⎩

G(x + n), if I = ,
G(n–/αx), if I = ,
G(n/αx), if I = .

()

For the convergence rate of Yn, to Y, see Balkema and de Haan [] and references therein.
For an estimate of α, see Dekkers and de Haan [] and Dekkers et al. [] and references
therein.

We now consider extensions to Mn,i, where i ≥ . Leadbetter et al. [], p. showed that
() implies P(Mn,i ≤ un) → exp(–t)

∑i–
j= tj/j!, so that if Yn,

L→ Y ∼ G(x) then for i ≥  with
bn,i ≡ bn,, cn,i ≡ cn,

Yn,i
L→ Yi,G ∼ G(x)

i–∑

j=

(
– log G(x)

)j/j!,

that is,

Zn,i = – log G(Yn,i)
L→ gamma(i), ()

where gamma(γ ) has probability density function zγ – exp(–z)/�(γ ) on (,∞). By Theo-
rem .. in Leadbetter et al. [], if Yn,

L→ Y ∼ G then Zn = (Zn,, . . . , Zn,r) of () satisfies

P(Zn ≥ z) →
∑

p(z, k) ()



Withers and Nadarajah Journal of Inequalities and Applications  (2015) 2015:254 Page 5 of 10

summing over k to ki,  ≤ ki,  ≤ i ≤ r, where

p(z, k) = exp(–zr)
r∏

i=

(zi – zi–)ki /ki!,

where z = , and the support is  < z < z < · · · < zr < ∞. So,

Zn
L→ Z with joint probability density function exp(–zr) ()

on  < z < · · · < zr < ∞, (G(Yn,), . . . , G(Yn,r)) L→ U say with joint probability density func-
tion (u · · ·ur–)– on  < ur < · · · < u < , and

Yn
L→ YG ()

with joint probability density function G(yr)J on –∞ < yr < · · · < y < ∞, where J =
|∏r

i= ∂zi/∂yi| for zi = – log G(yi). If G is the generalized extreme value cumulative distribu-
tion function of () this joint probability density function reduces to () of Tawn [] and
(.) of Smith []. For convergence rates in (), see Omey and Rachev []. The results
()-() are not given, although () is easily proven for r =  from their Theorem ...
From (), {Zri – Zri–} are independently distributed as {gamma(ri – ri–)}. If F = GI for
I = ,  or  then L→ in () can be replaced by L= with G = GI . For r =  this is just ().

For  ≤ I ≤ , set

YI = (Y,, . . . , YI,r)′ = YG ()

for G = GI . By Section . of Stuart and Ord [], for r ≥  and Mr of (), E[exp(Yi,rt)] =
Mr(–t), so E[Y j

,r] = (–)j�(j)(r)/(r – )! and κj(Yr) = (–)jψ (j–)(r), which they table for j =
,  and r = , , , .

3 Moments for limits
From () or () we have the following lemma.

Lemma . Note that Y, Y, and Y of () can be represented in terms of each other by
Y,i = exp(Y,i/α) and Y,i = –Y –

,i = – exp(–Y,i/α),  ≤ i ≤ r.

Theorem . Set Zi = – log G(Y,i). For t in C
r ,

E
[
exp

(
t′Y

)]
= E

[ r∏

i=

Z–ti
i

]

= Br(t), ()

where Br(t) = �(r – Tr)/
∏r–

i= (i – Ti) and Ti =
∑i

j= tj for i – 	(Ti) > ,  ≤ i ≤ r.

Proof By (), Z has joint probability density function exp(–zr) on  < z < · · · < zr < ∞.
Now use induction. �

Applying (∂/∂t)j to () and setting t =  gives an expression for mj(Y) = E[
∏r

i= Y ji
,i].

However, these are more easily found from the cumulants: taking logs of () yields the
following remarkable result.
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Corollary . For jr >  and j. =
∑r

i= ji,

κj(Y) = (–)j.ψ (j.–)(r). ()

For example, for  ≤ s ≤ r, covar(Ys,, Yr,) = ψ ()(r), so  ≤ var[Ys, – Yr,] = var[Ys,] –
var[Yr,] and corr(Ys,, Yr,) = {ψ ()(r)/ψ ()(s)}/. By (..) of Abramowitz and Stegun [],
the right hand side of () is equal to –

∑r–
i= i–j. + γj. , where γj. = (–)j.ψ j.–(). Also γ =

–ψ() = γ = . · · · and γ = π/.
Lemma . and Theorem . imply the following result.

Theorem . We have mj(Y) = Br(j/α) and mj(–Y) = Br(–j/α). In fact, this holds with j
replaced by t ∈ C

r . So, for Mr(t) of () and Vr(t) = Mr(t) – Mr(t),

E
[
Y t

,r
]

= Mr(–t/α), E
[
(–Y,r)t] = Mr(t/α),

and

var[Y,r] = Vr
(
–α–), var[Y,r] = Vr

(
α–).

Similarly, for  ≤ s ≤ r,

E
[
Y js

,sY
jr
,r

]
= C(js/α, jr/α), E

[
(–Y,s)js (–Y,r)jr

]
= C(–js/α, –jr/α),

where

C(ts, tr) = �(r – ts – tr)
/

{

(s – )!
r–∏

j=s

(j – ts)

}

and covar(Y,s, Y,r) is given by () for I = , .

Example . Set α = . Then in the notation of (), E[Y j
,r] = /〈r – 〉j, E[(–Y,r)j] = (r)j,

var[Y,r] = (r – )–(r – )– for  ≤ r, var[Y,r] = r, covar(Y,s, Y,r) = cs,r() = {(s – )(r – )(r –
)}– for  ≤ s ≤ r,  ≤ r and covar(Y,s, Y,r) = cs,r(–) = s for  ≤ s ≤ r, with corresponding
correlations ρs,r() = {(s – )/(r – )}/ and ρs,r(–) = (s/r)/.

Example . Set α = /. Then E[Y,r] = /〈r – 〉 for r ≥ , E[Y,r] = –(r) for r ≥ ,
var[Y,r] = 〈r – 〉–

 (r – ) for r ≥ , and var[Y,r] = (r)(r + ) for r ≥ .

By (..) of Abramowitz and Stegun [], as r → ∞,

Mr(t) = rt{ + 〈t〉r–/ + 〈t〉(t – )r–/ + O
(
r–)},

so Vr(t) = rt–{t + O(r–)}, E[Y,r] = r–/α{ + (α–) + O(r–)}, E[Y,r] = –r/α{ +
〈α–〉r–/ + O(r–)}, var[Y,r] = r/α–{α– + O(r–)} and similarly for E[Y j

,r] and E[Y j
,r].
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4 Approximations for Mn

Suppose

Yn = (Mn – bnr)cn
L→ Y ()

as n → ∞. Then we can represent Yn as Y + op(), that is,

Mn = bnr + cn
(
Y + op()

)
. ()

By Theorem . of Billingsley [], as n → ∞, E[g(Yn)] L→ E[g(Y)] if g(Yn) is uniformly
integrable, for example, if supn E[|g(Yn)|+ε] < ∞ for some ε > . So, if supn E[|Yk

n|] < ∞
for some k > j then

E
[
Yj

n
]

= c–j.
n E

[
(Mn – bnr)j] → E

[
Yj]

and

μj(Yn) = c–j.
n μj(Mn) → μj(Y). ()

Here, k > j means ki > ji for  ≤ i ≤ r. If

bn = Bn( + δn), where δn →  and Cn = cn/Bn →  ()

then () implies Mj
n = bn,j. + cn,j.(j′Y + op()), where bn,j. = Bj.

n( + j.δn) and cn,j. = Bj.
nCn, so

E
[
Mj

n
]

= bn,j. + cn,j.
(
j′E[Y] + o()

)

provided (Mj.
n –bn,j.)/cn,j. is uniformly integrable. McCord [] provided methods of proving

uniform integrability of such functions of Yn for the case r = . We shall not do so here. It
is easy to show that there exists cn,r < ∞ such that

E
[∣
∣Mj

n
∣
∣
] ≤ cn,r

r∏

i=

E
[|X|ji],

where X ∼ F(x). For example, the reader can try this on (.) of Stuart and Ord []. It
follows that E[Mj

n] exists if and only if E[Xj ] exists, that is,

E
[|X|j] < ∞, ()

where j = max{ji :  ≤ i ≤ r}. We conjecture that this condition is sufficient for Yj
n to be

uniformly integrable. We shall see that McCord [] proved this conjecture when r =  for
several large classes of F . Table  gave YI , bn, cn for a number of choices of F(x). In fact, each
of these F(x) may be replaced by the class of F(x) with the same asymptotic tail behavior
as x → ∞. We now illustrate this and expand these classes for some important cases. Set
bn(X) = bn, cn(X) = cn, Mn(X) = Mn, and Yn(X) = Yn.



Withers and Nadarajah Journal of Inequalities and Applications  (2015) 2015:254 Page 8 of 10

Theorem . Suppose

 – F(x) ≈ (a/x)α ()

as x → ∞, where a >  and α > . Then () holds with bn = , cn = an/α , and Y = Y.

Proof Note that () holds with un = cnx, t = x–α , so () gives (). �

Note that () holds if

F has probability density function ≈ (a/x)α+a– ()

as x → ∞. This includes the Pareto, Cauchy and G distributions.
For r = , when () holds, Theorem . of McCord [] proved

Yj
n is uniformly integrable if () holds. ()

We conjecture this is true for all r.

Theorem . Suppose X ∼ F on (–∞, x) with x < ∞ and

 – F(x) ≈ c(x – x)α ()

as x ↑ x, where c >  and α > . Then () holds with Y = Y, bn = x, and cn = (cn)–/α .

Proof Note that un = bn + cnx satisfies () with t = (–x)α , so () gives (). �

Note that () holds if F has probability density function

f (x) ≈ αc(x – x)α– ()

as x ↑ x.
For r =  Theorem  in McCord [] proved () when () holds. We conjecture it is true

for all r.
Note that () holds for F = G with c =  and x = .

Theorem . Suppose as x → ∞,

 – F(x) ≈ kxd exp(–x). ()

Then () holds with Y = Y, cn = , and bn = n + dn + k, where k = log k.

Proof Note that () holds with un = bn + x and t = exp(–x), so () gives (). �

Note that () holds if F has probability density function f (x) ≈ kxd exp(–x) as x → ∞.
So, with k =  this covers the exponential (d = ), logistic (d = ) and gamma (γ ) (d = γ – )
distributions.
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Theorem . Suppose as z → ∞,

 – F(x) ≈ kzd exp(–z) ()

for z = {(x – b)/c}a. So, either a >  and c > , or c <  and a is a negative odd integer. Then
() holds with Y = Y, cn = ca–n/a–

 , and bn = bI(a < )+cn/a
 {+a–n–

 (dn +k)}, where
I(A) =  if A is true, or I(A) =  if A is false.

Proof The cumulative distribution function of Z = {(X – b)/c}a satisfies (). So, Mn,i =
b + cMn,i(Z)/a. Now apply Theorem .. �

If a >  and c > , then z → ∞ if and only if x → ∞. But if a <  and c < , then X < b
with probability  and z → ∞ if and only if x ↑ b.

Note that () holds if F has probability density function

f (x) ≈ kzd exp(–z)∂z/∂x = kac–zd+–/a exp(–z) ()

as z → ∞. For F = �, the unit normal cumulative distribution function, this holds with
a = , b = , c = /, d = –/, k +(π )–/, giving bn, cn of (). Another example is –F(x) ≈
exp(/x): in this case k = , d = b = , and a = c = –.

For r = , d = , a > , and (), Theorem  in McCord [] proved (). We conjecture
it is true for all r. For this case, he conjectured () for j = . So, his conjecture is true if
E[X] < ∞.

If a >  or b =  then () holds with

Bn = cn/a
 and δn = a–n–

 (dn + k), ()

so bn,j. = cj.nj./a
 ( + j.δn) and cn,j. = a–cj.nj./a–

 .

Theorem . Suppose Z = exp(X) for X of Theorem .. If a > , () holds for Yn(Z) with
Y = Y, bn(Z) = exp(Bn)( + Bnδn) and cn(Z) = exp(Bn)cn for Bn, δn of (). If a = , () holds
for Yn(Z) with Y = Y at α = c–, bn(Z) = , cn(Z) = exp(bn), and bn = c(n + dn + k).

Proof Note that Mn,i(Z) = exp(Mn,i) = exp(bn + cnYn,i). By (), (), if a > , Bnδn →  and
cn → , so Mn,i(Z) = exp(Bn)( + Bnδn + cnY,i + op(cn)). If a = , cn = c, so exp(cnYn,) =
exp(cY)( + op()) = Y + op() at α = c–. �

For the log-normal distribution this gives Y = Y, Bn = c–
n = (n)/, δn = –(n +

log π )/(n), so bn(Z) = exp(Bn){ – (n)–/(n + log π )/} and cn(Z) = exp(Bn)/
√

n.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CW derived the results for Sections 1, 2 and 3. SN derived the results for Section 4. All authors read and approved the final
manuscript.

Author details
1Industrial Research Limited, Lower Hutt, New Zealand. 2University of Manchester, Manchester, M13 9PL, United
Kingdom.



Withers and Nadarajah Journal of Inequalities and Applications  (2015) 2015:254 Page 10 of 10

Acknowledgements
The authors would like to thank the two referees for careful reading and comments, which improved the paper.

Received: 14 January 2015 Accepted: 25 July 2015

References
1. Leipala, T: Solutions of stochastic traveling salesman problems. Eur. J. Oper. Res. 2, 291-297 (1978)
2. Ramachandran, G: Properties of extreme order statistics and their application to fire protection and insurance

problems. Fire Saf. J. 5, 59-76 (1982)
3. Revfeim, KJA, Hessell, JWD: More realistic distributions for extreme wind gusts. Q. J. R. Meteorol. Soc. 110, 505-514

(1984)
4. van de Graaf, JW, Tromans, PS, Vanderschuren, L, Jukui, BH: Failure probability of a jack-up under environmental

loading in the central North Sea. Mar. Struct. 9, 3-24 (1996)
5. Louchard, G, Prodinger, H: Asymptotics of the moments of extreme-value related distribution functions. Algorithmica

46, 431-467 (2006)
6. McCord, JR: On asymptotic moments of extreme statistics. Ann. Math. Stat. 35, 1738-1743 (1964)
7. Fisher, RA, Tippett, LHC: Limiting forms of the frequency distribution of the largest or smallest member of a sample.

Proc. Camb. Philos. Soc. 24, 180-190 (1928)
8. Billingsley, P: Convergence of Probability Measures. Wiley, New York (1968)
9. Gumbel, EJ: Statistics of Extremes. Columbia University Press, New York (1958)
10. Kotz, S, Johnson, NL: Encyclopaedia of Statistical Sciences, vol. 2. Wiley, New York (1982)
11. Hosking, JRM, Wallis, JR, Wood, EF: Estimation of the generalized extreme value distribution by the method of

probability weighted moments. Technometrics 27, 251-261 (1985)
12. Gnedenko, BV: Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423-453 (1943)
13. Leadbetter, MR, Lindgren, G, Rootzen, H: Extremes and Related Properties of Random Sequences and Processes.

Springer, New York (1983)
14. Stuart, A, Ord, JK: Kendall’s Advanced Theory of Statistics, vol. 1, 5th edn. Griffin, London (1987)
15. Balkema, AA, de Haan, L: A convergence rate in extreme value theory. J. Appl. Probab. 27, 577-585 (1990)
16. Dekkers, ALM, de Haan, L: On the estimation of the extreme value index and large quantile estimation. Ann. Stat. 17,

1795-1832 (1989)
17. Dekkers, ALM, Einmahl, JHJ, de Haan, L: A moment estimator for the index of an extreme value distribution. Ann. Stat.

17, 1833-1855 (1989)
18. Tawn, JA: An extreme value theory model for dependent observations. J. Hydrol. 101, 227-250 (1988)
19. Smith, RL: Extreme value theory based on the r largest annual events. J. Hydrol. 86, 27-43 (1986)
20. Omey, E, Rachev, ST: Rates of convergence in multivariate extreme value theory. J. Multivar. Anal. 38, 36-50 (1991)
21. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions. Natl. Bur. of Standards, Washington (1964)


	Approximate moments of extremes
	Abstract
	Keywords

	Introduction
	A brief review
	Moments for limits
	Approximations for Mn
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


