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1 Introduction
Let Lloc be the space of all locally integrable functions f on Rn and M+ be the cone of all
locally integrable functions g ≥  on (, ) with the Lebesgue measure.

Let f ∗ be the decreasing rearrangement of f given by

f ∗(t) = inf
{
λ >  : μf (λ) ≤ t

}
, t > ,

and μf be the distribution function of f defined by

μf (λ) =
∣∣{x ∈ Rn :

∣∣f (x)
∣∣ > λ

}∣∣
n,

| · |n denoting Lebesgue n-measure.
Also,

f ∗∗(t) :=

t

∫ t


f ∗(s) ds.

We use the notations a � a or a � a for nonnegative functions or functionals to
mean that the quotient a/a is bounded; also, a ≈ a means that a � a and a � a.
We say that a is equivalent to a if a ≈ a.

We consider rearrangement invariant quasi-normed spaces E ↪→ L(�) such that ‖f ‖E =
ρE(f ∗) < ∞, where ρE is a quasi-norm rearrangement invariant defined on M+.

For simplicity, we assume that � is a bounded Lebesgue measurable subset of Rn with
Lebesgue measure equal to  and origin lies in �.

There is an equivalent quasi-norm ρp ≈ ρE that satisfies the triangle inequality ρ
p
p (g +

g) ≤ ρ
p
p (g) + ρ

p
p (g) for some p ∈ (, ] that depends only on the space E (see []). We say
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that the quasi-norm ρE satisfies Minkowski’s inequality if for the equivalent quasi-norm
ρp,

ρp
p

(∑
gj

)
�

∑
ρp

p (gj), gj ∈ M+.

Usually we apply this inequality for functions g ∈ M+ with some kind of monotonicity.
Recall the definition of the lower and upper Boyd indices αE and βE . Let gu(t) = g(t/u) if

t < min(, u) and gu(t) =  if min(, u) < t < , where g ∈ M+, and let

hE(u) = sup

{
ρE(g∗

u)
ρE(g∗)

: g ∈ M+
}

, u > 

be the dilation function generated by ρE . Suppose that it is finite. Then

αE := sup
<t<

log hE(t)
log t

and βE := inf
<t<∞

log hE(t)
log t

.

The function hE is sub-multiplicative, increasing, hE() = , hE(u)hE(/u) ≥  and hence
 ≤ αE ≤ βE . We suppose that  < αE = βE ≤ .

If βE < , we have by using Minkowski’s inequality that ρE(f ∗) ≈ ρE(f ∗∗). In particular,
‖f ‖E ≈ ρE(f ∗∗) if βE < . For example, consider the gamma spaces E = �q(w),  < q ≤ ∞, w-
positive weight, that is, a positive function from M+, with a quasi-norm ‖f ‖�q(w) := ρE(f ∗),
ρE(g) := ρw,q(

∫ 
 g(tu) du), where

ρw,q(g) :=
(∫ 



[
g(t)w(t)

]q dt/t
)/q

, g ∈ M+ (.)

and

(∫ 


wq(t) dt/t

)/q

< ∞.

Then L∞(�) ↪→ �q(w) ↪→ L(�). If w(t) = t/p,  < p < ∞, we write as usual Lp,q instead of
�q(t/p). Consider also the classical Lorentz spaces 	q(w),  < q ≤ ∞; f ∈ 	q(w) if ‖f ‖	

q
w

:=
ρw,q(f ∗) < ∞, w(t) ≈ w(t). We suppose that L∞(�) ↪→ 	q(w) ↪→ L(�).

The Boyd indices are useful in various problems concerning continuity of operators act-
ing in rearrangement invariant spaces [] or in optimal couples of rearrangement invari-
ant spaces [–], and in the problems of optimal embeddings [–]. The main goal of this
paper is to provide formulas for the Boyd indices with some bounds of rearrangement in-
variant quasi-normed spaces and to apply these results to the case of Lorentz type spaces.

2 Boyd indices for quasi-normed function spaces
Let ρE be a monotone quasi-norm on M+ and let E be the corresponding rearrangement
invariant quasi-normed space consisting of all f ∈ L(�) such that ‖f ‖E = ρE(f ∗) < ∞.

Theorem . Let

gu(t) =

{
g(t/u) if  < t < min(, u),
 if min(, u) ≤ t < ,



Nazeer et al. Journal of Inequalities and Applications  (2015) 2015:235 Page 3 of 9

where g ∈ M+, and let

hE(u) = sup

{
ρE(g∗

u)
ρE(g∗)

: g ∈ M+
}

, u > ,

be the dilation function generated by ρE . Suppose that it is finite. Then the Boyd indices are
well defined

αE := sup
<t<

log hE(t)
log t

and βE := inf
<t<∞

log hE(t)
log t

and they satisfy

αE = lim
t→

log hE(t)
log t

, (.)

βE = lim
t→∞

log hE(t)
log t

. (.)

In particular,  ≤ αE ≤ βE ≤ log hE()
log  .

Proof We have

guv = (gu)v if u < v. (.)

Indeed, since min(, uv) ≤ min(, v) for u < v, we find (gu)v(t) = gu(t/(uv)) if  < t < min(, uv)
and (gu)v(t) =  if min(, uv) ≤ t < . Thus (.) is proved. This implies that the function hE

is sub-multiplicative.
Further, the function ω(x) = log hE(ex) is sub-additive increasing on (–∞,∞) and

ω() = . Hence, by [], Lemma ., (.) is satisfied and evidently βE ≤ log hE()
log  .

Since hE() =  and hE is sub-multiplicative, therefore

hE(uu) ≤ hE(u)hE(u).

Replacing u by 
u

, we get

hE() ≤ hE(u)hE

(


u

)
,

which implies that

 ≤ hE(u)hE

(


u

)
; because hE() = ,

it follows that  ≤ hE(u)hE(/u).
We have

αE ≤ βE .
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Indeed

log
(
hE(u)

) ≥ log

(


hE( 
u )

)
,

if u > , then

log(hE(u))
log u

≥
log( 

hE( 
u )

)

log u
=

log(hE( 
u ))

log 
u

,

which implies that

lim
u→∞

log(hE(u))
log u

≥ lim
u→∞

log(hE( 
u ))

log 
u

.

Since βE is finite, therefore αE is also finite. Since hE() =  and we know that hE is increas-
ing function, so

hE(u) ≤  for  < u < ,

which implies that

log
(
hE(u)

) ≤ ,

which implies that

log(hE(u))
log u

≥ ,

which implies that

αE = sup
<u<

log(hE(u))
log u

≥ ,

and hence

 ≤ αE ≤ βE. �

Let ρH be a monotone quasi-norm on M+ and let H be the corresponding quasi-normed
space, consisting of all locally integrable functions on (, ) with a finite quasi-norm ‖g‖H =
ρH (|g|).

Theorem . Let

(�ug)(t) =

{
g(ut), if  < t < min(, 

u ),
g(), if min(, 

u ) ≤ t < ,

where g ∈ M+, and let

hH (u) = sup

{
ρH (�ug)
ρH(g)

: g ∈ Ga

}
, u > ,
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be the dilation function generated by ρH . Suppose that it is finite, where

Ga :=
{

g ∈ M+ : t–a/ng(t) is decreasing
}

, a > .

Then the Boyd indices are well defined

αH := sup
<t<

log hH (t)
log t

and βH := inf
<t<∞

log hH (t)
log t

and they satisfy

αH = lim
t→

log hH (t)
log t

, (.)

βH = lim
t→∞

log hH (t)
log t

. (.)

In particular, log hH (/)
log / ≤ αH ≤ βH ≤ a/n.

Proof We have

�uvg = �u(�vg) if u < v. (.)

Indeed, since min(, /(uv)) ≤ min(, /u) for u < v, we find �u(�vg)(t) = g(t/(uv)) if  < t <
min(, /(uv)) and �u(�vg)(t) = g() if min(, /(uv)) ≤ t < . Thus (.) is proved. This im-
plies that the function hH is sub-multiplicative. Since the function u–a/nhH (u) is decreas-
ing, it follows that the function ua/nhH (/u) is increasing and sub-multiplicative. Hence we
can apply the results from Theorem .. This establishes Theorem .. �

Example . If E = 	q(taw),  ≤ a ≤ ,  < q ≤ ∞, where w is slowly varying, then αE =
βE = a.

Proof We give a proof for  < q < ∞, the case q = ∞ is analogous. We have, for g ∈ M+,

ρE
(
g∗

u
)

=
(∫ 



[
g∗

u(t)taw(t)
]q dt/t

)/q

=
(∫ min(,u)



[
g∗(t/u)taw(t)

]q dt/t
)/q

and by a change of variables,

ρE
(
g∗

u
) ≤

(∫ 



[
g∗(t)(tu)aw(tu)

]q dt/t
)/q

. (.)

From the definition of a slowly varying function it follows that for every ε > , t–εw(t) ≈
d(t), where d is a decreasing function. Then, for u > , we have d(tu) ≤ d(t), thus

(tu)–εw(tu) � d(tu) � t–εw(t),

which implies that

w(tu) � uεw(t), u > . (.)
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Inserting this estimate in (.), we arrive at

ρE
(
g∗

u
)
� ua+ερE

(
g∗), u > ,

which yields hE(u) � ua+ε , u > . Then it follows that βE ≤ a + ε. Analogously, αE ≥ a – ε.
Since ε >  is arbitrary and αE ≤ βE , we obtain αE = βE = a. �

Example . If H = Lq
∗(w(t)t–α),  ≤ α < a/n,  < q ≤ ∞, where w is slowly varying, then

αH = βH = α.

Proof We give a proof for  < q < ∞, the case q = ∞ is analogous. We have, for g ∈ Ga,

ρH (�ug) =
(∫ 



[
�ug(t)t–αw(t)

]q dt/t
)/q

=
(∫ min(,/u)



[
g(tu)t–αw(t)

]q dt/t
)/q

+ I(u),

where I(u) = (
∫ 

min(,/u)[t
–αw(t)]q dt/t)/qg(). Note that I(u) =  for  < u < . Since for every

ε >  we have w(t) � tε , it follows that I(u) � uα+εg(), u > . Also, g()ρH (ta/n) ≤ ρH (g) and
ρH (ta/n) < ∞ due to α < a/n.

On the other hand, by a change of variables,

ρH (�ug) �
(∫ 



[
g(t)(t/u)–αw(t/u)

]q dt/t
)/q

+ uα+ερH(g).

As in the proof of the previous example, we have

w(t/u) � uεw(t), u > ,

therefore

ρH (�ug) � uα+ερH (g), u > , g ∈ Ga.

Hence hH (u) � uα+ε , u > . Then it follows that βH ≤ α + ε. Analogously, αH ≥ α – ε. Since
ε >  is arbitrary and αH ≤ βH , we obtain αH = βH = α. �

3 Basic inequalities
Here we prove a few inequalities, which are of independent interest.

Theorem . If α < αH , then

ρH

(
tα

∫ t


s–αg(s)

ds
s

)
� ρH (g), g ∈ Ga

and if βH < β , then

ρH

(
tβ

∫ 

t
s–βg(s)

ds
s

)
� ρH(g), g ∈ Ga.
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Proof We are going to use Minkowski’s inequality for the equivalent p-norm of ρH . To this
end, first we replace the integrals by sums using monotonicity properties of g ∈ Ga.

Thus

tα

∫ t


s–αg(s)

ds
s

=
∫ 


v–αg(tv)

dv
v

=
∑

l=–∞

∫ l

l–
v–αg(tv)

dv
v

�
∑

l=–∞
–lαg

(
tl).

Applying Minkowski’s inequality, we get

ρ
p
H

(
tα

∫ t


s–αg(s)

ds
s

)
�

∑

l=–∞
–lpαρ

p
H
(
g
(
tl))

� ρ
p
H (g)

∑

l=–∞
–pαlhp

H
(
l)

� ρ
p
H (g)

∑

l=–∞
–pαllp(αH –ε)

� ρ
p
H (g)

∑

l=–∞
lp(αH –ε–α).

The above series is convergent if we choose ε >  such that ε < αH – α, so we have

ρH

(
tα

∫ t


s–αg(s)

ds
s

)
� ρH (g).

On the other hand, for g ∈ Ga,

tβ

∫ 

t
s–βg(s)

ds
s

=
∫ ∞


χ(,)(tv)v–βg(tv)

dv
v

=
∞∑

l=

∫ l+

l
χ(,)(tv)v–βg(tv)

dv
v

�
∞∑

l=

–lβg
(
tl)χ(,)

(
tl).

Again applying Minkowski’s inequality, we get

ρ
p
H

(
tβ

∫ 

t
s–βg(s)

ds
s

)
�

∞∑

l=

–lβpρ
p
H
(
g
(
tl)χ(,)

(
tl))

� ρ
p
H(g)

∞∑

l=

–lβphp
H
(
l)
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� ρ
p
H(g)

∞∑

l=

–lβppl(βH +ε)

� ρ
p
H(g)

∞∑

l=

lp(βH +ε–β).

The above series is finite if we choose a suitable ε >  such that ε < β – βH . The proof is
finished. �

Theorem . If βE < a, then

ρE

(
t–a

∫ t


sag(s)

ds
s

)
� ρE(g), g ∈ D,

where D := {g ∈ M+ : g(t) is decreasing and g(t) =  for t ≥ }.

Proof We are going to use Minkowski’s inequality for the equivalent p-norm of ρE . To this
end, first we replace the integral by sums using monotonicity properties of g ∈ D.

Thus

t–a
∫ t


sag(s)

ds
s

=
∫ 


vag(tv)

dv
v

=
∑

l=–∞

∫ l+

l
vag(tv)

dv
v

�
∑

l=–∞
alg

(
tl).

Applying Minkowski’s inequality, we get

ρ
p
E

(
t–a

∫ t


sag(s)

ds
s

)
�

∑

l=–∞
palρ

p
E
(
g
(
tl))

� ρ
p
E(g)

∑

l=–∞
pal hp

E
(
)

� ρ
p
E(g)

∑

l=–∞
pal –p(βE+ε)

� ρ
p
E(g)

∑

l=–∞
lp(a–βE–ε).

The above series is finite if we choose ε >  such that ε < a – βE , and this concludes the
proof. �

Theorem . If αE > , then

ρE

(∫ 

t
g(u)

du
u

)
� ρE(g), g ∈ D.
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Proof We are going to use Minkowski’s inequality for the equivalent p-norm of ρE . To this
end, first we replace the integral by sums using monotonicity properties of g ∈ D.

Thus

∫ 

t
g(u)

du
u

�
∫ ∞


χ(,)(tv)g(tv)

dv
v

=
∞∑

l=

∫ l+

l
χ(,)(tv)g(tv)

dv
v

�
∞∑

l=

χ(,)
(
tl)g

(
tl).

Applying Minkowski’s inequality, we get

ρ
p
E

(∫ 

t
g(u)

du
u

)
�

∞∑

l=

ρ
p
E
(
χ(,)

(
tl)g

(
tl))

� ρ
p
E(g)

∞∑

l=

hp
E
(
–l)

� ρ
p
E(g)

∞∑

l=

–l(αE–ε).

Choosing ε >  such that αE > ε, we conclude the proof. �
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