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Abstract
Recently, Mursaleen et al. (On (p,q)-analogue of Bernstein operators, arXiv:1503.07404)
introduced and studied the (p,q)-analog of Bernstein operators by using the idea of
(p,q)-integers. In this paper, we generalize the q-Bernstein-Schurer operators using
(p,q)-integers and obtain a Korovkin type approximation theorem. Furthermore, we
obtain the convergence of the operators by using the modulus of continuity and
prove some direct theorems.
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1 Introduction and preliminaries
In , Bernstein [] introduced the following sequence of operators Bn : C[, ] → C[, ]
defined for any n ∈N and f ∈ C[, ]:

Bn(f ; x) =
n∑

k=

(
n
k

)
xk( – x)n–kf

(
k
n

)
, x ∈ [, ]. (.)

By applying the idea of q-integers, the q-Bernstein operators were introduced by Lupaş
[] and later by Philip []. Since then, many authors introduced q-generalization of various
operators and investigated several approximation properties. For instance, the q-analog of
Stancu-Beta operators in [] and []; the q-analog of Bernstein-Kantorovich operators in
[]; the q-Baskakov-Kantorovich operators in []; the q-Szász-Mirakjan operators in [];
the q-Bleimann-Butzer-Hahn operators in [] and in []; the q-analog of Baskakov and
Baskakov-Kantorovich operators in []; the q-analog of Szász-Kantorovich operators in
[]; and the q-analog of generalized Bernstein-Schurer operators in []. Besides this, we
also refer to some recent related work on this topic: e.g. [] and [].

First we give here some notations on the (p, q)-calculus.
The (p, q)-integer was introduced in order to generalize or unify several forms of q-

oscillator algebras well known in the earlier physics literature related to the representation
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theory of single parameter quantum algebras []. The (p, q)-integer [n]p,q is defined by

[n]p,q =
pn – qn

p – q
, n = , , , . . . ,  < q < p ≤ .

The (p, q)-binomial expansion is

(x + y)n
p,q := (x + y)(px + qy)

(
px + qy

) · · · (pn–x + qn–y
)

and the (p, q)-binomial coefficients are defined by

[
n
k

]

p,q

:=
[n]p,q!

[k]p,q![n – k]p,q!
.

Details on the (p, q)-calculus can be found in []. For p = , all the notions of the (p, q)-
calculus are reduced to the q-calculus [].

In , Schurer [] introduced and studied the operators Sm,� : C[,� + ] → C[, ]
defined by

Sm,�(f ; x) =
m+�∑

k=

(
m + �

k

)
xk( – x)m+�–kf

(
k
m

)
, x ∈ [, ], (.)

for any m ∈N and fixed � ∈N.
The q-analog of the Bernstein-Schurer operators is defined as follows (cf. []):

B̃m,�(f ; q; x) =
m+�∑

k=

[
m + �

k

]

q

xk
m+�–k–∏

s=

(
 – qsx

)
f
(

[k]q

[m]q

)
, x ∈ [, ], (.)

for any m ∈N, f ∈ C[,� + ], and fixed �.
Recently, Mursaleen et al. [] applied (p, q)-calculus in approximation theory and intro-

duced first (p, q)-analog of Bernstein operators. They have also introduced and studied the
approximation properties of the (p, q)-analog of the Bernstein-Stancu operators in [].

In this paper, we introduce the (p, q)-analog of these operators. We investigate some
approximation properties of these operators and obtain the rate of convergence by using
the modulus of continuity. We also establish some direct theorems.

2 Construction of (p, q)-Bernstein-Schurer operators
Let  < q < p ≤ . We construct the class of generalized (p, q)-Bernstein-Schurer operators
as follows:

Bp,q
m,�(f ; x) =

m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)
f
(

[k]p,q

[m]p,q

)
, x ∈ [, ], (.)

for any m ∈N, f ∈ C[,� + ], and fixed �. Clearly, the operators defined by (.) are linear
and positive. If we put p =  in (.), then the (p, q)-Schurer operators are reduced to the
q-Bernstein-Schurer operators.
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Lemma . For Bp,q
m,�(·; ·) given by (.), we have the following identities:

(i) Bp,q
m,�(e; x) = ;

(ii) Bp,q
m,�(e; x) = [m+�]p,q

[m]p,q
x;

(iii) Bp,q
m,�(e; x) = [m+�]p,q(px+(–x))m+�–

p,q
[m]

p,q
x + [m+�]p,q[m+�–]p,q

[m]
p,q

qx;

(iv) Bp,q
m,�(e; x) = [m+�]p,q

[m]
p,q

(px + ( – x))m+�–
p,q x + q(q + p) [m+�]p,q[m+�–]p,q

[m]
p,q

(px +

( – x))m+�–
p,q x + [m+�]p,q[m+�–]p,q[m+�–]p,q

[m]
p,q

qx,

where ej(t) = tj, j = , , , . . . .

Proof
(i) For  < q < p ≤  we use the well-known identity from []

n∑

k=

[
n
k

]

p,q

xk
n–k–∏

s=

(
ps – qsx

)
= , x ∈ [, ].

Suppose we choose n = m + �.
Since

( – x)m+�–k
p,q =

m+�–k–∏

s=

(
ps – qsx

)
,

we get

m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)
= .

Consequently, Bp,q
m,�(e; x) = .

(ii) Clearly we have

Bp,q
m,�(e; x) =

m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

) [k]p,q

[m]p,q

= x
m+�–∑

k=

[
m + �

k + 

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

) [k + ]p,q

[m]p,q
{as k → k + }

= x
[m + �]p,q

[m]p,q

m+�–∑

k=

[
m + � – 

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)

= x
[m + �]p,q

[m]p,q
.

(iii)

Bp,q
m,�(e; x) =

m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

) [k]
p,q

[m]
p,q

=
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q
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× xk
m+�–k–∏

s=

(
ps – qsx

)
[k]p,q

{
using [k]

p,q = [k]p,q.[k]p,q
}

=
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

× xk
m+�–k–∏

s=

(
ps – qsx

)(
pk– + q[k – ]p,q

)
,

by using [k]p,q = pk– + q[k – ]p,q.
Therefore we have

Bp,q
m,�(e; x) =

[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkpk–
m+�–k–∏

s=

(
ps – qsx

)

+
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkq[k – ]p,q

m+�–k–∏

s=

(
ps – qsx

)

= x
[m + �]p,q

[m]
p,q

m+�–∑

k=

[
m + � – 

k

]

p,q

xkpk
m+�–k–∏

s=

(
ps – qsx

)

+ q
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xk[k – ]p,q

m+�–k–∏

s=

(
ps – qsx

)

= x
[m + �]p,q

[m]
p,q

m+�–∑

k=

[
m + � – 

k

]

p,q

(px)k( – x)m+�–k–
p,q

+ q
[m + �]p,q[m + � – ]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)

=
[m + �]p,q(px + ( – x))m+�–

p,q

[m]
p,q

x

+ xq
[m + �]p,q[m + � – ]p,q

[m]
p,q

m+�–∑

k=

[
m + � – 

k – 

]

p,q

× xk
m+�–k–∏

s=

(
ps – qsx

)
.

Hence the desired result is proved.
(iv)

Bp,q
m,�(e; x) =

m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

) [k]
p,q

[m]
p,q

=
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)
[k]

p,q

=
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkp(k–)
m+�–k–∏

s=

(
ps – qsx

)
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+
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkq[k – ]
p,q

m+�–k–∏

s=

(
ps – qsx

)

+ q
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkpk–[k – ]p,q

m+�–k–∏

s=

(
ps – qsx

)
.

A small calculation shows that

[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkp(k–)
m+�–k–∏

s=

(
ps – qsx

)

= x
[m + �]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q ,

[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkq[k – ]
p,q

m+�–k–∏

s=

(
ps – qsx

)

= xq [m + �]p,q[m + � – ]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q

+ xq [m + �]p,q[m + � – ]p,q[m + � – ]p,q

[m]
p,q

.

Also

q
[m + �]p,q

[m]
p,q

m+�∑

k=

[
m + � – 

k – 

]

p,q

xkpk–[k – ]p,q

m+�–k–∏

s=

(
ps – qsx

)

= pqx [m + �]p,q[m + � – ]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q .

This completes the proof. �

Lemma . Let Bp,q
m,�(·; ·) be given by (.). Then, for any x ∈ [, ] and  < q < p ≤ , we

have the following identities:
(i) Bp,q

m,�(e – ; x) = [m+�]p,q
[m]p,q

x – ;

(ii) Bp,q
m,�(e – x; x) = ( [m+�]p,q

[m]p,q
– )x;

(iii)

Bp,q
m,�

(
(e – x); x

)

=
[m + �]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q x

+
((

[m + �]p,q

[m]p,q
– 

)

+
[m + �]p,q

[m]
p,q

(
q[m + � – ]p,q – [m + �]p,q

))
x.

3 On the convergence of (p, q)-Bernstein-Schurer operators
Let f ∈ C[,γ ]. The modulus of continuity of f , denoted by ω(f , δ), gives the maximum
oscillation of f in any interval of length not exceeding δ >  and it is given by the relation

ω(f , δ) = sup
|y–x|≤δ

∣∣f (y) – f (x)
∣∣, x, y ∈ [,γ ].
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It is well known that limδ→+ ω(f , δ) =  for f ∈ C[,γ ] and for any δ >  one has

∣∣f (y) – f (x)
∣∣ ≤

( |y – x|
δ

+ 
)

ω(f , δ). (.)

For q ∈ (, ) and p ∈ (q, ] obviously we have limm→∞[m]p,q = 
p–q . In order to obtain the

convergence results of the operator Bp,q
m,�, we take a sequence qm ∈ (, ) and pm ∈ (qm, ]

such that limm→∞ pm =  and limm→∞ qm = , so we get limm→∞[m]pm ,qm = ∞.

Theorem . Let p = pm, q = qm satisfying  < qm < pm ≤  such that limm→∞ pm = ,
limm→∞ qm = . Then for each f ∈ C[,� + ],

lim
m→∞ Bpm ,qm

m,� (f ; x) = f , (.)

is uniformly on [, ].

Proof The proof is based on the well-known Korovkin theorem regarding the convergence
of a sequence of linear and positive operators, so it is enough to prove the conditions

Bpm ,qm
m,� (ej; x) = xj, j = , , , {as m → ∞}

uniformly on [, ].
Clearly we have

lim
m→∞ Bpm ,qm

m,� (e; x) = .

By making a simple calculation we get

lim
m→∞

[m + �]pm ,qm

[m]pm ,qm
= , as  < qm < pm ≤ .

Since  < qm < pm ≤ , we get

lim
m→∞

[m + �]pm ,qm

[m]
pm ,qm

= .

Hence we have

lim
m→∞ Bpm ,qm

m,� (e; x) = x,

lim
m→∞ Bpm ,qm

m,� (e; x) = x. �

Theorem . If f ∈ C[,� + ], then

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣ ≤ ωf (δm),
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where

δm = x
∣∣∣∣
[m + �]p,q

[m]p,q
– 

∣∣∣∣

+

√
[m + �]p,q

[m]p,q
·
√

x(q[m + � – ]p,q – [m + �]p,q) + x(px + ( – x))m+�–
p,q

[m]p,q
.

Proof

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣ ≤
m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)∣∣∣∣f
(

[k]p,q

[m]p,q

)
– f (x)

∣∣∣∣

≤
m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)( | [k]p,q
[m]p,q

– x|
δ

+ 
)

ω(f , δ).

By using the Cauchy inequality and Lemma ., we have

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣

≤
(


δ

{m+�∑

k=

[
m + �

k

]

p,q

xk
(

[k]p,q

[m]p,q
– x

) m+�–k–∏

s=

(
ps – qsx

)
} 



+ 

)
ω(f , δ)

=
{


δ

(
Bp,q

m,�(e; x) – xBp,q
m,�(e; x) + xBp,q

m,�(e; x)
) 

 + 
}
ω(f , δ)

=
{


δ

( [m + �]p,q(px + ( – x))m+�–
p,q

[m]
p,q

x

+ x
(

[m + �]p,q[m + � – ]p,q

[m]
p,q

q – 
[m + �]p,q

[m]p,q
+ 

)) 


+ 
}
ω(f , δ)

=
{


δ

((
x
(

[m + �]p,q

[m]p,q
– 

))

+
(√

[m + �]p,q

[m]p,q

·
√

x(q[m + � – ]p,q – [m + �]p,q) + x(px + ( – x))m+�–
p,q

[m]p,q

)) 


+ 
}
ω(f , δ)

≤
{


δ

(
x
∣∣∣∣
[m + �]p,q

[m]p,q
– 

∣∣∣∣

+

√
[m + �]p,q

[m]p,q

·
√

x(q[m + � – ]p,q – [m + �]p,q) + x(px + ( – x))m+�–
p,q

[m]p,q

)
+ 

}
ω(f , δ),

by using (a + b) 
 ≤ (|a| + |b|).

Hence we obtain the desired result by choosing δ = δm. �



Mursaleen et al. Journal of Inequalities and Applications  (2015) 2015:249 Page 8 of 12

4 Direct theorems on (p, q)-Bernstein-Schurer operators
The Peetre K-functional is defined by

K(f , δ) = inf
{(‖f – g‖ + δ

∥∥g ′′∥∥)
: g ∈W},

where

W =
{

g ∈ C[,� + ] : g ′, g ′′ ∈ C[,� + ]
}

.

Then there exists a positive constant C >  such that K(f , δ) ≤ Cω(f , δ 
 ), δ > , where the

second order modulus of continuity is given by

ω
(
f , δ



)

= sup
<h<δ




sup
x∈[,�+]

∣∣f (x + h) – f (x + h) + f (x)
∣∣.

Theorem . Let f ∈ C[,� + ], g ′ ∈ C[,� + ] and satisfying  < q < p ≤ . Then for all
n ∈N there exists a constant C >  such that

∣∣∣∣B
p,q
m,�(f ; x) – f (x) – xg ′(x)

(
[m + � – ]p,q

[m]p,q
– 

)∣∣∣∣ ≤ Cω
(
f , δm(x)

)
,

where

δ
m(x) =

[m + � – ]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q x

+
((

[m + �]p,q

[m]p,q
– 

)

+
[m + �]p,q

[m]
p,q

(
q[m + � – ]p,q – [m + �]p,q

))
x.

Proof Let g ∈W. Then from the Taylor expansion, we get

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u) du, t ∈ [,A],A > .

Now by Lemma ., we have

Bp,q
m,�(g; x) = g(x) + xg ′(x)

(
[m + �]p,q

[m]p,q
– 

)
+ Bp,q

m,�

(∫ t

x
(e – u)g ′′(u) du; p, q; x

)
,

∣∣∣∣B
p,q
m,�(g; x) – g(x) – xg ′(x)

(
[m + �]p,q

[m]p,q
– 

)∣∣∣∣ ≤ Bp,q
m,�

(∣∣∣∣
∫ t

x

∣∣(e – u)
∣∣∣∣g ′′(u)

∣∣du; p, q; x
∣∣∣∣

)

≤ Bp,q
m,�

(
(e – x); p, q; x

)∥∥g ′′∥∥.

Hence we get

∣∣∣∣B
p,q
m,�(g; x) – g(x) – xg ′(x)

(
[m + �]p,q

[m]p,q
– 

)∣∣∣∣

≤ ∥∥g ′′∥∥
(

[m + �]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q x
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+
((

[m + �]p,q

[m]p,q
– 

)

+
[m + �]p,q

[m]
p,q

(
q[m + � – ]p,q – [m + �]p,q

))
x

)
.

On the other hand we have
∣∣∣∣B

p,q
m,�(f ; x) – f (x) – xg ′(x)

(
[m + � – ]p,q

[m]p,q
– 

)∣∣∣∣

≤ ∣∣Bp,q
m,�

(
(f – g); x

)
– (f – g)(x)

∣∣

+
∣∣∣∣B

p,q
m,�(g; x) – g(x) – xg ′(x)

(
[m + � – ]p,q

[m]p,q
– 

)∣∣∣∣.

Since

∣∣Bp,q
m,�(f ; x)

∣∣ ≤ ‖f ‖,

we have
∣∣∣∣B

p,q
m,�(f ; x) – f (x) – xg ′(x)

(
[m + � – ]p,q

[m]p,q
– 

)∣∣∣∣

≤ ‖f – g‖

+
∥∥g ′′∥∥

(
[m + �]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q x

+
((

[m + �]p,q

[m]p,q
– 

)

+
[m + �]p,q

[m]
p,q

(
q[m + � – ]p,q – [m + �]p,q

))
x

)
.

Now taking the infimum on the right hand side over all g ∈W, we get

∣∣∣∣B
p,q
m,�(f ; x) – f (x) – xg ′(x)

(
[m + � – ]p,q

[m]p,q
– 

)∣∣∣∣ ≤ CK
(
f , δ

m(x)
)
.

In view of the property of the K-functional, we get

∣∣∣∣B
p,q
m,�(f ; x) – f (x) – xg ′(x)

(
[m + � – ]p,q

[m]p,q
– 

)∣∣∣∣ ≤ Cω
(
f , δm(x)

)
.

This completes the proof. �

Theorem . Let f ∈ C[,�+] be such that f ′, f ′′ ∈ C[,�+], and the sequence {pm}, {qm}
satisfying  < qm < pm ≤  such that pm → , qm →  and pm

m → α, qm
m → β as m → ∞,

where  ≤ α,β < . Then

lim
m→∞[m]pm ,qm

(
Bpm ,qm

m,� (f ; x) – f (x)
)

=
x(λ – αx)


f ′′(x)

is uniform on [,� + ], where  < λ ≤ .

Proof From the Taylor formula, we have

f (t) = f (x) + f ′(x)(t – x) +



f ′′(x)(t – x) + r(t, x)(e – x),
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where r(t, x) is the remainder term and limt→x r(t, x) = , therefore we have

[m]pm ,qm

(
Bpm ,qm

m,� (f ; x) – f (x)
)

= [m]pm ,qm

(
f ′(x)Bpm ,qm

m,�
(
(e – x); x

)
+

f ′′(x)


Bpm ,qm
m,�

(
(e – x); x

)

+ Bpm ,qm
m,�

(
r(t, x)(t – x); x

))
.

Now by applying the Cauchy-Schwartz inequality, we have

Bpm ,qm
m,�

(
r(t, x)(t – x); x

) ≤
√

Bpm ,qm
m,�

(
r(t, x); x

) ·
√

Bpm ,qm
m,�

(
(t – x); x

)
.

Since r(x, x) = , and r(t, x) ∈ C[,� + ], from Theorem ., we have

Bpm ,qm
m,�

(
r(t, x); x

)
= r(x, x) = ,

which implies that

Bpm ,qm
m,�

(
r(t, x)(t – x); x

)
= ,

lim
m→∞[m]pm ,qm

(
Bpm ,qm

m,�
(
(e – x); x

))
= x lim

m→∞[m]pm ,qm

(
[m + �]pm ,qm

[m]pm ,qm
– 

)
= ,

lim
m→∞[m]pm ,qm

(
Bpm ,qm

m,�
(
(e – x); x

))

= x lim
m→∞[m]pm ,qm

[m + �]pm ,qm

[m]
pm ,qm

(
pmx + ( – x)

)m+�–
pm ,qm

+ x lim
m→∞[m]pm ,qm

((
[m + �]pm ,qm

[m]pm ,qm
– 

)

+
[m + �]pm ,qm

[m]
pm ,qm

(
qm[m + � – ]pm ,qm – [m + �]pm ,qm

))
,

lim
m→∞[m]pm ,qm

(
Bpm ,qm

m,�
(
(e – x); x

))
= λx – αx = x(λ – αx),

where λ ∈ (, ] depends on the sequence {pm}.
Hence we have

lim
m→∞[m]pm ,qm

(
Bpm ,qm

m,� (f ; x) – f (x)
)

=
x(λ – αx)


f ′′(x).

This completes the proof. �

Now we give the rate of convergence of the operators Bp,q
m,�(f ; x) in terms of the elements

of the usual Lipschitz class LipM(ν).
Let f ∈ C[, m + �], M >  and  < ν ≤ . We recall that f belongs to the class LipM(ν) if

the inequality

∣∣f (t) – f (x)
∣∣ ≤ M|t – x|ν (

t, x ∈ (, ]
)

is satisfied.
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Theorem . Let  < q < p ≤ . Then for each f ∈ LipM(ν) we have

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣ ≤ Mδν
m(x),

where

δ
m(x) =

[m + �]p,q

[m]
p,q

(
px + ( – x)

)m+�–
p,q x

+
((

[m + �]p,q

[m]p,q
– 

)

+
[m + �]p,q

[m]
p,q

(
q[m + � – ]p,q – [m + �]p,q

))
x.

Proof By the monotonicity of the operators Bp,q
m,�(f ; x), we can write

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣ ≤ Bp,q
m,�

(∣∣f (t) – f (x)
∣∣; p, q; x

)

≤
m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)∣∣∣∣f
(

[k]p,q

[m]p,q

)
– f (x)

∣∣∣∣

≤ M
m+�∑

k=

[
m + �

k

]

p,q

xk
m+�–k–∏

s=

(
ps – qsx

)∣∣∣∣
[k]p,q

[m]p,q
– x

∣∣∣∣
ν

= M
m+�∑

k=

(
Pm,�,k(x)

(
[k]p,q

[m]p,q
– x

)) ν

P

–ν


m,�,k(x),

where Pm,�,k(x) =
[ m+�

k

]
p,qxk ∏m+�–k–

s= (ps – qsx).
Now applying the Hölder inequality, we have

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣ ≤ M

(m+�∑

k=

Pm,�,k(x)
(

[k]p,q

[m]p,q
– x

)
) ν


(m+�∑

k=

Pm,�,k(x)

) –ν


= M
(
Bp,q

m,�
(
(e – x); x

)) ν
 .

Choosing δ : δm(x) =
√

Bp,q
m,�((e – x); x), we obtain

∣∣Bp,q
m,�(f ; x) – f (x)

∣∣ ≤ Mδν
m(x).

Hence, the desired result is obtained. �

5 Conclusion
By using the notion of (p, q)-integers we introduced (p, q)-Bernstein-Schurer operators
and investigated some approximation properties of these operators. We obtained the rate
of convergence by using the modulus of continuity and also established some direct theo-
rems. These results generalize the approximation results proved for q-Bernstein-Schurer
operators, which are directly obtained by our results for p = .
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