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Abstract
In this paper, we consider well-posedness of symmetric vector quasi-equilibrium
problems. Based on a nonlinear scalarization technique, we first establish the
bounded rationality modelM for symmetric vector quasi-equilibrium problems, and
then introduce a well-posedness concept for symmetric vector quasi-equilibrium
problems, which unifies its Hadamard and Tykhonov well-posedness. Finally,
sufficient conditions on the well-posedness for symmetric vector quasi-equilibrium
problems are given.
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1 Introduction
In , Fu [] introduced the symmetric vector quasi-equilibrium problem (for short,
SVQEP) which is a generalization of equilibrium problem proposed by Blum and Oettli []
and gave an existence theorem for a weak Pareto solution for (SVQEP). It provides a very
general model for a wide range of problems, for example, the vector optimization problem,
the vector variational inequality problem, the vector complementarity problem and the
vector saddle point problem. In , Farajzadeh [] considered existence theorem of
the solution of (SVQEP) in the Hausdorff topological vector space. In , Chen and
Gong [] studied the stability of the set of solutions for (SVQEP), proved a generic stability
theorem and gave an existence theorem for essentially connected components of the set of
solutions for (SVQEP). In , Zhang [] introduced the notion of a generalized Levitin-
Polyak well-posedness and gave sufficient conditions of the generalized Levitin-Polyak
well-posedness for (SVQEP). Recently, by using the same roadmap as Deng and Xiang [],
Zhang et al. [] introduce and study well-posedness in connection with (SVQEP), which
unifies its Hadamard and Levitin-Polyak well-posedness.

As is well known, the notion of well-posedness can be divided into two different
groups: Hadamard type and Tykhonov type [, ]. Roughly speaking, Hadamard type well-
posedness is based on the continuous dependence of the optimal solution from the data of
the considered optimization problem. Tykhonov types well-posedness such as Tikhonov
and Levitin-Polyak well-posedness deal with the behavior of a prescribed class of sequence
of approximate solutions. Two kinds of well-posedness have been generalized to various
problems related to vector optimization, e.g., vector optimization problems [–], vec-
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tor variational inequality problems [, ], and vector equilibrium problems [–, ].
Among many approaches for dealing with Tykhonov types well-posedness for vector op-
timization problems, vector variational inequality problems, and vector equilibrium prob-
lems, the nonlinear scalarization technique is of considerable interest. On the other hand,
almost all the literature deals with directly specific notions of well-posedness, especially
Tykhonov types of well-posedness, while some researchers have investigated a unified
approaches to two different types of well-posedness. For one thing, the notion of ex-
tended well-posedness for vector optimization problems has been investigated in [].
In some sense this notion unifies the ideas of Tykhonov and Hadamard well-posedness,
allowing perturbations of the objective function and the feasible set. For another, well-
posedness under perturbations (called also parametric well-posedness) for vector equilib-
rium problems has also been investigated in []. This kind of well-posedness is a blending
of Hadamard and Tikhonov notions, and it gives also links to stability theory and seems
well adapted to describe the behaviors of solutions under perturbations.

In this paper, we will introduce a well-posedness concept for (SVQEP), which unifies its
Hadamard and Tykhonov well-posedness. The distinguishing feature of our work lies in
the use of the scalarization technique and the bounded rationality model M (see [–])
to establish well-posedness results of (SVQEP). It is worthy that our research method is
different from extended well-posedness and parametric well-posedness. Finally, by using
the conditions of the existence theorem of the solutions to (SVQEP) (see []), we obtain
sufficient conditions of the well-posedness for (SVQEP).

2 Preliminaries
Throughout this paper, unless otherwise specified, let C and D be a compact metric space
supplied with distance d, d, respectively. Let (Z,‖ · ‖) be a Banach space and P be a
nonempty, closed, convex, and pointed cone in Z with apex at the origin and int P �= ∅.

Let S : C × D ⇒ C and T : C × D ⇒ D be two set-valued mappings and F , G : C × D →
Z be two vector-valued mappings. Fu [] defined a class of symmetric vector quasi-
equilibrium problems (for short, SVQEP), which consist in finding (x, y) ∈ C × D such
that

(x, y) ∈ (S × T)(x, y), ()

F(u, y) – F(x, y) /∈ – int P, ∀u ∈ S(x, y) ()

and

G(x, v) – G(x, y) /∈ – int P, ∀v ∈ T(x, y). ()

Now we introduce the notion of Tykhonov approximating solution sequence for
(SVQEP).

Definition . A sequence {(xn, yn)} ∈ C ×D is called a Tykhonov approximating solution
sequence for (SVQEP) if there exists {εn} ⊂R


+ with εn →  such that

(xn, yn) ∈ (S × T)(xn, yn), ()

F(u, yn) – F(xn, yn) + εne /∈ – int P, ∀u ∈ S(xn, yn) ()
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and

G(xn, v) – G(xn, yn) + εne /∈ – int P, ∀v ∈ T(xn, yn). ()

Next, we introduce a nonlinear scalarization function and their related properties. For
any fixed e ∈ int P, the nonlinear scalarization function is defined by

ξe(z) := inf{r ∈ R : z ∈ re – P}, ∀z ∈ Z.

It is well known from [–] that ξe is continuous, homogeneous, (strictly) monotone
(i.e., ξe(z) ≤ ξe(z) if z – z ∈ P and ξe(z) < ξe(z) if z – z ∈ int P) and convex. For any
fixed e ∈ int P, z ∈ Z, and r ∈R, then ξe(z) ≥ r is equivalent to z /∈ re – int P.

Remark . Note that the nonlinear scalarization function ξe is not strongly monotone
(see []). It is for the reason that the function ξe is more useful in dealing with weakly
efficient points.

Finally, we recall some useful definitions and lemmas.
Let (X, d) be a metric space. Denote a family of all nonempty compact subsets of X by

K(X). For any A, B ∈ K(X), let

h(A, B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}

denote the Hausdorff metric on K(X). It is well known that (K(X), h) is complete if and
only if (X, d) is complete.

Definition . (see []) Let F : X ⇒ Y be a set-valued mapping.
. F is said to be upper semicontinuous at x ∈ X if for any open set U ⊃ F(x), there is an

open neighborhood O(x) of x such that U ⊃ F(x′) for each x′ ∈ O(x);
. F is said to be lower semicontinuous at x if for any open set U ∩ F(x) �= ∅, there is an

open neighborhood O(x) of x such that U ∩ F(x′) �= ∅, for each x′ ∈ O(x);
. F is said to be an usco mapping if F is upper semicontinuous and F(x) is nonempty

compact for each x ∈ X ;
. F is said to be closed if Graph(F) is closed, where

Graph(F) = {(x, y) ∈ X × Y : x ∈ X, y ∈ F(x)} is the graph of F .

Lemma . (see []) If F : X ⇒ Y is closed and Y is compact, then F is upper semicon-
tinuous at each x ∈ X.

3 A unified approach to notions of well-posedness for (SVQEP)
Let Λ be the collection of all problem λ = (S, T , F , G) such that

(a) S : C × D ⇒ C and T : C × D ⇒ D are continuous with nonempty compact values;
(b) F , G : C × D → Z are continuous;
(c) sup(x,y)∈C×D ‖F(x, y)‖ < +∞ and sup(x,y)∈C×D ‖G(x, y)‖ < +∞;
(d) there exists (x, y) ∈ C × D meets (), (), and ().
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For any λ = (S, T, F, G), λ = (S, T, F, G) ∈ Λ, we define

ρ(λ,λ) : = sup
(x,y)∈C×D

h
(
S(x, y), S(x, y)

)
+ sup

(x,y)∈C×D
h

(
T(x, y), T(x, y)

)

+ sup
(x,y)∈C×D

∥∥F(x, y) – F(x, y)
∥∥ + sup

(x,y)∈C×D

∥∥G(x, y) – G(x, y)
∥∥,

where h, h are Hausdorff metrics on K(C) and K(D), respectively. By Proposition . in
[], it is easy to prove that (Λ,ρ) is a complete metric space.

Let X∗ = C × D, x∗ = (x, y), and d = max{d, d}. The bounded rationality model M =
{Λ, X∗, f ,Φ} for (SVQEP) corresponding to λ ∈ Λ is defined as follows:

(i) (Λ,ρ) is a metric space and (X∗, d) is a compact metric space;
(ii) the feasible set of λ is defined by

f (λ) :=
{

x∗ ∈ X∗ : x∗ ∈ (S × T)
(
x∗)};

(iii) the solution set of λ is defined by

E(λ) :=
{

x∗ ∈ X∗ : x∗ meets (), () and ()
}

;

(iv) the rationality function of λ is defined by

Φ
(
λ, x∗)

:= Max
{

sup
u∈S(x,y)

{
–ξe

(
F(u, y) – F(x, y)

)}
, sup

v∈T(x,y)

{
–ξe

(
G(x, v) – G(x, y)

)}}
.

Remark . In (iv), a nonlinear scalarization function ξe is applied to reduce (SVQEP)
to a scalar optimization problem since (SVQEP) does not possess linearity and convexity.
Referring to [], if one needs to solve exactly one representation to catch all the solution
of (SQVEP), then the nonlinear scalarization technique is feasible.

Example . Let C = D = [, ], P = R+, and e = . For any (x, y) ∈ C × D, assume that

S(x, y) = T(x, y) = [, ],

F(x, y) = G(x, y) = –(x + y),

and, for any (u, v) ∈ C × D,

F(u, y) = –(u + y), G(x, v) = –(x + v).

Then it is easy to see that

f (λ) =
{

(x, y) : x ∈ [, ], y ∈ [, ]
}

,

Φ
(
λ, x∗) = Max

{
sup

u∈[,]

{
–ξe(x – u)

}
, sup

v∈[,]

{
–ξe(y – v)

}}
.

. If x∗ ∈ f (λ), then x ∈ [, ] and y ∈ [, ]. Obviously, Φ(λ, x∗) ≥ .
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. For any λ ∈ Λ, one has

E(λ) =
{

(x, y) : x = , y = 
} �= ∅.

. It is easy to check that (x, y) ∈ E(λ) if and only if Φ(λ, x∗) = . Moreover, taking x = ,
y = 

 , then (x, y) = (, 
 ) /∈ E(λ) and Φ(λ, x∗) =  �= .

Lemma .
. ∀λ ∈ Λ, E(λ) �= ∅ and ∀x∗ ∈ f (λ), Φ(λ, x∗) ≥ .
. ∀λ ∈ Λ, Φ(λ, x∗) ≤ ε if and only if x∗ meets () and ().
. x∗ ∈ E(λ) if and only if Φ(λ, x∗) = .

Proof . By the definition of Λ, ∀λ ∈ Λ, E(λ) �= ∅. If x∗ = (x, y) ∈ f (λ), then x ∈ S(x, y), y ∈
T(x, y) and

Φ
(
λ, x∗) ≥ Max

{{
–ξe

(
F(x, y) – F(x, y)

)}
,
{

–ξe
(
G(x, y) – G(x, y)

)}}
= .

. If x∗ meets () and (), then

ξe
(
F(u, y) – F(x, y)

) ≥ –ε, ∀u ∈ S(x, y)

and

ξe
(
G(x, v) – G(x, y)

) ≥ –ε, ∀v ∈ T(x, y).

Thus, we have

Φ
(
λ, x∗) = Max

{
sup

u∈S(x,y)

{
–ξe

(
F(u, y) – F(x, y)

)}
, sup

v∈T(x,y)

{
–ξe

(
G(x, v) – G(x, y)

)}} ≤ ε.

Conversely, if Φ(λ, x∗) ≤ ε, then we get

–ξe
(
F(u, y) – F(x, y)

) ≥ ε, ∀u ∈ S(x, y)

and

–ξe
(
G(x, v) – G(x, y)

) ≥ ε, ∀v ∈ T(x, y).

It follows that

F(u, y) – F(x, y) + εe /∈ – int P, ∀u ∈ S(x, y)

and

G(x, v) – G(x, y) + εe /∈ – int P, ∀v ∈ T(x, y).

Hence, x∗ meets () and ().
. Using the above results, this result can be obtained. �
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Let x∗
n = (xn, yn) and x∗

nk
= (xnk , ynk ). By Lemma ., we get some new representations on

()-() as follows:

() ⇐⇒ x∗ ∈ f (λ); () and () ⇐⇒ Φ
(
λ, x∗) = ;

() ⇐⇒ x∗
n ∈ f (λ); () and () ⇐⇒ Φ

(
λ, x∗

n
) ≤ εn.

Therefore, the set of solutions for the problem λ ∈ Λ and λn ∈ Λ (n = , , , . . .) is defined
as

E(λ) :=
{

x∗ ∈ X∗ : x∗ ∈ f (λ),Φ
(
λ, x∗) = 

}
,

E(λn) :=
{

x∗ ∈ X∗ : x∗ ∈ f (λn),Φ
(
λn, x∗) = 

}
.

The Tykhonov approximating solution set for the problem λ ∈ Λ and λn ∈ Λ (n =
, , , . . .) is defined as

E(λ, εn) :=
{

x∗ ∈ X∗ : x∗ ∈ f (λ),Φ
(
λ, x∗) ≤ εn

}
,

E(λn, εn) :=
{

x∗ ∈ X∗ : x∗ ∈ f (λn),Φ
(
λn, x∗) ≤ εn

}
.

Tykhonov well-posedness for (SVQEP) corresponding to the problem λ is given as fol-
lows.

Definition .
. If ∀x∗

n ∈ E(λ, εn), εn >  with εn → , there must exist a subsequence {x∗
nk

} ⊂ {x∗
n}

such that x∗
nk

→ x∗ ∈ E(λ), then the problem λ is said to be generalized Tykhonov
well-posed (for short GT-wp).

. If E(λ) = {x∗} (a singleton), ∀x∗
n ∈ E(λ, εn), εn >  with εn → , we must have x∗

n → x∗,
then the problem λ is said to be Tykhonov well-posed (for short T-wp).

Referring to [], Hadamard well-posedness for (SVQEP) corresponding to the problem
λ is defined as follows.

Definition .
. If ∀λn ∈ Λ, λn → λ, ∀x∗

n ∈ E(λn), there must exist a subsequence {x∗
nk

} ⊂ {x∗
n} such

that x∗
nk

→ x∗ ∈ E(λ), then the problem λ is said to be generalized Hadamard
well-posed (for short GH-wp).

. If E(λ) = {x∗} (a singleton), ∀λn ∈ Λ, λn → λ, ∀x∗
n ∈ E(λn), we must have x∗

n → x∗,
then the problem λ is said to be Hadamard well-posed (for short H-wp).

Finally, we establish a well-posedness concept for (SVQEP) corresponding to the prob-
lem λ, which unifies its Hadamard and Tykhonov well-posedness.

Definition .
. If ∀λn ∈ Λ, λn → λ, ∀x∗

n ∈ E(λn, εn), εn >  with εn → , there must exist a
subsequence {x∗

nk
} ⊂ {x∗

n} such that x∗
nk

→ x∗ ∈ E(λ), then the problem λ is said to be
generalized well-posed (for short G-wp).

. If E(λ) = {x∗} (a singleton), ∀λn ∈ Λ, λn → λ, ∀x∗
n ∈ E(λn, εn), εn >  with εn → , we

must have x∗
n → x∗, then the problem λ is said to be well-posed (for short wp).
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4 Sufficient conditions for well-posedness of (SVQEP)
Assume that the bounded rationality model M = {Λ, X∗, f ,Φ} for (SVQEP) is given. In or-
der to show sufficient conditions for well-posedness of (SVQEP), we first give the following
lemmas.

Lemma . f : Λ ⇒ X∗ is an usco mapping.

Proof Since X∗ is a compact metric space, by Lemma ., it suffices to show that Graph(f )
is closed. That is to say, ∀λn ∈ Λ, λn → λ ∈ Λ, ∀x∗

n ∈ f (λn), x∗
n → x∗, we need to show that

x∗ ∈ f (λ).
Let h(Sn(xn, yn), S(xn, yn)) ≤ εn and h(Tn(xn, yn), T(xn, yn)) ≤ εn. For each n = , , , . . . ,

since (xn, yn) ∈ f (λn), then there exists (xn, yn) ∈ X∗ such that (xn, yn) ∈ (Sn × Tn)(xn, yn). So
there exists x′

n ∈ S(xn, yn) such that d(xn, x′
n) ≤ εn. By

d
(
x′

n, x
) ≤ d

(
x′

n, xn
)

+ d(xn, x) → ,

we get x′
n → x. Note that set-value mapping S is continuous on X∗, then we get

d
(
x, S(x, y)

) ≤ d
(
x, x′

n
)

+ d
(
x′

n, S(xn, yn)
)

+ h
(
S(xn, yn), S(x, y)

) → .

By compactness of S(x, y), we have x ∈ S(x, y). Similarly, we can prove that y ∈ T(x, y).
Hence, (x, y) ∈ (S × T)(x, y). It shows that x∗ ∈ f (λ). �

Lemma . (see [, ]) Suppose that f : Λ ⇒ X∗ is a usco mapping. Then, for any λn → λ

and any x∗
n ∈ f (λn), there is a subsequence {x∗

nk
} ⊂ {x∗

n} such that x∗
nk

→ x∗ ∈ f (λ).

Lemma . Φ is lower semicontinuous at (λ, x∗).

Proof We only need to show that ∀ε > , ∀λn = (Sn, Tn, Fn, Gn) ∈ Λ, λn → λ = (S, T , F , G) ∈
Λ, ∀x∗

n ∈ X∗, x∗
n → x∗ ∈ X∗, there exists a positive integer N such that, ∀n ≥ N ,

Φ
(
λn, x∗

n
)

> Φ
(
λ, x∗) – ε. ()

Let

Φ
(
λ, x∗) := sup

u∈S(x,y)

{
–ξe

(
F(u, y) – F(x, y)

)}

and

Φ
(
λ, x∗) := sup

v∈T(x,y)

{
–ξe

(
G(x, v) – G(x, y)

)}
.

By the definition of the least upper bound, there exists u ∈ S(x, y) such that

–ξe
(
F(u, y) – F(x, y)

)
> Φ

(
λ, x∗) –

ε


. ()

Note that sup(x,y)∈C×D h(Sn(x, y), S(x, y)) →  and h(S(xn, yn), S(x, y)) → , we have

h
(
Sn(xn, yn), S(x, y)

) ≤ h
(
Sn(xn, yn), S(xn, yn)

)
+ h

(
S(xn, yn), S(x, y)

) → . ()
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By (), there exists un ∈ Sn(xn, yn) such that d(un, u) → . Since F is continuous on
C × D and sup(x,y)∈C×D ‖Fn(x, y) – F(x, y)‖ → , letting n → ∞, we have

∥∥Fn(un, yn) – Fn(xn, yn) –
(
F(u, y) – F(x, y)

)∥∥ → . ()

Using continuity of ξe and (), we have

–ξe
(
Fn(un, yn) – Fn(xn, yn)

) → –ξe
(
F(u, y) – F(x, y)

)
. ()

By (), there exists a positive integer N such that, for any n ≥ N,

–ξe
(
Fn(un, yn) – Fn(xn, yn)

)
> –ξe

(
F(u, y) – F(x, y)

)
–

ε


. ()

From () and (), for any n ≥ N, we get

Φ
(
λn, x∗

n
)

= sup
u∈Sn(xn ,yn)

{
–ξe

(
Fn(u, yn) – Fn(xn, yn)

)}

≥ –ξe
(
Fn(un, yn) – Fn(xn, yn)

)

> –ξe
(
F(u, y) – F(x, y)

)
–

ε



> Φ
(
λ, x∗) – ε. ()

Similarly, we can prove that there exists a positive integer N such that, for any n ≥ N,

Φ
(
λn, x∗

n
)

> Φ
(
λ, x∗) – ε. ()

Let N = max{N, N}, ∀n ≥ N , by () and (), we get (), that is,

Φ
(
λn, x∗

n
) ≥ Max

{
Φ

(
λ, x∗),Φ

(
λ, x∗)} – ε = Φ

(
λ, x∗) – ε. �

Finally, we give sufficient conditions for G-wp and wp of (SVQEP) corresponding to
λ ∈ Λ.

Theorem .
. Every λ ∈ Λ is G-wp.
. Let λ ∈ Λ and suppose furthermore E(λ) = {x∗} (a singleton), then λ is wp.

Proof . ∀λn ∈ Λ, λn → λ, ∀x∗
n ∈ E(λn, εn), εn >  with εn → , then we have x∗

n ∈ f (λn) and
Φ(λn, x∗

n) ≤ εn. First, by Lemma . and Lemma ., if λn → λ, then there exists {x∗
nk

} ⊂
{x∗

n} such that x∗
nk

→ x∗ ∈ f (λ). Secondly, by Φ(λn, x∗
n) ≤ εn and Lemma ., we have

 ≤ Φ
(
λ, x∗) ≤ lim inf

nk→∞ Φ
(
λnk , x∗

nk

) ≤ lim inf
nk→∞ εnk = ,

which implies that Φ(λ, x∗) = . It shows that the problem λ is G-wp.
. By way of contradiction. If the sequence {x∗

n} does not converge x∗, then there exist
an open neighborhood O at x∗ and a subsequence {x∗

nk
} of {x∗

n} such that x∗
nk

/∈ O. Since
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E(λ) = {x∗} (a singleton), using the above proof, we get x∗
nk

→ x∗. This is a contradiction
to x∗

nk
/∈ O. �

Example . Let C = D = [, ] × [, ], Z = R
, P = R


+, and e = (, ). For any (x, y) ∈

X × Y , assume that

S(x, y) = T(x, y) = [, ] × [, ], ∀x, y ∈ C × D,

F(x, y) = G(x, y) = –(x + y),

and for any (u, v) ∈ C × D,

F(u, y) = –(u + y), G(x, y) = –(x + v).

Then it is easy to see that, for λ = (S, T , F , G) ∈ Λ,

f (λ) =
{

(x, y)|x ∈ [, ] × [, ], y ∈ [, ] × [, ]
}

and

E(λ) =
{

(x, y) ∈ f (λ)|x = (x, x), y = (y, y), max{x, x} = , max{y, y} = 
}

.

Moreover, by Theorem ., the problem λ must be G-wp.

Finally, by Definition ., Definition ., Definition ., and Theorem ., it is easy to
check the following.

Corollary .
. Every λ ∈ Λ must be GT-wp and GH-wp.
. Let λ ∈ Λ, if E(λ) = {x∗} (a singleton), then λ must be T-wp and H-wp.

Remark . In Theorem . and Corollary ., λ ∈ Λ means that the problem λ =
(S, T , F , G) holds for all conditions (a), (b), (c), and (d).
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