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Abstract
We consider the boundedness of fractional multilinear integral operators with rough
kernels TA,m�,α on the generalized Morrey spacesMp,ϕ . We find the sufficient conditions

on the pair (ϕ1,ϕ2), which ensures the boundedness of the operators TA,m�,α fromMp,ϕ1
toMp,ϕ2 for 1 < p < ∞. In all cases the conditions for the boundedness of the operator
TA,m�,α is given in terms of Zygmund-type integral inequalities on (ϕ1,ϕ2), which do not
make any assumption on the monotonicity of ϕ1(x, r), ϕ2(x, r) in r.
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1 Introduction and results
The classical Morrey spaces were originally introduced by Morrey in [] to study the local
behavior of solutions to second order elliptic partial differential equations. For the prop-
erties and applications of classical Morrey spaces, we refer the readers to [–]. Mizuhara
[] introduced generalized Morrey spaces. Later, Guliyev [] defined the generalized
Morrey spaces Mp,ϕ with normalized norm.

Suppose that � ∈ Ls(Sn–) (s > ) is homogeneous of degree zero on R
n with zero means

value on S
n–, A is a function defined onR

n. Following [], the rough fractional multilinear
integral operator TA,m

�,α is defined by

TA,m
�,α (f )(x) =

∫
Rn

Rm(A; x, y)
|x – y|n–α+m– �(x – y)f (y) dy, (.)

where  < α < n, and Rm(A; x, y) is the mth remainder of Taylor series of A at x about y.
More precisely,

Rm(A; x, y) = A(x) –
∑
|γ |<m


γ !

Dγ A(y)(x – y)γ . (.)

When m = , then TA
�,α ≡ TA,

�,α is just the commutator of the fractional integral T�,αf (x)
with function A,

TA
�,α(f )(x) =

∫
Rn

�(x – y)
|x – y|n–α

(
A(x) – A(y)

)
f (y) dy.
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The weighted (Lp, Lq)-boundedness of such a commutator is given by Ding and Lu in [].
When m ≥ , TA

�,α is a non-trivial generalization of the above commutator. In [], Wu
and Yang proved the following result.

Theorem A Suppose that � ∈ Ls(Sn–) and assume that A has derivatives of order m – 
in BMO(Rn). Let m ≥ ,  < α < n,  ≤ s′ < p < n/α, and /q = /p – α/n. Then there exists
a constant C, independent of A and f , such that

∥∥TA,m
�,α f

∥∥
Lq(Rn) ≤ C

∑
|γ |=m–

∥∥Dγ A
∥∥∗‖f ‖Lp(Rn).

Here and in the sequel, we always denote by p′ the conjugate index of any p > , that is,
/p + /p′ = , and by C a constant which is independent of the main parameters and may
vary from line to line.

The commutators are useful in many nondivergence elliptic equations with discontinu-
ous coefficients [, –]. In the recent development of commutators, Pérez and Trujillo-
González [] generalized these multilinear commutators and proved the weighted
Lebesgue estimates.

In [], Guliyev proved the following result.

Theorem B Let  < α < n,  < p < n/α, and /q = /p – α/n, � ∈ Ls(Sn–),  < s ≤ ∞, A ∈
BMO, and (ϕ,ϕ) satisfies the condition

∫ ∞

r
ln

(
e +

t
r

)
ess supt<s<∞ϕ(x, s)s

n
p

t
n
q

dt
t

≤ Cϕ(x, r),

where C does not depend on x and r. Then the operator TA
�,α is bounded from Mp,ϕ to Mq,ϕ .

It has been proved by many authors that most of the operators which are bounded on
a Lebesgue space are also bounded in an appropriate Morrey space; see []. As far as we
know, there is no research regarding the boundedness of the fractional multilinear integral
operator on Morrey space.

In this paper, we are going to prove that these results are valid for the rough fractional
multilinear integral operator TA,m

�,α on generalized Morrey spaces. Our main results can be
formulated as follows.

Theorem . Let  < α < n,  ≤ s′ < p < n/α, and /q = /p –α/n. Suppose that � ∈ Ls(Sn–)
and (ϕ,ϕ) satisfy the condition

∫ ∞

r

(
 + ln

t
r

)
ess inft<τ<∞ϕ(x, τ )τ

n
p

t
n
q

dt
t

≤ Cϕ(x, r), (.)

where C does not depend on x and r. If A has derivatives of order m –  in BMO(Rn),
then the operator TA,m

�,α is bounded from Mp,ϕ (Rn) to Mq,ϕ (Rn). Moreover, then there is a
constant C >  independent of f such that

∥∥TA,m
�,α f

∥∥
Mq,ϕ

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗‖f ‖Mp,ϕ

.
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Remark . Note that in the case m =  from Theorem . we get Theorem B.

2 Generalized Morrey spaces Mp,ϕ

The classical Morrey spaces Mp,λ were originally introduced by Morrey in [] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [, ].

We denote by Mp,λ ≡ Mp,λ(Rn) the Morrey space, the space of all functions f ∈ Lloc
p (Rn)

with finite quasinorm,

‖f ‖Mp,λ = sup
x∈Rn ,r>

r– λ
p ‖f ‖Lp(B(x,r)),

where  ≤ p < ∞ and  ≤ λ ≤ n.
Note that Mp, = Lp(Rn) and Mp,n = L∞(Rn). If λ <  or λ > n, then Mp,λ = �, where � is

the set of all functions equivalent to  on R
n.

In [], Mizuhara introduced the generalized Morrey spaces Mp,ϕ(Rn) in the following
form and discussed the boundedness of the Calderón-Zygmund singular integral opera-
tors.

Definition . Let ϕ(x, r) be a positive measurable function onR
n ×(,∞) and  ≤ p < ∞.

We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the space of all functions
f ∈ Lloc

p (Rn) with finite quasinorm

‖f ‖Mp,ϕ = sup
x∈Rn ,r>

ϕ(x, r)–‖f ‖Lp(B(x,r)).

Note that the generalized Morrey spaces Mp,ϕ ≡ Mp,ϕ(Rn) with normalized norm,

‖f ‖Mp,ϕ = sup
x∈Rn ,r>

ϕ(x, r)–∣∣B(x, r)
∣∣– 

p ‖f ‖Lp(B(x,r)),

were first defined by Guliyev in [].
Also, in [], by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of

all functions f ∈ WLloc
p (Rn) for which

‖f ‖WMp,ϕ = sup
x∈Rn ,r>

ϕ(x, r)–∣∣B(x, r)
∣∣– 

p ‖f ‖WLp(B(x,r)) < ∞.

By the definition, we recover the Morrey space Mp,λ and weak Morrey space WMp,λ

under the choice ϕ(x, r) = r
λ–n

p :

Mp,λ = Mp,ϕ
∣∣
ϕ(x,r)=r

λ–n
p

, WMp,λ = WMp,ϕ
∣∣
ϕ(x,r)=r

λ–n
p

.

There are many papers discussing the conditions on ϕ(x, r) to obtain the boundedness
of operators on the generalized Morrey spaces. For example, in [], the function ϕ is
supposed to be a positive growth function and satisfy the double condition: for all r > ,
ϕ(r) ≤ Dϕ(r), where D ≥  is a constant independent of r. This type of conditions on ϕ is
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studied by many authors; see, for example, [, ]. In [], the following statement was
proved by Nakai for the Riesz potential Iα :

Iαf (x) =
∫
Rn

f (y) dy
|x – y|n–α

,  < α < n.

Theorem C Let  ≤ p < ∞,  < α < n
p , 

q = 
p – α

n , and let ϕ(x, r) satisfy the conditions

c–ϕ(x, r) ≤ ϕ(x, t) ≤ cϕ(x, r), (.)

whenever r ≤ t ≤ r, where c (c ≥ ) does not depend on t, r, x, and

∫ ∞

r
tαϕq(x, t)

dt
t

≤ Cϕp(x, r), (.)

where C does not depend on x and r. Then the operator Iα is bounded from Mp,ϕ to Mq,ϕ

for p >  and from M,ϕ to WM,ϕ for p = .

The following statements, containing the Mizuhara and Nakai results obtained in [,
], were proved by Guliyev in [, ] (see also []).

Theorem D Let  ≤ p < ∞,  < α < n
p , 

q = 
p – α

n , and (ϕ,ϕ) satisfy the condition

∫ ∞

r
tαϕ(x, t)

dt
t

≤ Cϕ(x, r), (.)

where C does not depend on x and r. Then the operator Iα is bounded from Mp,ϕ to Mq,ϕ

for p >  and from M,ϕ to WMq,ϕ for p = .

Recently, in [] and [], Guliyev et al. introduced a weaker condition for the bound-
edness of Riesz potential from Mp,ϕ to Mq,ϕ .

Theorem E Let  ≤ p < ∞,  < α < n
p , 

q = 
p – α

n , and (ϕ,ϕ) satisfy the condition

∫ ∞

t

ess supr<s<∞ϕ(x, s)s
n
p

r
n
q +

dr ≤ Cϕ(x, t), (.)

where C does not depend on x and t. Then the operator Iα is bounded from Mp,ϕ to Mq,ϕ

for  < p < q < ∞ and from M,ϕ to WMq,ϕ for  < q < ∞.

By an easy computation, we can check that if the pair (ϕ,ϕ) satisfies the double condi-
tion, then it will satisfy condition (.). Moreover, if (ϕ,ϕ) satisfies condition (.), it will
also satisfy condition (.). But the opposite is not true. We refer to [] and Remark .
in [] for details.

3 Some preliminaries
Let B = B(x, rB) denote the ball with the center x and radius rB. For a given weight func-
tion ω and a measurable set E, we also denote the Lebesgue measure of E by |E|. For any
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given � ⊆R
n and  < p < ∞, denote by Lp(�) the space of all function f satisfying

‖f ‖Lp(�) =
(∫

�

∣∣f (x)
∣∣p dx

) 
p

< ∞.

First we recall the definition of the space BMO(Rn).

Definition . Suppose that f ∈ Lloc
 (Rn), let

‖f ‖∗ = sup
x∈Rn ,r>


|B(x, r)|

∫
B(x,r)

∣∣f (y) – fB(x,r)
∣∣dy < ∞,

where

fB(x,r) =


|B(x, r)|
∫

B(x,r)
f (y) dy.

Define

BMO
(
R

n) =
{

f ∈ Lloc


(
R

n) : ‖f ‖∗ < ∞}
.

If one regards two functions whose difference is a constant as one, then space BMO(Rn)
is a Banach space with respect to norm ‖ · ‖∗.

Remark . []
() The John-Nirenberg inequality: there are constants C, C > , such that, for all

f ∈ BMO(Rn) and β > ,

∣∣{x ∈ B :
∣∣f (x) – fB

∣∣ > β
}∣∣ ≤ C|B|e–Cβ/‖f ‖∗ , ∀B ⊂R

n.

() The John-Nirenberg inequality implies that

‖f ‖∗ ≈ sup
x∈Rn ,r>

(


|B(x, r)|
∫

B(x,r)

∣∣f (y) – fB(x,r)
∣∣p dy

) 
p

(.)

for  < p < ∞.
() Let f ∈ BMO(Rn). Then there is a constant C >  such that

|fB(x,r) – fB(x,t)| ≤ C‖f ‖∗ ln
t
r

for  < r < t, (.)

where C is independent of f , x, r, and t.

Lemma . [] Let b be a function in BMO(Rn),  ≤ p < ∞, and r, r > . Then

(


|B(x, r)|
∫

B(x,r)

∣∣b(y) – bB(x,r)
∣∣p dy

) 
p

≤ C
(

 +
∣∣∣∣ln r

r

∣∣∣∣
)

‖b‖∗,

where C >  is independent of b, x, r, and r.
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Below we present some conclusions as regards Rm(A; x, y).

Lemma . [] Suppose b be a function on R
n with the mth derivatives in Lq(Rn), q > n.

Then

∣∣Rm(b; x, y)
∣∣ ≤ C|x – y|m

∑
|γ |=m

(


B(x, 
√

n|x – y|)
∫

B(x,
√

n|x–y|)

∣∣Dγ b(z)
∣∣dz

)/q

.

Lemma . Let x ∈ B(x, r), y ∈ B(x, j+r) \ B(x, jr). Then

∣∣Rm(A; x, y)
∣∣ ≤ C|x – y|m–

(
j

∑
|γ |=m–

∥∥Dγ A
∥∥∗ +

∑
|γ |=m–

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣
)

. (.)

Proof For fixed x ∈R
n, let

Ā(x) = A(x) –
∑

|γ |=m–


γ !

(
Dγ A

)
B(x,

√
n|x–y|)x

γ .

So

∣∣Rm(A; x, y)
∣∣ =

∣∣Rm(Ā; x, y)
∣∣

≤ ∣∣Rm–(Ā; x, y)
∣∣ +

∑
|γ |=m–


γ !

∣∣(Dγ Ā(y)
)∣∣|x – y|m–. (.)

By Lemma ., we get

∣∣Rm–(Ā; x, y)
∣∣ ≤ C|x – y|m–

∑
|γ |=m–

∥∥Dγ A
∥∥∗. (.)

Since x ∈ B(x, r), y ∈ B(x, j+r) \ B(x, jr), it is easy to see that j–r ≤ |x – y| ≤ j+r. In
this way, we have

B
(
x, j–r

) ⊂ B
(
x, 

√
n|x – y|) ⊂ 

√
nB

(
x, jr

)
.

Then

|
√

nB(x, jr)|
|B(x, 

√
n|x – y|)| ≤ |

√
nB(x, jr)|

|B(x, j–r)| ≤ C.

Therefore

∣∣(Dγ A
)

B(x,
√

n|x–y|) –
(
Dγ A

)
B(x,jr)

∣∣

≤ 
|B(x, 

√
n|x – y|)|

∫
B(x,

√
n|x–y|)

∣∣Dγ A(y) –
(
Dγ A

)
B(x,jr)

∣∣dy

≤ 
|

√
nB(x, jr)|

∫


√
nB(x,jr)

∣∣Dγ A(y) –
(
Dγ A

)
B(x,jr)

∣∣dy

≤ C
∥∥Dγ A

∥∥∗.
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Note that

∣∣(Dγ A
)

B(x,jr) –
(
Dγ A

)
B(x,r)

∣∣

≤
j∑

k=

∣∣(Dγ A
)

B(x,k r) –
(
Dγ A

)
B(x,k–r)

∣∣

≤ nj
∥∥Dγ A

∥∥∗.

Then

∣∣(Dγ A
)

B(x,
√

n|x–y|) –
(
Dγ A

)
B(x,r)

∣∣
≤ ∣∣(Dγ A

)
B(x,

√
n|x–y|) –

(
Dγ A

)
B(x,jr)

∣∣ +
∣∣(Dγ A

)
B(x,jr) –

(
Dγ A

)
B(x,r)

∣∣
≤ Cj

∥∥Dγ A
∥∥∗.

Thus

∣∣Dγ Ā(y)
∣∣ =

∣∣Dγ A(y) –
(
Dγ A

)
B(x,

√
n|x–y|)

∣∣
≤ ∣∣Dγ A(y) –

(
Dγ A

)
B(x,r)

∣∣ +
∣∣(Dγ A

)
B(x,

√
n|x–y|) –

(
Dγ A

)
B(x,r)

∣∣
≤ ∣∣Dγ A(y) –

(
Dγ A

)
B(x,r)

∣∣ + Cj
∥∥Dγ A

∥∥∗. (.)

Combining with (.), (.), and (.), then (.) is proved. �

Finally, we present a relationship between essential supremum and essential infimum.

Lemma . [] Let f be a real-valued nonnegative function and measurable on E. Then

(
ess inf

x∈E
f (x)

)–
= ess sup

x∈E


f (x)

.

4 A local Guliyev-type estimates
In the following theorem we get Guliyev-type local estimate (see, for example, [, ]) for
the operator TA,m

�,α .

Theorem . Let � ∈ Ls(Sn–),  ≤ s′ < p < n/α, and let /q = /p – α/n. Let A be a func-
tion defined on R

n. Suppose that it has derivatives of order m –  in BMO(Rn), then the
inequality

∥∥TA,m
�,α (f )

∥∥
Lq(B(x,r)) ≤ C

∑
|γ |=m–

∥∥Dγ A
∥∥∗r

n
q

∫ ∞

r
‖f ‖Lp(B(x,t))t– n

q – dt (.)

holds for any ball B(x, r), and for all f ∈ Lloc
p (Rn), where the constant C is independent of

f , r, and x.

Proof We write f as f = f + f, where f(y) = f (y)χB(x,r)(y), χB(x,r) denotes the characteristic
function of B(x, r). Then

∥∥TA,m
�,α (f )

∥∥
Lq(B(x,r)) ≤ ∥∥TA,m

�,α (f)
∥∥

Lq(B(x,r)) +
∥∥TA,m

�,α (f)
∥∥

Lq(B(x,r)).
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Since f ∈ Lp(Rn), by the boundedness of TA
�,α from Lp(Rn) to Lq(Rn) (Theorem A) we get

∥∥TA,m
�,α (f)

∥∥
Lq(B(x,r)) ≤ ∥∥TA,m

�,α (f)
∥∥

Lq(Rn)

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗‖f‖Lp(Rn)

= C
∑

|γ |=m–

∥∥Dγ A
∥∥∗‖f ‖Lp(B(x,r)).

Moreover,

‖f ‖Lp(B(x,r)) ≤ Cr
n
s′ –α‖f ‖Lp(B(x,r))

∫ ∞

r

dt
tn–α+

≤ Cr
n
q ‖‖L s′p

p–s′
(B(x,r))

∫ ∞

r
‖f ‖Lp(B(x,t))

dt
tn–α+

≤ Cr
n
q

∫ ∞

r
‖f ‖Lp(B(x,t))‖‖L s′p

p–s′
(B(x,t))

dt
tn–α+ .

Thus

∥∥TA,m
�,α (f)

∥∥
Lq(B(x,r))

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗r

n
q

∫ ∞

r
‖f ‖Lp(B(x,t))t– n

q
dt
t

. (.)

Let �i = (B(x, j+r)) \ (B(x, jr)), and let x ∈ B(x, r). By Lemma . we get

∣∣TA,m
�,α (f)(x)

∣∣ ≤
∣∣∣∣
∫

(B(x,r))c

Rm(A; x, y)
|x – y|n–α+m– �(x – y)f (y) dy

∣∣∣∣

≤ C
∞∑
j=

∫
�i

|�(x – y)f (y)|
|x – y|n–α

×
(

j
∑

|γ |=m–

∥∥Dγ A
∥∥∗ +

∑
|γ |=m–

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣
)

dy

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∞∑
j=

j
∫

�i

|�(x – y)f (y)|
|x – y|n–α

dy

+ C
∑

|γ |=m–

∞∑
j=

∫
�i

|�(x – y)f (y)|
|x – y|n–α

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣dy

= I + I. (.)

By Hölder’s inequality we have

∫
�i

|�(x – y)f (y)|
|x – y|n–α

dy ≤
(∫

�i

∣∣�(x – y)
∣∣s dy

) 
s
(∫

�i

|f (y)|s′
|x – y|(n–α)s′ dy

) 
s′

.
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When x ∈ B(x, s) and y ∈ �i, then by a direct calculation, we can see that j–r ≤ |y – x| <
j+r. Hence

(∫
�i

∣∣�(x – y)
∣∣s dy

) 
s
≤ C‖�‖Ls(Sn–)

∣∣B(
x, j+r

)∣∣ 
s . (.)

We also note that if x ∈ B(x, r), y ∈ B(x, r)c, then 
 |x – y| ≤ |x – y| ≤ 

 |x – y|. Conse-
quently

(∫
�i

|f (y)|s′
|x – y|(n–α)s′ dy

) 
s′ ≤ 

|B(x, j+r)|–α/n

(∫
B(x,j+r)

∣∣f (y)
∣∣s′ dy

) 
s′

. (.)

Then

I ≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∞∑
j=

j
(
j+r

)α–n
(∫

B(x,j+r)

∣∣f (y)
∣∣s′ dy

) 
s′

. (.)

Since s′ < p, it follows from Hölder’s inequality that

(∫
B(x,j+r)

∣∣f (y)
∣∣s′ dy

) 
s′ ≤ C‖f ‖Lp(B(x,j+r))‖‖L s′p

p–s′
(B(x,j+r)). (.)

Then

I ≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∞∑
j=

j
(
j+r

)α–n
(∫

B(x,j+s)

∣∣f (y)
∣∣q′

dy
) 

q′

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∞∑
j=

(
 + ln

j+r
r

)(
j+r

)α–n‖f ‖Lp(B(x,j+r))‖‖L s′p
p–s′

(B(x,j+r))

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∞∑
j=

∫ j+l

j+r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))‖‖L s′p

p–s′
(B(x,t))

dt
r–α+n/s′

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))‖‖L s′p

p–s′
(B(x,t))

dt
t–α+n/s′ .

Then

I ≤ C
∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t– n

q – dt. (.)

On the other hand, by Hölder’s inequality and (.), (.), we have

∫
�i

|�(x – y)f (y)|
|x – y|n–α

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣dy

≤
(∫

�i

∣∣�(x – y)
∣∣s dy

) 
s
(∫

�i

|Dγ A(y) – (Dγ A)B(x,r)f (y)|s′
|x – y|(n–α)s′ dy

) 
s′

≤ C
∑

|γ |=m–

∞∑
j=

(
j+r

)α–n
(∫

B(x,j+r)

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣s′ ∣∣f (y)
∣∣s′ dy

) 
s′

.
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Applying Hölder’s inequality we get

(∫
B(x,j+r)

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣s′ ∣∣f (y)
∣∣s′ dy

) 
s′

≤ C‖f ‖Lp(B(x,j+r))
∥∥Dγ A(·) –

(
Dγ A

)
B(x,r)

∥∥
L

ps′
p–s′ (B(x,j+r))

.

Consequently,

I ≤ C
∑

|γ |=m–

∞∑
j=

∫ j+r

j+r

(
j+r

)α–n‖f ‖Lp(B(x,t))

× ∥∥Dγ A(·) –
(
Dγ A

)
B(x,r)

∥∥
L

ps′
p–s′ (B(x,t))

dt

≤ C
∑

|γ |=m–

∫ ∞

r
‖f ‖Lp(B(x,t))

× ∥∥Dγ A(·) –
(
Dγ A

)
B(x,r)

∥∥
L

ps′
p–s′ (B(x,t))

dt
t–α+n/s′ .

Then it follows from Lemma . that
∥∥Dγ A(·) –

(
Dγ A

)
B(x,r)

∥∥
L

ps′
p–s′ (B(x,t))

≤
(∫

B(x,t)

∣∣Dγ A(y) –
(
Dγ A

)
B(x,r)

∣∣ ps′
p–s′ dy

) p–s′
ps′

≤ C
∥∥Dγ A

∥∥∗

(
 + ln

t
r

)
r

n(p–s′)
ps′

≤ C
∥∥Dγ A

∥∥∗

(
 + ln

t
r

)
r

n
s′ –αr– n

q .

Then

I ≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t– n

q – dt. (.)

Combining the estimates of I and I, we have

sup
x∈B(x,r)

∣∣TA,m
�,α (f)(x)

∣∣

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t– n

q – dt.

Then we get
∥∥TA,m

�,α (f)
∥∥

Lq(B(x,r))

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗r

n
q

∫ ∞

r
‖f ‖Lp(B(x,t))t– n

q – dt. (.)

This completes the proof of Theorem .. �
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5 Proof of Theorem 1.1
Since f ∈ Mp,ϕ (Rn), by Lemma . and the non-decreasing, with respect to t, of the norm
‖f ‖Lp(B(x,t)), we get

‖f ‖Lp(B(x,t))

ess inf<t<τ<∞ϕ(x, τ )τ
n
p

≤ ess sup
<t<τ<∞

‖f ‖Lp(B(x,t))

ϕ(x, τ )τ
n
p

≤ sup
τ>

‖f ‖Lp(B(x,τ ))

ϕ(x, τ )τ
n
p

≤ ‖f ‖Mp,ϕ
.

Since (ϕ,ϕ) satisfies (.), we have

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t– n

q – dt

=
∫ ∞

r

‖f ‖Lp(B(x,t))

ess inft<τ<∞ϕ(x, τ )τ
n
p

(
 + ln

t
r

)
ess inft<τ<∞ϕ(x, τ )τ

n
p

t
n
q

dt
t

≤ ‖f ‖Mp,ϕ

∫ ∞

r

(
 + ln

t
r

)
ess inft<τ<∞ϕ(x, τ )τ

n
p

t
n
q

dt
t

≤ C‖f ‖Mp,ϕ
ϕ(x, t).

Then by (.) we get

∥∥TA,m
�,α (f )

∥∥
Mq,ϕ

= sup
x∈Rn ,t>


ϕ(x, t)

(


|B(x, t)|
∫

B(x,t)

∣∣TA,m
�,α (f )(y)

∣∣q dy
)/q

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗ sup

x∈Rn ,t>


ϕ(x, t)

∫ ∞

r

(
 + ln

t
r

)
‖f ‖Lp(B(x,t))t– n

q – dt

≤ C
∑

|γ |=m–

∥∥Dγ A
∥∥∗‖f ‖Mp,ϕ

.
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