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1 Introduction
Let D be the unit disk of the complex plane C, H(D) the class of functions analytic on
D, and H∞ = H∞(D) the space of bounded analytic functions on D. For  < α < ∞, an
f ∈ H(D) is said to belong to the α-Bloch space Bα = Bα(D) if

bα(f ) = sup
z∈D

(
 – |z|)α∣∣f ′(z)

∣∣ < ∞.

It is easy to check that Bα becomes a Banach space with the norm ‖f ‖Bα = |f ()| + bα(f ).
The little α-Bloch space Bα

 = Bα
 (D), is a subspace of Bα consisting of all f ∈ H(D) such

that

lim|z|→–

(
 – |z|)α∣

∣f ′(z)
∣
∣ = .

When α = , B = B is the well-known Bloch space, while B
 = B is the well-known little

Bloch space. For some results on the α-Bloch spaces and the little α-Bloch spaces, see, for
example, [].

A positive continuous function on D is called a weight. Let μ(z) be a weight. The
weighted-type space on D [, ], denoted by H∞

μ = H∞
μ (D), consists of all f ∈ H(D) such

that

‖f ‖H∞
μ

= sup
z∈D

μ(z)
∣
∣f (z)

∣
∣ < ∞.
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It is obvious that H∞
 = H∞, while for μ(z) = ( – |z|)β , β > , is obtained the growth space

H∞
β [].
Let u ∈ H(D) and ϕ be an analytic self-map of D. The weighted composition operator

uCϕ , induced by ϕ and u, is defined by

(uCϕ f )(z) = u(z) · f
(
ϕ(z)

)
, f ∈ H(D), z ∈D.

When u(z) ≡ , then the weighted composition operator is reduced to the composition
operator, usually denoted by Cϕ , while for ϕ(z) ≡ z, it is reduced to the multiplication
operator, usually denoted by Mu.

A natural generalization of the weighted composition operator is the generalized
weighted composition operator [] or the weighted differentiation composition operator
[] Dn

ϕ,u, which is defined as

(
Dn

ϕ,uf
)
(z) = u(z) · f (n)(ϕ(z)

)
, f ∈ H(D), z ∈ D,

where n ∈ N, u ∈ H(D), and ϕ is an analytic self-map of D. Clearly, when n =  and
u(z) = , Dn

ϕ,u is the composition operator Cϕ , if n = , then Dn
ϕ,u is the weighted composi-

tion operator uCϕ . If n =  and u(z) = ϕ′(z), then Dn
ϕ,u = DCϕ , which was studied, for exam-

ple, in [, –], while for u(z) = , Dn
ϕ,u = CϕDn, which was studied in [, , , ]. For

some other results on the generalized weighted composition operator on various spaces
of holomorphic functions, see, for example, [–]. A fundamental problem concern-
ing concrete operators is to relate function theoretic properties of their symbols to their
operator theoretic properties (see, for example, [, –]).

It is well known that the composition operator is bounded on the Bloch space B. See, for
example, [, , ] for the compactness and essential norm of the composition operator
on B. In [], it was shown that Cϕ is compact on B if and only if

‖Cϕpj‖B =
∥
∥ϕj∥∥

B →  as j → ∞,

where pj(z) = zj, j ∈ N.
Motivated by this result, in [], the author proved that Dn

ϕ,u : B → H∞
β is compact if

and only if it is bounded and

lim
j→∞

∥∥Dn
ϕ,u(pj)

∥∥
H∞

β
= .

Following the line of the above mentioned investigations, in this work, we consider the
operators Dn

ϕ,u : Bα (or Bα
 ) → H∞

μ , and show that Dn
ϕ,u : Bα (or Bα

 ) → H∞
μ is bounded

(respectively, compact) if and only if the sequence (jα–‖Dn
ϕ,u(pj)‖H∞

μ
)∞j=n is bounded (re-

spectively, convergent to  as j → ∞). Moreover, we give some estimates for the norm,
as well as for the essential norm of the operator Dn

ϕ,u : Bα (or Bα
 ) → H∞

μ . Recall that the
essential norm of the operator T : X → Y is its distance to the set of compact operators K
mapping X to Y , that is,

‖T‖e,X→Y = inf
{‖T – K‖X→Y : K is compact

}
,



Li and Stević Journal of Inequalities and Applications  (2015) 2015:265 Page 3 of 12

where X and Y are Banach spaces and ‖ · ‖X→Y is the operator norm. Consequently,
‖T‖e,X→Y =  if and only if T is compact.

Throughout the paper, we denote by C a positive constant which may differ from one
occurrence to the next. We write P � Q if there exists a positive constant C independent
of the quantities P and Q such that P ≤ CQ. The symbol P ≈ Q means that P � Q � P.

2 Boundedness of Dn
ϕ,u : Bα (or Bα

0 ) → H∞
μ

For w ∈ D, set

fw(z) =
 – |w|

( – wz)α
, z ∈D.

Note that

f (n)
w (z) =

( – |w|)wn

( – wz)α+n

n–∏

j=

(α + j), z ∈D, n ∈N. ()

In this section, we will use this family of functions, as well as the sequence of functions
(jα–pj)j∈N to characterize the boundedness and compactness of Dn

ϕ,u : Bα (or Bα
 ) → H∞

μ .

Theorem . Let n be a positive integer, α > , μ a weight, u ∈ H(D), and ϕ be an analytic
self-map of D. Then the following statements are equivalent.

(a) The operator Dn
ϕ,u : Bα → H∞

μ is bounded.
(b) The operator Dn

ϕ,u : Bα
 → H∞

μ is bounded.
(c) M := supj≥n jα–‖Dn

ϕ,u(pj)‖H∞
μ

< ∞.
(d) M := supw∈D ‖Dn

ϕ,ufϕ(w)‖H∞
μ

< ∞ and u ∈ H∞
μ .

(e) M := supz∈D
μ(z)|u(z)|

(–|ϕ(z)|)n+α– < ∞ and u ∈ H∞
μ .

Moreover, if the operator Dn
ϕ,u : Bα → H∞

μ is bounded, then the following asymptotic re-
lations hold:

∥∥Dn
ϕ,u

∥∥
Bα→H∞

μ
≈ ∥∥Dn

ϕ,u
∥∥
Bα

 →H∞
μ

≈ M ≈ max
{

M,‖u‖H∞
μ

} ≈ M. ()

Proof (a) ⇒ (b) Since Bα
 ⊂ Bα , this implication, as well as the inequality

∥
∥Dn

ϕ,u
∥
∥
Bα

 →H∞
μ

≤ ∥
∥Dn

ϕ,u
∥
∥
Bα→H∞

μ
, ()

is obvious.
(b) ⇒ (c) It is easy to see that the sequence (jα–pj)j∈N is bounded in Bα

 and

‖pj‖Bα = j
(

α

j –  + α

)α(
j – 

j –  + α

) j–


, for j ∈N,

which implies that ‖jα–pj‖Bα ≈ . Notice that (Dn
ϕ,upn)(z) = u(z)n!, z ∈ D, while for j < n,

Dn
ϕ,u(pj) = . Therefore, by the boundedness of Dn

ϕ,u : Bα
 → H∞

μ , we get

jα–∥∥Dn
ϕ,u(pj)

∥∥
H∞

μ
=

∥∥Dn
ϕ,u

(
jα–pj

)∥∥
H∞

μ
≤ C

∥∥Dn
ϕ,u

∥∥
Bα

 →H∞
μ

< ∞,
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for every j ∈N, proving (c), as well as the asymptotic relation

M � ∥
∥Dn

ϕ,u
∥
∥
Bα

 →H∞
μ

. ()

(c) ⇒ (a) If ‖ϕ‖∞ = supz∈D |ϕ(z)| < , then by Proposition  in [], we have

∥
∥Dn

ϕ,uf
∥
∥

H∞
μ

� ‖u‖H∞
μ

‖f ‖Bα

( – ‖ϕ‖∞)n+α– ,

from which the boundedness of Dn
ϕ,u : Bα → H∞

μ follows in this case.
Now assume that ‖ϕ‖∞ = . Let Dj = {z ∈D : rj ≤ |ϕ(z)| < rj+} where rj = (j – n)/(j +α – )

for j ≥ n. Then from Lemma  in [], which also holds for m = , i.e., n =  in our case, we
have that there is a δ >  such that

min
z∈Dj

jα–j(j – ) · · · (j – n + )
∣∣ϕ(z)

∣∣j–n( –
∣∣ϕ(z)

∣∣)α+n– ≥ δ,

for every j ≥ k + , where k is the smallest natural number such that Dk �= ∅.
Fix N ≥ k + . Then, clearly N ≥ n +  and we have

∥∥Dn
ϕ,uf

∥∥
H∞

μ
≤ sup

|ϕ(z)|< N–n
N+α–

μ(z)
∣∣u(z)

∣∣∣∣f (n)(ϕ(z)
)∣∣ + sup

|ϕ(z)|≥ N–n
N+α–

μ(z)
∣∣u(z)

∣∣∣∣f (n)(ϕ(z)
)∣∣. ()

The finiteness of M implies u ∈ H∞
μ . Hence, as in the first case, we have

sup
|ϕ(z)|< N–n

N+α–

μ(z)
∣∣u(z)

∣∣∣∣f (n)(ϕ(z)
)∣∣ � ‖u‖H∞

μ
‖f ‖Bα . ()

On the other hand, since D \ {|ϕ(z)| < N–n
N+α– } =

⋃
j≥N Dj, we get

sup
|ϕ(z)|≥ N–n

N+α–

μ(z)
∣
∣u(z)

∣
∣
∣
∣f (n)(ϕ(z)

)∣∣

= sup
j≥N

sup
z∈Dj

μ(z)
∣∣u(z)

∣∣∣∣f (n)(ϕ(z)
)∣∣

= sup
j≥N

sup
z∈Dj

μ(z)
∣
∣u(z)

∣
∣ jα–j(j – ) · · · (j – n + )|ϕ(z)|j–n|f (n)(ϕ(z))|( – |ϕ(z)|)α+n–

jα–j(j – ) · · · (j – n + )( – |ϕ(z)|)α+n–|ϕ(z)|j–n

� ‖f ‖Bα

δ
sup
j≥N

jα–∥∥Dn
ϕ,u(pj)

∥
∥

H∞
μ

≤ M

δ
‖f ‖Bα < ∞. ()

From (), () and (), the boundedness of Dn
ϕ,u : Bα → H∞

μ follows.
(c) ⇒ (d) First note that (c) implies that u ∈ H∞

μ . Further, since

sup
z∈D

(
 – |z|)α∣

∣f ′
w(z)

∣
∣ = sup

z∈D

(
 – |z|)α |αw|( – |w|)

| – wz|α+ ≤ |α|α+, w ∈D,

the family of functions (fw)w∈D is uniformly bounded in Bα . Furthermore

fw(z) =
(
 – |w|)

∞∑

j=

�(j + α)
j!�(α)

wjzj, z ∈D.
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By Stirling’s formula, we have �(j+α)
j!�(α) ≈ jα– as j → ∞. Using this fact, the linearity and

continuity of the operator, we get

∥∥Dn
ϕ,ufw

∥∥
H∞

μ
≤ C

(
 – |w|)

∞∑

j=n

|w|jjα–∥∥Dn
ϕ,u(pj)

∥∥
H∞

μ
� M < ∞, w ∈ D.

Consequently, supw∈D ‖Dn
ϕ,ufϕ(w)‖H∞

μ
� M, and along with the inequality nα–n!‖u‖H∞

μ
≤

M, obtained by considering ‖Dn
ϕ,u(nα–pn)‖H∞

μ
, we also have

max
{

M,‖u‖H∞
μ

} � M. ()

(d) ⇒ (e) For λ ∈D, it follows from (d) and () that

M ≥ ∥∥Dn
ϕ,ufϕ(λ)

∥∥
H∞

μ
≥ μ(λ)|u(λ)||ϕ(λ)|n ∏n–

j= (α + j)
( – |ϕ(λ)|)n+α– . ()

For any fixed r ∈ (, ), from (), we have

sup
|ϕ(λ)|>r

μ(λ)|u(λ)|
( – |ϕ(λ)|)n+α– ≤ sup

|ϕ(λ)|>r

|ϕ(λ)|n
rn

μ(λ)|u(λ)|
( – |ϕ(λ)|)n+α– � M

rn . ()

On the other hand, from u ∈ H∞
μ , we have

sup
|ϕ(λ)|≤r

μ(λ)|u(λ)|
( – |ϕ(λ)|)n+α– ≤ sup|ϕ(λ)|≤r μ(λ)|u(λ)|

( – r)n+α–

≤ ‖u‖H∞
μ

( – r)n+α– < ∞. ()

Therefore, () and () yield the inequality of (e), as well as the asymptotic relation

M � max
{

M,‖u‖H∞
μ

}
. ()

(e) ⇒ (a) By Proposition  in [], if f ∈ Bα and k ∈N, we see that

sup
z∈D

(
 – |z|)k+α–∣∣f (k)(z)

∣∣ ≤ C‖f ‖Bα ,

for some constant C independent of f . Therefore, for z ∈D, we have

μ(z)
∣∣(Dn

ϕ,uf
)
(z)

∣∣ = μ(z)
∣∣u(z)

∣∣∣∣f (n)(ϕ(z)
)∣∣

≤ C
μ(z)|u(z)|

( – |ϕ(z)|)n+α– ‖f ‖Bα , ()

where C is independent of f . Taking the supremum in () over D and then using the first
condition in (e) we see that Dn

ϕ,u : Bα → H∞
μ is bounded, and

∥
∥Dn

ϕ,u
∥
∥
Bα→H∞

μ
� M. ()

If the operator Dn
ϕ,u : Bα → H∞

μ is bounded, then from (), (), (), (), and (), we
obtain (), completing the proof. �
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3 Compactness and essential norm of Dn
ϕ,u : Bα (or Bα

0 ) → H∞
μ

In this section we will give an estimate for the essential norm of the operator Dn
ϕ,u : Bα →

H∞
μ , as well as of Dn

ϕ,u : Bα
 → H∞

μ . For this purpose, we state several lemmas, which will
be used in the proof of the main result.

Lemma . [] Let α > , m ≥ n + , where n ∈ N. Define the function Hm,α : [, ] →
[,∞) by

Hm,α(x) =
m!

(m – n – )!
xm–n–( – x)n+α .

Then the following statements hold:
(i)

max
≤x≤

Hm,α(x) = Hm,α(rm) =

{
(n + )!, m = n + ,

m!
(m–n–)! (

m–n–
m+α– )m–n–( n+α

m+α– )α+n, m > n + ,

where

rm =

{
, m = n + ,
m–n–
m+α– , m > n + .

(ii) For m > n + , Hm,α is decreasing on [rm, rm+], and so

min
rm≤x≤rm+

Hm,α(x) = Hm,α(rm+) =
m!

(m – n – )!

(
m – n
m + α

)m–n–( n + α

m + α

)α+n

.

Consequently,

lim
m→∞ mα– min

rm≤x≤rm+
Hm,α(x) =

(n + α)n+α

en+α
.

Denote by Krf (z) = f (rz) for r ∈ (, ) and z ∈ D. Then Kr is a compact operator on Bα

for every α > , and ‖Kr‖ ≤  (see, e.g., Proposition . in [] and []). Let I denote the
identity operator. The following three lemmas can be found in [] (see also []).

Lemma . Let  < α < . Then there is a sequence (rk)k∈N, with  < rk <  tending to , such
that the sequence of compact operators Lj = 

j
∑j

k= Krk , j ∈N, on Bα
 satisfies the following.

(i) For any t ∈ (, ), limj→∞ sup‖f ‖Bα ≤ sup|z|≤t |((I – Lj)f )′(z)| = .
(ii) limj→∞ sup‖f ‖Bα ≤ supz∈D |(I – Lj)f (z)| = .

(iii) lim supj→∞ ‖I – Lj‖ ≤ .
Furthermore, these statements hold as well for the sequence of biadjoints L∗∗

j on Bα .

Lemma . Let α = . Then there is a sequence (rk)k∈N, with  < rk <  tending to , such
that the sequence of compact operators Lj = 

j
∑j

k= Krk , j ∈N, on B satisfies the following.
(i) For any t ∈ [, ), limj→∞ sup‖f ‖B≤ sup|z|≤t |((I – Lj)f )′(z)| = .

(iia) limj→∞ sup‖f ‖B≤ sup|z|>s |(I – Lj)f (z)|(log 
–|z| )– ≤ , for s sufficiently close to .

(iib) limj→∞ sup‖f ‖B≤ sup|z|≤s |(I – Lj)f (z)| =  for the above s.
(iii) lim supj→∞ ‖I – Lj‖ ≤ .

Furthermore, these statements hold as well for the sequence of biadjoints L∗∗
j on B.
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Lemma . Let α > . Then there is a sequence (rk)k∈N, with  < rk <  tending to , such
that the sequence of compact operators Lj = 

j
∑j

k= Krk , j ∈N, on Bα
 satisfies the following.

(i) For any t ∈ [, ), limj→∞ sup‖f ‖Bα ≤ sup|z|≤t |((I – Lj)f )′(z)| = .
(ii) For any t ∈ [, ), limj→∞ sup‖f ‖Bα ≤ sup|z|≤t |(I – Lj)f (z)| = .

(iii) lim supj→∞ ‖I – Lj‖ ≤ .
Furthermore, these statements hold as well for the sequence of biadjoints L∗∗

j on Bα .

To study the compactness, we also need the following lemma, which can be proved in a
standard way (see, for example, Proposition . in []).

Lemma . Let n be a nonnegative integer, α > , μ a weight, u ∈ H(D) and ϕ be an
analytic self-map of D. Then Dn

ϕ,u : Bα (or Bα
 ) → H∞

μ is compact if and only if Dn
ϕ,u :

Bα (or Bα
 ) → H∞

μ is bounded and for any bounded sequence (fk)k∈N in Bα , which converges
to zero uniformly on compact subsets of D,

lim
k→∞

∥
∥Dn

ϕ,ufk
∥
∥

H∞
μ

= .

Now we are ready to state and prove the main results in this section.

Theorem . Let n be a positive integer, α > , μ a weight, u ∈ H(D), and ϕ be an analytic
self-map of D. Suppose that Dn

ϕ,u : Bα → H∞
μ is bounded. Then

∥∥Dn
ϕ,u

∥∥
e,Bα→H∞

μ
≈ ∥∥Dn

ϕ,u
∥∥

e,Bα
 →H∞

μ
≈ lim sup

j→∞
jα–∥∥Dn

ϕ,u(pj)
∥∥

H∞
μ

. ()

Proof First note that the inequality

∥∥Dn
ϕ,u

∥∥
e,Bα

 →H∞
μ

≤ ∥∥Dn
ϕ,u

∥∥
e,Bα→H∞

μ
()

obviously holds.
Now we give a lower estimate for the essential norm ‖Dn

ϕ,u‖e,Bα
 →H∞

μ
. Without loss of

generality, we assume that j ≥ n. Choose the sequence of functions qj = jα–pj ∈ Bα
 , j ∈N.

Then ‖qj‖Bα ≈ , and (qj)j∈N converges to zero weakly on Bα
 as j → ∞ (see, for example,

Theorem . in []). Since by a well-known theorem, for any compact operator K̂ : X →
Y , where X and Y are Banach spaces, the weak convergence xn

w→ x implies the norm
convergence K̂xn → K̂x [], we have

lim
j→∞‖Kqj‖H∞

μ
= , ()

for any given compact operator K from Bα
 to H∞

μ .
Hence

∥
∥Dn

ϕ,u – K
∥
∥
Bα

 →H∞
μ

� ∥
∥(

Dn
ϕ,u – K

)
qj

∥
∥

H∞
μ

≥ ∥
∥Dn

ϕ,uqj
∥
∥

H∞
μ

– ‖Kqj‖H∞
μ

.

Letting j → ∞ in the last relation and using (), we obtain

∥
∥Dn

ϕ,u – K
∥
∥
Bα

 →H∞
μ

� lim sup
j→∞

∥
∥Dn

ϕ,uqj
∥
∥

H∞
μ

= lim sup
j→∞

jα–∥∥Dn
ϕ,u(pj)

∥
∥

H∞
μ

,
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and consequently

∥∥Dn
ϕ,u

∥∥
e,Bα

 →H∞
μ

= inf
K

∥∥Dn
ϕ,u – K

∥∥
Bα

 →H∞
μ

� lim sup
j→∞

jα–∥∥Dn
ϕ,u(pj)

∥∥
H∞

μ
. ()

Now, we give the upper estimates for the essential norm ‖Dn
ϕ,u‖e,Bα→H∞

μ
. For the case

of supz∈D |ϕ(z)| < , there is a number δ ∈ (, ) such that supz∈D |ϕ(z)| < δ. In this case,
the operator Dn

ϕ,u : Bα → H∞
μ is compact. Indeed, choose a bounded sequence (fj)j∈N

in Bα which converges to zero uniformly on compact subsets of D. From Cauchy’s in-
tegral formula, (f (n)

j )j∈N also converges to zero on compact subsets of D as j → ∞.
Hence

lim
j→∞

∥∥Dn
ϕ,ufj

∥∥
H∞

μ
= lim

j→∞ sup
z∈D

μ(z)
∣∣u(z)f (n)

j
(
ϕ(z)

)∣∣

≤ ‖u‖H∞
μ

lim
j→∞ sup

z∈D

∣∣f (n)
j

(
ϕ(z)

)∣∣

= ‖u‖H∞
μ

lim
j→∞ sup

|w|≤δ

∣
∣f (n)

j (w)
∣
∣ = .

From this and by Lemma . we see that the operator Dn
ϕ,u : Bα → H∞

μ is compact. This
also shows that

∥∥Dn
ϕ,u

∥∥
e,Bα→H∞

μ
= . ()

From (), (), and (), we get the desired result in the case supz∈D |ϕ(z)| < .
Next, we assume that supz∈D |ϕ(z)| = . Let (Lj)j∈N be the sequence of operators given in

Lemmas .-.. Since L∗∗
j is compact on Bα , for every j ∈ N, and Dn

ϕ,u is bounded from
Bα to H∞

μ , then Dn
ϕ,uL∗∗

j is also compact from Bα to H∞
μ . Hence

∥
∥Dn

ϕ,u
∥
∥

e,Bα→H∞
μ

≤ lim sup
j→∞

∥
∥Dn

ϕ,u – Dn
ϕ,uL∗∗

j
∥
∥
Bα→H∞

μ

= lim sup
j→∞

∥∥Dn
ϕ,u

(
I – L∗∗

j
)∥∥

Bα→H∞
μ

= lim sup
j→∞

sup
‖f ‖Bα ≤

∥∥Dn
ϕ,u

(
I – L∗∗

j
)
f
∥∥

H∞
μ

= lim sup
j→∞

sup
‖f ‖Bα ≤

sup
z∈D

μ(z)
∣∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣.

For each positive integer i ≥ n, we define Di = {z ∈D : ri ≤ |ϕ(z)| < ri+}, where ri is given in
Lemma .. Let k be the smallest positive integer such that Dk �= ∅. Since supz∈D |ϕ(z)| = ,
Di is not empty for every integer i ≥ k and D =

⋃∞
i=k Di, we have

sup
‖f ‖Bα ≤

sup
z∈D

μ(z)
∣∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣ = I + I,

where

I = sup
‖f ‖Bα ≤

sup
k≤i≤N–

sup
z∈Di

μ(z)
∣∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣
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and

I = sup
‖f ‖Bα ≤

sup
N≤i

sup
z∈Di

μ(z)
∣∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣.

Here N is a positive integer determined as follows.
By Lemma ., limi→∞ i–α

Hi,α (ri+) = en+α

(n+α)n+α . Hence, for any given ε > , there exists an N ∈
N such that

i–α

Hi,α(ri+)
≤ en+α

(n + α)n+α
+ ε

when i ≥ N . For such N it follows that

I = sup
‖f ‖Bα ≤

sup
N≤i

sup
z∈Di

μ(z)
∣∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣

= sup
‖f ‖Bα ≤

sup
N≤i

sup
z∈Di

μ(z)
∣
∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣Hi,α(|ϕ(z)|)

i–α

i–α

Hi,α(|ϕ(z)|)

�
(

en+α

(n + α)n+α
+ ε

)
sup

‖f ‖Bα ≤

∥∥(
I – L∗∗

j
)
f
∥∥
Bα sup

N≤i
sup
z∈Di

μ(z)
∣∣u(z)

∣∣ i!
(i – n)!

|ϕ(z)|i–n

i–α

� ∥
∥I – L∗∗

j
∥
∥ sup

N≤i
iα–∥∥Dn

ϕ,u(pi)
∥
∥

H∞
μ

.

Thus

lim sup
j→∞

I � sup
i≥N

iα–∥∥Dn
ϕ,u(pi)

∥∥
H∞

μ
. ()

By Lemmas ., ., ., and Cauchy’s integral formula, we have

lim sup
j→∞

I = lim sup
j→∞

sup
‖f ‖Bα ≤

sup
k≤i≤N–

sup
z∈Di

μ(z)
∣
∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣

≤ ‖u‖H∞
μ

lim sup
j→∞

sup
‖f ‖Bα ≤

sup
|ϕ(z)|<rN

∣
∣((I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣ = ,

which together with () implies that

lim sup
j→∞

sup
‖f ‖Bα ≤

sup
z∈D

μ(z)
∣∣u(z)

((
I – L∗∗

j
)
f
)(n)(

ϕ(z)
)∣∣

� sup
i≥N

iα–∥∥Dn
ϕ,u(pi)

∥∥
H∞

μ
.

Therefore

∥
∥Dn

ϕ,u
∥
∥

e,Bα→H∞
μ

� sup
i≥N

iα–∥∥Dn
ϕ,u(pi)

∥
∥

H∞
μ

.

From the last relation we get

∥∥Dn
ϕ,u

∥∥
e,Bα→H∞

μ
� lim sup

i→∞
iα–∥∥Dn

ϕ,u(pi)
∥∥

H∞
μ

. ()
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From (), (), and (), the asymptotic relations in () follow, completing the proof of
the theorem. �

From Theorem ., letting α =  we deduce the following result.

Corollary . Let n be a positive integer, μ a weight, u ∈ H(D), and ϕ be an analytic self-
map of D. Suppose that Dn

ϕ,u : B → H∞
μ is bounded. Then

∥∥Dn
ϕ,u

∥∥
e,B→H∞

μ
≈ ∥∥Dn

ϕ,u
∥∥

e,B→H∞
μ

≈ lim sup
j→∞

∥∥Dn
ϕ,u(pj)

∥∥
H∞

μ
.

Theorem . Let n be a positive integer, α > , μ a weight, u ∈ H(D) and ϕ be an analytic
self-map of D. If Dn

ϕ,u : Bα → H∞
μ is bounded, then the following statements are equivalent.

(a) The operator Dn
ϕ,u : Bα → H∞

μ is compact.
(b) The operator Dn

ϕ,u : Bα
 → H∞

μ is compact.
(c) limj→∞ jα–‖Dn

ϕ,u(pj)‖H∞
μ

= .
(d) lim|ϕ(w)|→ ‖Dn

ϕ,ufϕ(w)‖H∞
μ

= .
(e) lim|ϕ(z)|→

μ(z)|u(z)|
(–|ϕ(z)|)n+α– = .

Proof The equivalence of statements (a)-(c) follows from Theorem ..
(c) ⇒ (d) From (c), we see that, for every ε > , there is an N ∈ N such that

jα–∥∥Dn
ϕ,u(pj)

∥∥
H∞

μ
< ε/,

for all j ≥ N .
Let (zk)k∈N ⊂ D be an arbitrary sequence such that |ϕ(zk)| →  as k → ∞ (if such a

sequence does not exist then the equality in (d) vacuously holds). Similarly to the proof of
Theorem ., we have

∥∥Dn
ϕ,ufϕ(zk )

∥∥
H∞

μ
≤ C

(
 –

∣∣ϕ(zk)
∣∣)

∞∑

j=n

∣∣ϕ(zk)
∣∣jjα–∥∥Dn

ϕ,u(pj)
∥∥

H∞
μ

= C
(
 –

∣∣ϕ(zk)
∣∣)

N–∑

j=n

∣∣ϕ(zk)
∣∣jjα–∥∥Dn

ϕ,u(pj)
∥∥

H∞
μ

+ C
(
 –

∣
∣ϕ(zk)

∣
∣)

∞∑

j=N

∣
∣ϕ(zk)

∣
∣jjα–∥∥Dn

ϕ,u(pj)
∥
∥

H∞
μ

≤ C
(
 –

∣∣ϕ(zk)
∣∣N)

M + Cε, ()

for k ∈N, where M = maxn≤j≤N– jα–‖Dn
ϕ,u(pj)‖H∞

μ
.

Since |ϕ(zk)| →  as k → ∞, from (), we deduce that

lim sup
k→∞

∥∥Dn
ϕ,ufϕ(zk )

∥∥
H∞

μ
≤ Cε.

Since ε is an arbitrary positive number, the implication follows.
(d) ⇒ (e) Let (zk)k∈N be a sequence in D such that limk→∞ |ϕ(zk)| =  (if such a se-

quence does not exist then the implication vacuously holds). Since the sequence (fϕ(zk ))k∈N
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is bounded in Bα and converges to  uniformly on compact subsets of D, by () and
Lemma ., we have

μ(zk)|u(zk)||ϕ(zk)|n ∏n–
j= (α + j)

( – |ϕ(zk)|)n+α– ≤ ∥∥Dn
ϕ,ufϕ(zk )

∥∥
H∞

μ
→  as k → ∞.

Therefore

lim
k→∞

μ(zk)|u(zk)|
( – |ϕ(zk)|)n+α– = lim

k→∞
μ(zk)|u(zk)||ϕ(zk)|n
( – |ϕ(zk)|)n+α– = , ()

which implies (e).
(e) ⇒ (a) Assume (fk)k∈N is a bounded sequence in Bα converging to  uniformly on

compact subsets of D. By the assumption, for any ε > , there exists a δ ∈ (, ) such that

μ(z)|u(z)|
( – |ϕ(z)|)n+α– < ε ()

when δ < |ϕ(z)| < .
Therefore, since u ∈ H∞

μ we have

∥
∥Dn

ϕ,ufk
∥
∥

H∞
μ

= sup
z∈D

μ(z)
∣
∣(Dn

ϕ,ufk
)
(z)

∣
∣

≤ sup
z∈	δ

μ(z)
∣∣u(z)

∣∣∣∣f (n)
k

(
ϕ(z)

)∣∣

+ C sup
z∈D\	δ

μ(z)|u(z)|
( – |ϕ(z)|)n+α– ‖fk‖Bα

≤ ‖u‖H∞
μ

sup
z∈	δ

∣
∣f (n)

k
(
ϕ(z)

)∣∣ + Cε‖fk‖Bα , ()

where 	δ = {z ∈D : |ϕ(z)| ≤ δ}.
Since (fk)k∈N converges to  uniformly on compact subsets of D, by Cauchy’s estimate

so do the sequences (f (n)
k )k∈N for every n ∈ N. Letting k → ∞ in () and using the fact

that ε is an arbitrary positive number, we obtain limk→∞ ‖Dn
ϕ,ufk‖H∞

μ
= . By Lemma .,

we deduce that Dn
ϕ,u : Bα → H∞

μ is compact. �
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