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Abstract
Lutwak defined the dual Blaschke combination of star bodies. In this paper, based on
the Lp-dual Blaschke combination of star bodies, we define the general Lp-dual
Blaschke bodies and obtain the extremal values of their volume and Lp-dual affine
surface area. Further, as the applications, we study two negative forms of the
Lp-Busemann-Petty problems.
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1 Introduction and main results
Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in the Euclidean space R

n. Kn
c denotes the set of convex bodies whose centroid lies at the

origin in R
n. Let Sn– denote the unit sphere in R

n and V (K) denote the n-dimensional
volume of a body K . For the standard unit ball B in R

n, its volume is written by ωn = V (B).
If K is a compact star shaped (about the origin) inR

n, then its radial function ρK = ρ(K , ·)
is defined on Sn– by letting (see [, ])

ρ(K , u) = max{λ ≥  : λ · u ∈ K}, u ∈ Sn–.

If ρK is positive and continuous, then K will be called a star body (about the origin). For the
set of star bodies containing the origin in their interiors and the set of origin-symmetric
star bodies in R

n, we write Sn
o and Sn

os, respectively. Two star bodies K and L are said to
be dilates (of one another) if ρK (u)/ρL(u) is independent of u ∈ Sn–.

The notion of dual Blaschke combination was given by Lutwak (see []). For K , L ∈ Sn
o ,

λ,μ ≥  (not both zero), n ≥ , the dual Blaschke combination λ ◦ K ⊕ μ ◦ L ∈ Sn
o of K

and L is defined by

ρ(λ ◦ K ⊕ μ ◦ L, ·)n– = λρ(K , ·)n– + μρ(L, ·)n–,

where the operation ‘⊕’ is called dual Blaschke addition and λ ◦ K denotes dual Blaschke
scalar multiplication.
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Combining with the definition of dual Blaschke combination, Lutwak [] gave the con-
cept of dual Blaschke body as follows: For K ∈ Sn

o , take λ = μ = /, L = –K , the dual
Blaschke body ∇K is given by

∇K =



◦ K ⊕ 


◦ (–K).

In this paper, we define the notion of Lp-dual Blaschke combination as follows: For K , L ∈
Sn

o , λ,μ ≥  (not both zero), n > p > , the Lp-dual Blaschke combination λ ◦ K ⊕p μ ◦ L ∈
Sn

o of K and L is defined by

ρ(λ ◦ K ⊕p μ ◦ L, ·)n–p = λρ(K , ·)n–p + μρ(L, ·)n–p, (.)

where the operation ‘⊕p’ is called Lp-dual Blaschke addition and λ ◦ K = λ


n–p K .
Let λ = μ = 

 and L = –K in (.), then the Lp-dual Blaschke body ∇pK of K ∈ Sn
o is given

by

∇pK =



◦ K ⊕p



◦ (–K). (.)

Now, by (.) we define the general Lp-dual Blaschke bodies as follows: For K ∈ Sn
o , n >

p >  and τ ∈ [–, ], the general Lp-dual Blaschke body ∇τ

pK of K is defined by

ρ
(∇τ

pK , ·)n–p = f(τ )ρ(K , ·)n–p + f(τ )ρ(–K , ·)n–p, (.)

where

f(τ ) =
 + τ


, f(τ ) =

 – τ


. (.)

From (.), we have that

f(τ ) + f(τ ) = , (.)

f(–τ ) = f(τ ), f(–τ ) = f(τ ). (.)

From (.), it easily follows that

∇τ

pK = f(τ ) ◦ K ⊕p f(τ ) ◦ (–K). (.)

Besides, by (.), (.) and (.), we see that if τ = , then ∇
pK = ∇pK ; if τ = ±, then

∇+
p K = K , ∇–

p K = –K .
The main results of this paper can be stated as follows: First, we give the extremal values

of the volume of general Lp-dual Blaschke bodies.

Theorem . If K ∈ Sn
o , n > p > , τ ∈ [–, ], then

V (∇pK) ≤ V
(∇τ

pK
) ≤ V (K). (.)

If τ �= , equality holds in the left inequality if and only if K is origin-symmetric, if τ �= ±,
then equality holds in the right inequality if and only if K is also origin-symmetric.
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Moreover, based on the Lp-dual affine surface area �̃p(K) of K ∈ Sn
o (see (.)), we give

another class of extremal values for general Lp-dual Blaschke bodies.

Theorem . If K ∈ Sn
o , n > p > , τ ∈ [–, ], then

�̃p(∇pK) ≤ �̃p
(∇τ

pK
) ≤ �̃p(K). (.)

If τ �= , equality holds in the left inequality if and only if K is origin-symmetric, if τ �= ±,
then equality holds in the right inequality if and only if K is also origin-symmetric.

Theorems . and . belong to a part of new and rapidly evolving asymmetric Lp Brunn-
Minkowski theory that has its origins in the work of Ludwig, Haberl and Schuster (see
[–]). For the studies of asymmetric Lp Brunn-Minkowski theory, also see [–].

Haberl and Ludwig [] defined the Lp-intersection body as follows: For K ∈ Sn
o ,  < p < ,

the Lp-intersection body IpK of K is the origin-symmetric star body whose radial function
is given by

ρ
p
IpK (u) =

∫

K
|u · x|–p dx (.)

for all u ∈ Sn–. Haberl and Ludwig [] pointed out that the classical intersection body
which was introduced by Lutwak (see []) IK of K is obtained as a limit of the Lp-inter-
section body of K , more precisely, for all u ∈ Sn–,

ρ(IK , u) = lim
p−→–

( – p)ρ(IpK , u)p. (.)

Associated with the Lp-intersection bodies, Haberl [] obtained a series of results, Berck
[] investigated their convexity. For further results on Lp-intersection bodies, also see [,
, , –]. In particular, Yuan and Cheung (see []) gave the negative solutions of
Lp-Busemann-Petty problems as follows.

Theorem .A Let K ∈ Sn
o and  < p < , if K is not origin-symmetric, then there exists

L ∈ Sn
os such that

IpK ⊂ IpL,

but

V (K) > V (L).

As the application of Theorem ., we extend the scope of negative solutions of
Lp-Busemann-Petty problems from origin-symmetric star bodies to star bodies.

Theorem . Let K ∈ Sn
o and  < p < , if K is not origin-symmetric, then there exists

L ∈ Sn
o such that

IpK ⊂ IpL,
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but

V (K) > V (L).

Similarly, applying Theorem ., we get the form of Lp-dual affine surface areas for the
negative solutions of Lp-Busemann-Petty problems.

Theorem . For K ∈ Sn
o ,  < p < , if K is not origin-symmetric, then there exists L ∈ Sn

o

such that

IpK ⊂ IpL,

but

�̃p(K) > �̃p(L).

In this paper, the proofs of Theorems .-. will be given in Section . In Section , we
obtain some properties of general Lp-dual Blaschke bodies.

2 Preliminaries
2.1 Lp-Dual mixed volume
For K , L ∈ Sn

o , p >  and λ,μ ≥  (not both zero), the Lp-radial combination, λ ·K +̃p μ ·L ∈
Sn

o , of K and L is defined by (see [, ])

ρ(λ · K +̃p μ · L, ·)p = λρ(K , ·)p + μρ(L, ·)p, (.)

where λ · K denotes the Lp-radial scalar multiplication, and we easily know λ · K = λ

p K .

Associated with (.), Haberl in [] (also see []) introduced the notion of Lp-dual
mixed volume as follows: For K , L ∈ Sn

o , p > , ε > , the Lp-dual mixed volume Ṽp(K , L)
of K and L is defined by

n
p

Ṽp(K , L) = lim
ε→+

V (K +̃p ε · L) – V (K)
ε

.

And he got the following integral form of Lp-dual mixed volume:

Ṽp(K , L) =

n

∫

Sn–
ρ

n–p
K (u)ρp

L(u) du, (.)

where the integration is with respect to spherical Lebesgue measure on Sn–.
From (.), we get that

Ṽp(K , K) = V (K) =

n

∫

Sn–
ρn

K (u) du. (.)

The Minkowski inequality of Lp-dual mixed volume is as follows (see [, ]): If K , L ∈
Sn

o , then for  < p < n,

Ṽp(K , L) ≤ V (K)
n–p

n V (L)
p
n ; (.)
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for p > n,

Ṽp(K , L) ≥ V (K)
n–p

n V (L)
p
n . (.)

In every case, equality holds if and only if K is a dilate of L. For p = n, (.) (or (.)) is
identical.

From (.) and (.), we easily get the following result.

Proposition . If K , L ∈ Sn
o , p > , and for any Q ∈ Sn

o ,

Ṽp(K , Q) = Ṽp(L, Q)

or

Ṽp(Q, K) = Ṽp(Q, L),

then

K = L.

2.2 Lp-Dual affine surface area
The notion of Lp-dual affine surface area was given by Wang, Yuan and He (see []). For
K ∈ Sn

o ,  < p < n, the Lp-dual affine surface area �̃p(K) of K is defined by

n– p
n �̃p(K)

n+p
n = sup

{
nṼp

(
K , Q∗)V (Q)

p
n : Q ∈Kn

c
}

. (.)

Here E∗ is the polar set of a nonempty set E which is defined by (see [])

E∗ =
{

x ∈ R
n : x · y ≤  for all y ∈ E

}
.

For the sake of convenience of our work, we improve definition (.) from Q ∈ Kn
c to

Q ∈ Sn
os as follows: For K ∈ Sn

o ,  < p < n, the Lp-dual affine surface area �̃p(K) of K is
defined by

n– p
n �̃p(K)

n+p
n = sup

{
nṼp

(
K , Q∗)V (Q)

p
n : Q ∈ Sn

os
}

. (.)

3 Some properties of general Lp-dual Blaschke bodies
In this section, we give some properties of general Lp-dual Blaschke bodies.

Theorem . If K ∈ Sn
o , n > p >  and τ ∈ [–, ], then

∇–τ

p K = ∇τ

p(–K) = –∇τ

pK .

Proof From (.) and (.), we obtain that for n > p >  and τ ∈ [–, ],

∇–τ

p K = f(–τ ) ◦ K ⊕p f(–τ ) ◦ (–K) = f(τ ) ◦ K ⊕p f(τ ) ◦ (–K) = ∇τ

p(–K).
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Further, we have that for any u ∈ Sn–,

ρ
(
–∇τ

pK , u
)n–p = ρ

(∇τ

pK , –u
)n–p

= f(τ )ρ(K , –u)n–p + f(τ )ρ(–K , –u)n–p

= f(τ )ρ(–K , u)n–p + f(τ )ρ
(
–(–K), u

)n–p

= ρ
(∇τ

p(–K), u
)n–p.

Hence, we get

∇τ

p(–K) = –∇τ

pK . �

Theorem . For K ∈ Sn
o , n > p >  and τ ∈ [–, ], if τ �= , then ∇τ

pK = ∇–τ

p K if and only
if K ∈ Sn

os.

Proof From (.) and (.), we get that for all u ∈ Sn–,

ρ
(∇τ

pK , u
)n–p = f(τ )ρ(K , u)n–p + f(τ )ρ(–K , u)n–p, (.)

ρ
(∇–τ

p K , u
)n–p = f(τ )ρ(K , u)n–p + f(τ )ρ(–K , u)n–p. (.)

Hence, if K ∈ Sn
os, i.e., K = –K , then by (.), (.) and (.) we get, for all u ∈ Sn–,

ρ
(∇τ

pK , u
)n–p = ρ

(∇–τ

p K , u
)n–p.

Thus

∇τ

pK = ∇–τ

p K .

Conversely, if ∇τ

pK = ∇–τ

p K , then together with (.) and (.) it yields

[
f(τ ) – f(τ )

]
ρ(K , u)n–p =

[
f(τ ) – f(τ )

]
ρ(–K , u)n–p.

Since f(τ ) – f(τ ) �=  when τ �= , thus it follows that ρ(K , u) = ρ(–K , u) for all u ∈ Sn–,
i.e., K ∈ Sn

os. �

From Theorem ., it immediately yields the following corollary.

Corollary . For K ∈ Sn
o , n > p >  and τ ∈ [–, ], if K is not origin-symmetric, then

∇τ

pK = ∇–τ

p K if and only if τ = .

Theorem . If K ∈ Sn
os, n > p >  and τ ∈ [–, ], then

∇τ

pK = K .

Proof Since K ∈ Sn
os, i.e., K = –K , by (.) and (.) we know that, for any u ∈ Sn–,

ρ
(∇τ

pK , u
)n–p = f(τ )ρ(K , u)n–p + f(τ )ρ(–K , u)n–p = ρ(K , u)n–p.
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That is,

∇τ

pK = K . �

4 Proofs of theorems
In this section, we complete the proofs of Theorems .-..

Lemma . If K , L ∈ Sn
o , λ,μ ≥  (not both zero), n > p > , then

V (λ ◦ K ⊕p μ ◦ L)
n–p

n ≤ λV (K)
n–p

n + μV (L)
n–p

n , (.)

with equality if and only if K and L are dilates.

Proof Associated with (.), (.), (.) and inequality (.), we know that, for any Q ∈ Sn
o ,

Ṽp(λ ◦ K ⊕p μ ◦ L, Q) = λṼp(K , Q) + μṼp(L, Q)

≤ [
λV (K)

n–p
n + μV (L)

n–p
n

]
V (Q)

p
n .

Let Q = λ ◦ K ⊕p μ ◦ L, it yields (.). From the equality condition of (.), we see that
equality holds in (.) if and only if K is a dilate of L. �

Proof of Theorem . By (.), (.) and (.), we get, for any τ ∈ [–, ],

V
(∇τ

pK
) n–p

n = V
(
f(τ ) ◦ K ⊕p f(τ ) ◦ (–K)

) n–p
n

≤ f(τ )V (K)
n–p

n + f(τ )V (–K)
n–p

n

= V (K)
n–p

n .

Therefore, we obtain, for n > p > ,

V
(∇τ

pK
) ≤ V (K). (.)

This gives the right inequality of (.).
Clearly, equality holds in (.) if τ = ±. Besides, if τ �= ±, then by the condition of

equality in (.), we see that equality holds in (.) if and only if K and –K are dilates, this
yields K = –K , i.e., K is an origin-symmetric star body. This means that if τ �= ±, then
equality holds in the right inequality of (.) if and only if K is origin-symmetric.

Now, we prove the left inequality of (.). From (.), (.) and (.), we know that for
any u ∈ Sn–,

∇pK =



◦ K ⊕p



◦ (–K)

=



( + τ ) + ( – τ )


◦ K ⊕p



( – τ ) + ( + τ )


◦ (–K)

=



◦ ∇τ

pK ⊕p



◦ ∇–τ

p K . (.)
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From Theorem . and (.), use (.) to yield that for n > p > ,

V (∇pK)
n–p

n = V
(




◦ ∇τ

pK ⊕p



◦ ∇–τ

p K
) n–p

n

≤ 


V
(∇τ

pK
) n–p

n +



V
(∇–τ

p K
) n–p

n

=



V
(∇τ

pK
) n–p

n +



V
(
–∇τ

pK
) n–p

n

= V
(∇τ

pK
) n–p

n .

This gives that for n > p > ,

V (∇pK) ≤ V
(∇τ

pK
)
. (.)

This is just the left inequality of (.).
Obviously, if τ = , then equality holds in (.). If τ �= , according to the equality condi-

tion of (.), we see that equality holds in (.) if and only if ∇̂τ
p K and ∇–τ

p K are dilates, this
implies ∇τ

pK = ∇–τ

p K . Therefore, using Corollary ., we obtain that if K is not an origin-
symmetric body, then equality holds in (.) if and only if τ = . This shows that if τ �= ,
then equality holds in the left inequality of (.) if and only if K is origin-symmetric. �

Proof of Theorem . From definition (.) and (.), we have that

n– p
n �̃p

(∇τ

pK
) n+p

n

= sup
{

nṼp
(∇̂τ

p K , Q∗)V (Q)
p
n : Q ∈ Sn

os
}

= sup
{

nṼp
(
f(τ ) ◦ K ⊕p f(τ ) ◦ (–K), Q∗)V (Q)

p
n : Q ∈ Sn

os
}

= sup

{∫

Sn–

[
ρ
(
f(τ ) ◦ K ⊕p f(τ ) ◦ (–K), u

)n–p
ρ
(
Q∗, u

)p]duV (Q)
p
n : Q ∈ Sn

os

}

= sup

{∫

Sn–

[
f(τ )ρ(K , u)n–p + f(τ )ρ(–K , u)n–p]ρ

(
Q∗, u

)p duV (Q)
p
n : Q ∈ Sn

os

}

= sup
{

nf(τ )Ṽp
(
K , Q∗)V (Q)

p
n + nf(τ )Ṽp

(
–K , Q∗)V (Q)

p
n : Q ∈ Sn

os
}

≤ f(τ ) sup
{

nṼp
(
K , Q∗)V (Q)

p
n : Q ∈ Sn

os
}

+ f(τ ) sup
{

nṼp
(
–K , Q∗)V (Q)

p
n : Q ∈ Sn

os
}

. (.)

Since Q ∈ Sn
os, thus use ρ(Q, u) = ρ(–Q, u) = ρ(Q, –u) for all u ∈ Sn– to get

Ṽp
(
–K , Q∗) = Ṽp

(
K , Q∗),

by (.) we know �̃p(K) = �̃p(–K). This combining with (.) and (.), we know

�̃p
(∇τ

pK
) ≤ �̃p(K), (.)

i.e., the right inequality of (.) is obtained.
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If τ �= ±, equality of (.) holds if and only if K and –K are dilates. This yields K =
–K , thus K is an origin-symmetric star body. Since (.) and (.) are equivalent, hence
equality holds in (.) if and only if K is an origin-symmetric star body when τ �= ±.
Therefore, if τ �= ±, equality holds in the right inequality of (.) if and only if K is origin-
symmetric.

Further, we complete the proof of the left inequality of (.). From Theorem ., we know
that

∇–τ

p K = –∇τ

pK .

Thus, (.) can be written as

∇pK =



◦ ∇τ

pK ⊕p



◦ (
–∇τ

pK
)
.

Similar to the proof of inequality (.), we have

�̃p(∇pK) ≤ �̃p
(∇τ

pK
)
. (.)

This yields the left inequality of (.).
Similar to the proof of equality in inequality (.), we easily know that equality holds in

(.) if and only if ∇τ

pK = ∇–τ

p K when τ �= . Hence, if τ �= , using Theorem . we get that
equality holds in the left inequality of (.) if and only if K is origin-symmetric. �

In order to prove Theorems . and ., the following lemma is required.

Lemma . If K ∈ Sn
o ,  < p <  and τ ∈ [–, ], then

Ip
(∇τ

pK
)

= IpK .

Proof From definition (.), we may obtain the following polar coordinate form:

ρ(IpK , u)p =


n – p

∫

Sn–
|u · v|–pρ(K , v)n–p dv.

Thus by (.) we have that

ρ
(
Ip

(∇τ

pK
)
, u

)p =


n – p

∫

Sn–
|u · v|–pρ

(∇τ

pK , v
)n–p dv

=


n – p

∫

Sn–
|u · v|–p[f(τ )ρ(K , v)n–p + f(τ )ρ(–K , v)n–p]dv

= f(τ )ρ(IpK , u)p + f(τ )ρ
(
Ip(–K), u

)p. (.)

According to (.), we easily know Ip(–K) = IpK , so combining with (.) and (.), then
for any u ∈ Sn–,

ρ
(
Ip

(∇τ

pK
)
, u

)p = ρ(IpK , u)p,
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i.e.,

Ip
(∇τ

pK
)

= IpK . �

Proof of Theorem . Since K is not an origin-symmetric star body, thus from Theorem .,
we know that if τ �= ±, then

V
(∇τ

pK
)

< V (K).

Choose ε >  such that V (( + ε)∇τ

pK) < V (K). Therefore, let L = ( + ε)∇τ

pK (for τ = ,
L ∈ Sn

os; for τ �= , L ∈ Sn
o ), then

V (L) < V (K).

But from Lemma ., and notice that Ip(( + ε)K) = ( + ε)
n–p

p IpK , we can get

IpL = Ip
(
( + ε)∇τ

pL
)

= ( + ε)
n–p

p Ip
(∇τ

pK
)

= ( + ε)
n–p

p IpK ⊃ IpK . �

Proof of Theorem . Since K is not an origin-symmetric star body, thus by Theorem .,
we know that for τ �= ±,

�̃p
(∇τ

pK
)

< �̃p(K).

Choose ε >  such that �̃p(( + ε)∇τ

pK) < �̃p(K). Therefore, let L = ( + ε)∇τ

pK , then L ∈ Sn
o

and

�̃p(L) < �̃p(K).

But, similar to the proof of Theorem ., we may obtain IpL ⊃ IpK . �
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