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Abstract
In this paper, we consider the degenerate poly-Bernoulli polynomials. We present
several explicit formulas and recurrence relations for these polynomials. Also, we
establish a connection between our polynomials and several known families of
polynomials.
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1 Introduction
The degenerate Bernoulli polynomials βn(λ, x) (λ �= ) were introduced by Carlitz [] and
rediscovered by Ustinov [] under the name Korobov polynomials of the second kind. They
are given by the generating function

t
( + λt)/λ – 

( + λt)x/λ =
∑

n≥

βn(λ, x)
tn

n!
.

When x = , βn(λ) = βn(λ, ) are called the degenerate Bernoulli numbers (see []). We
observe that limλ→ βn(λ, x) = Bn(x), where Bn(x) is the nth ordinary Bernoulli polynomial
(see the references).

The poly-Bernoulli polynomials PB(k)
n (x) are defined by

Lik( – e–t)
et – 

ext =
∑

n≥

PB(k)
n (x)

tn

n!
,

where Lik(x) (k ∈ Z) is the classical polylogarithm function given by Lik(x) =
∑

n≥
xn

nk (see
[–]).

For  �= λ ∈ C and k ∈ Z, the degenerate poly-Bernoulli polynomials Pβ
(k)
n (λ, x) are de-

fined by Kim and Kim to be

Lik( – e–t)
( + λt)/λ – 

( + λt)x/λ =
∑

n≥

Pβ (k)
n (λ, x)

tn

n!
(see []). (.)

When x = , Pβ
(k)
n (λ) = Pβ

(k)
n (λ, ) are called degenerate poly-Bernoulli numbers. We ob-

serve that limλ→ Pβ
(k)
n (λ, x) = PB(k)

n (x).
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The goal of this paper is to use umbral calculus to obtain several new and interesting
identities of degenerate poly-Bernoulli polynomials. To do that we recall the umbral cal-
culus as given in [, ]. We denote the algebra of polynomials in a single variable x over C
by � and the vector space of all linear functionals on � by �∗. The action of a linear func-
tional L on a polynomial p(x) is denoted by 〈L | p(x)〉. We define the vector space structure
on �∗ by 〈cL + c′L′ | p(x)〉 = c〈L | p(x)〉 + c′〈L′ | p(x)〉, where c, c′ ∈C. We define the algebra
of formal power series in a single variable t to be

H =
{

f (t) =
∑

k≥

ak
tk

k!

∣∣∣ ak ∈C

}
. (.)

A power series f (t) ∈H defines a linear functional on � by setting

〈
f (t) | xn〉 = an, for all n ≥  (see [, –]). (.)

By (.) and (.), we have

〈
tk | xn〉 = n!δn,k , for all n, k ≥ , (.)

where δn,k is the Kronecker symbol. Let fL(t) =
∑

n≥〈L | xn〉 tn

n! . From (.), we have 〈fL(t) |
xn〉 = 〈L | xn〉. So, the map L 
→ fL(t) is a vector space isomorphism from �∗ onto H. Thus,
H is thought of as set of both formal power series and linear functionals. We call H the
umbral algebra. The umbral calculus is the study of umbral algebra.

The order O(f (t)) of the non-zero power series f (t) ∈H is the smallest integer k for which
the coefficient of tk does not vanish. Suppose that f (t), g(t) ∈ H such that O(f (t)) =  and
O(g(t)) = , then there exists a unique sequence sn(x) of polynomials such that

〈
g(t)

(
f (t)

)k | sn(x)
〉

= n!δn,k , (.)

where n, k ≥ . The sequence sn(x) is called the Sheffer sequence for (g(t), f (t)), which is
denoted by sn(x) ∼ (g(t), f (t)) (see [, ]). For f (t) ∈ H and p(x) ∈ �, we have 〈eyt | p(x)〉 =
p(y), 〈f (t)g(t) | p(x)〉 = 〈g(t) | f (t)p(x)〉, and

f (t) =
∑

n≥

〈
f (t) | xn〉 tn

n!
, p(x) =

∑

n≥

〈
tn | p(x)

〉xn

n!
(.)

(see [, ]). From (.), we obtain 〈tk | p(x)〉 = p(k)() and 〈 | p(k)(x)〉 = p(k)(), where p(k)()
denotes the kth derivative of p(x) with respect to x at x = . So, we get tkp(x) = p(k)(x) =
dk

dxk p(x), for all k ≥ . Let sn(x) ∼ (g(t), f (t)), then we have


g(f̄ (t))

eyf̄ (t) =
∑

n≥

sn(y)
tn

n!
, (.)

for all y ∈ C, where f̄ (t) is the compositional inverse of f (t) (see [, ]). For sn(x) ∼
(g(t), f (t)) and rn(x) ∼ (h(t),�(t)), let sn(x) =

∑n
k= cn,krk(x), then we have
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cn,k =

k!

〈
h(f̄ (t))
g(f̄ (t))

(
�
(
f̄ (t)

))k
∣∣∣ xn

〉
(.)

(see [, ]).
From (.), we see that Pβ

(k)
n (λ, x) is the Sheffer sequence for the pair

(
g(t), f (t)

)
=

(
et – 

Lik( – e– 
λ

(eλt–))
,


λ

(
eλt – 

))
. (.)

In this paper, we will use umbral calculus in order to derive some properties, explicit
formulas, recurrence relations, and identities as regards the degenerate poly-Bernoulli
polynomials. Also, we establish a connection between our polynomials and several known
families of polynomials.

2 Explicit formulas
In this section we present several explicit formulas for the degenerate poly-Bernoulli poly-
nomials, namely Pβ

(k)
n (λ, x). To do so, we recall that Stirling numbers S(n, k) of the first

kind can be defined by means of exponential generating functions as
∑

�≥j S(�, j) t�
�! =


j! logj( + t) and can be defined by means of ordinary generating functions as

(x)n =
n∑

m=

S(n, m)xm ∼ (
, et – 

)
, (.)

where (x)n = x(x–)(x–) · · · (x–n+) with (x) = . For λ �= , we define (x | λ)n = λn(x/λ)n.
Sometimes, for simplicity, we denote the function et–

Lik (–e– 
λ

(eλt –))
by Gk(t).

First, we express the degenerate poly-Bernoulli polynomials in terms of degenerate poly-
Bernoulli numbers.

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

j=

n∑

�=j

(
n
�

)
S(�, j)λ�–jPβ

(k)
n–�(λ)xj.

Proof By (.), for sn(x) ∼ (g(t), f (t)) we have sn(x) =
∑n

j=

j! 〈g(f̄ (t))– f̄ (t)j | xn〉xj. Thus, in

the case of degenerate poly-Bernoulli polynomials (see (.)), we have


j!
〈
g
(
f̄ (t)

)– f̄ (t)j | xn〉

=

j!

〈
Lik( – e–t)

( + λt)/λ – 

(

λ

log( + λt)
)j ∣∣∣ xn

〉

= λ–j
〈

Lik( – e–t)
( + λt)/λ – 

∣∣∣
logj( + λt)

j!
xn

〉

= λ–j
〈

Lik( – e–t)
( + λt)/λ – 

∣∣∣
∑

�≥j

S(�, j)
λ�t�

�!
xn

〉

=
n∑

�=j

(
n
�

)
S(�, j)λ�–j

〈
Lik( – e–t)

( + λt)/λ – 

∣∣∣ xn–�

〉
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=
n∑

�=j

(
n
�

)
S(�, j)λ�–j

〈∑

m≥

Pβ (k)
m (λ)

tm

m!

∣∣∣ xn–�

〉

=
n∑

�=j

(
n
�

)
S(�, j)λ�–jPβ

(k)
n–�(λ),

which completes the proof. �

Note that Stirling numbers S(n, k) of the second kind can be defined by the exponential
generating functions as

∑

n≥k

S(n, k)
xn

n!
=

(et – )k

k!
. (.)

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

j=

( n∑

m=j

m–j∑

�=

(
m
j

)
S(n, m)S(m – j,�)λn–�–jPβ

(k)
� (λ)

)
xj.

Proof By (.), we have (x | λ)n =
∑n

m= S(n, m)λn–mxm ∼ (, 
λ

(eλt – )), and by (.), we
have

Gk(t)Pβ (k)
n (λ, x) ∼

(
,


λ

(
eλt – 

))
, (.)

which implies Gk(t)Pβ
(k)
n (λ, x) =

∑n
m= S(n, m)λn–mxm. Thus,

Pβ (k)
n (λ, x) =

n∑

m=

S(n, m)λn–m Lik( – e– 
λ

(eλt–))
et – 

xm

=
n∑

m=

S(n, m)λn–m Lik( – e–v)
( + λv)/λ – 

∣∣∣
v= 

λ
(eλt–)

xm

=
n∑

m=

∑

�≥

S(n, m)λn–mPβ
(k)
� (λ)

( 
λ

(eλt – ))�

�!
xm

=
n∑

m=

m∑

�=

S(n, m)λn–m–�Pβ
(k)
� (λ)

∑

j≥�

S(j,�)
λjtj

j!
xm

=
n∑

m=

m∑

�=

m∑

j=�

(
m
j

)
S(n, m)S(j,�)λn–m–�+jPβ

(k)
� (λ)xm–j

=
n∑

m=

m∑

�=

m–�∑

j=

(
m
j

)
S(n, m)S(m – j,�)λn–�–jPβ

(k)
� (λ)xj

=
n∑

j=

( n∑

m=j

m–j∑

�=

(
m
j

)
S(n, m)S(m – j,�)λn–�–jPβ

(k)
� (λ)

)
xj, (.)

which completes the proof. �
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Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

j=

( n–j∑

�=

n–j–�∑

m=

(
n – 

�

)(
n – �

j

)
λn–m–jS(n – j – �, m)B(n)

� Pβ (k)
m (λ)

)
xj.

Proof Note that xn ∼ (, t). Thus, by (.) and transfer formula, we have

Gk(t)Pβ (k)
n (λ, x) = x

(
λt

eλt – 

)n

x–xn = x
(

λt
eλt – 

)n

xn–

= x
∑

�≥

B(n)
�

λ�t�

�!
xn– = x

n–∑

�=

(
n – 

�

)
λ�B(n)

� xn––�

=
n–∑

�=

(
n – 

�

)
λ�B(n)

� xn–�.

Therefore, Pβ
(k)
n (λ, x) =

∑n–
�=

(n–
�

)
λ�B(n)

� Gk(t)–xn–�, which, by (.), completes the proof.
�

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

�=

(
�∑

m=

(–)m+�

(
n
�

)
(m + )!

(m + )k(� + )
S(� + , m + )

)
βn–�(λ, x).

Proof By (.), we have

Pβ (k)
n (λ, y) =

〈
Lik( – e–t)

( + λt)/λ – 
( + λt)y/λ

∣∣∣ xn
〉

=
〈

Lik( – e–t)
t

∣∣∣
t

( + λt)/λ – 
( + λt)y/λxn

〉

=
〈

Lik( – e–t)
t

∣∣∣
∑

�≥

β�(λ, y)
t�

�!
xn

〉

=
n∑

�=

(
n
�

)
β�(λ, y)

〈

t
∑

m≥

( – e–t)m

mk

∣∣∣ xn–�

〉

=
n∑

�=

n–�+∑

m=

(
n
�

)
β�(λ, y)

〈
(–)m(e–t – )m

mkt

∣∣∣ xn–�

〉
. (.)

Thus, by (.), we obtain

Pβ (k)
n (λ, y) =

n∑

�=

n–�∑

m=

(
n
�

)
β�(λ, y)

〈
(–)m+(m + )!

(m + )k

n–�+∑

j=m+

S(j, m + )
(–)j

j!
tj–

∣∣∣ xn–�

〉

=
n∑

�=

n–�∑

m=

(
n
�

)
β�(λ, y)

(–)m+(m + )!
(m + )k S(n – � + , m + )

(–)n–�+(n – �)!
(n – � + )!

=
n∑

�=

n–�∑

m=

(–)n+m–�

(
n
�

)
(m + )!

(m + )k(n – � + )
S(n – � + , m + )β�(λ, y),

which completes the proof. �
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Note that the above theorem has been obtained in Theorem . in [].

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =


n + 

n∑

�=

�∑

m=

(
n + 

n – �, m,� – m + 

)
Pβ (k)

m βn–�(λ, x),

where
( a

b,b,b

)
= a!

b!b!b! is the multinomial coefficient.

Proof By (.), we have

Pβ (k)
n (λ, y) =

n∑

�=

(
n
�

)
β�(λ, y)

〈
et – 

t

∣∣∣
Lik( – e–t)

et – 
xn–�

〉

=
n∑

�=

(
n
�

)
β�(λ, y)

〈
et – 

t

∣∣∣
∑

m≥

Pβ (k)
m

tm

m!
xn–�

〉

=
n∑

�=

n–�∑

m=

(
n
�

)(
n – �

m

)
β�(λ, y)Pβ (k)

m

〈
et – 

t

∣∣∣ xn–�–m
〉
.

Note that 〈 et–
t | xn–�–m〉 =

∫ 
 un–�–m du = 

n–�–m+ . Thus,

Pβ (k)
n (λ, y) =

n∑

�=

n–�∑

m=


n – � – m + 

(
n
�

)(
n – �

m

)
Pβ (k)

m β�(λ, y)

=
n∑

�=

�∑

m=


� – m + 

(
n
�

)(
�

m

)
Pβ (k)

m βn–�(λ, y)

=


n + 

n∑

�=

�∑

m=

(
n + 

n – �, m,� – m + 

)
Pβ (k)

m βn–�(λ, y),

which completes the proof. �

Note that Li( – e–t) =
∫ t


y

ey– dy =
∑

j≥ Bj

j!
∫ t

 yj dy =
∑

j≥
Bjtj+

j!(j+) . For general k ≥ , the
function Lik( – e–t) has the integral representation

Lik
(
 – e–t) =

∫ t




ey – 

∫ y




ey – 

∫ y


· · · 

ey – 

∫ y

︸ ︷︷ ︸
(k–) times

y
ey – 

dy · · · dy dy dy,

which, by induction on k, implies

Lik
(
 – e–t) =

∑

j≥

· · ·
∑

jk–≥

tj+···+jk–+
k–∏

i=

Bji
ji!(j + · · · + ji + )

. (.)

Theorem . For all n ≥  and k ≥ ,

Pβ (k)
n (λ, x) =

n∑

�=

(n)�βn–�(λ, x)

(
∑

j+···+jk–=�

k–∏

i=

Bji
ji!(j + · · · + ji + )

)
.
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Proof By (.), we have

Pβ (k)
n (λ, x) =

n∑

�=

(
n
�

)
β�(λ, x)

〈
Lik( – e–t)

t

∣∣∣ xn–�

〉
.

Thus, by (.), we obtain

Pβ (k)
n (λ, x) =

n∑

�=

n!
�!

β�(λ, x)

(
∑

j+···+jk–=n–�

k–∏

i=

Bji
ji!(j + · · · + ji + )

)
,

which completes the proof. �

Note that here we compute A = 〈Lik( – e–t) | xn+〉 in several different ways. As for the
first way, we have

A =
〈∫ t



d
ds

Lik
(
 – e–s)ds

∣∣∣ xn+
〉

=
〈∫ t



e–sLik–( – e–s)
 – e–s ds

∣∣∣ xn+
〉

=
〈∫ t



Lik–( – e–s)
es – 

ds
∣∣∣ xn+

〉
=

∑

m≥

PB(k–)
m

m!

〈∫ t


sm ds

∣∣∣ xn+
〉

=
∑

m≥

PB(k–)
m

(m + )!
〈
tm+ | xn+〉 = PB(k–)

n .

As for the second way, we have

A =
〈

(et – )Lik( – e–t)
et – 

∣∣∣ xn+
〉

=
〈

Lik( – e–t)
et – 

∣∣∣
(
et – 

)
xn+

〉

=
〈

Lik( – e–t)
et – 

∣∣∣ (x + )n+ – xn+
〉

=
n∑

m=

(
n + 

m

)〈
Lik( – e–t)

et – 

∣∣∣ xm
〉

=
n∑

m=

(
n + 

m

)
PB(k)

m .

As for the third way, by (.), we have

A = (n + )!
∑

j+···+jk–=n

k–∏

i=

Bji
ji!(j + · · · + ji + )

.

Hence, we can state the following result.

Theorem . For all n ≥ ,

PB(k–)
n =

n∑

m=

(
n + 

m

)
PB(k)

m = (n + )!
∑

j+···+jk–=n

k–∏

i=

Bji
ji!(j + · · · + ji + )

.
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3 Recurrences
In this section, we present several recurrences for the degenerate poly-Bernoulli polyno-
mials, namely Pβ

(k)
n (λ, x). Note that, by (.) and the fact that (x | λ)n ∼ (, eλt–

λ
), we obtain

the following identity.

Proposition . For all n ≥ , Pβ
(k)
n (λ, x + y) =

∑n
j=

(n
j
)
Pβ

(k)
j (λ, x)(y | λ)n–j.

It is well known that if sn(x) ∼ (g(t), f (t)), then we have f (t)sn(x) = nsn–(x). Thus, by (.),
we obtain eλt–

λ
Pβ

(k)
n (λ, x) = nPβ

(k)
n–(λ, x), which implies the following result.

Proposition . For all n ≥ , Pβ
(k)
n (λ, x + λ) = Pβ

(k)
n (λ, x) + nλPβ

(k)
n–(λ, x).

Theorem . For all n ≥ ,

Pβ
(k)
n+(λ, x) – xPβ (k)

n (λ, x – λ)

=
m+∑

i=

m+–i∑

�=

(
m + 

i

)
λm+–i–�S(m +  – i,�)

(
PB(k)

� Bi(x) – Pβ
(k)
� (λ)Bi(x +  – λ)

)
.

Proof By applying the fact that sn+(x) = (x – g′(t)
g(t) ) 

f ′(t) sn(x) for all sn(x) ∼ (g(t), f (t)) and
(.), we obtain

Pβ
(k)
n+(λ, x) =

(
x –

g ′(t)
g(t)

)
e–λtPβ (k)

n (λ, x) = xPβ (k)
n (λ, x – λ) – e–λt g ′(t)

g(t)
Pβ (k)

n (λ, x),

where

g ′(t)
g(t)

=
(
log

(
et – 

)
– log Lik

(
 – e– 

λ
(eλt–)))′

=
et

et – 
–


Lik( – e– 

λ
(eλt–))

Lik–( – e– 
λ

(eλt–))
 – e– 

λ
(eλt–)

eλte– 
λ

(eλt–).

Thus, the expression A = e–λt g′(t)
g(t) Pβ

(k)
n (λ, x) is given by


t

(
te(–λ)t

et – 
Gk(t)– –

t

e

λ

(eλt–) – 
Gk–(t)–

)
Gk(t)Pβ (k)

n (λ, x).

Note that, by (.), we have Gk(x)Pβ
(k)
n (λ, x) =

∑n
m= S(n, m)λn–mxm. Therefore,

A =
n∑

m=

S(n, m)λn–m 
t

(
te(–λ)t

et – 
Gk(t)– –

t

e

λ

(eλt–) – 
Gk–(t)–

)
xm

=
n∑

m=

S(n, m)
m + 

λn–m
(

te(–λ)t

et – 
Gk(t)– –

t

e

λ

(eλt–) – 
Gk–(t)–

)
xm+. (.)

We remark that the expression in the parentheses in (.) has order at least one. Now, let
us simplify (.):
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te(–λ)t

et – 
Gk(t)–xm+

=
te(–λ)t

et – 
Lik( – e–s)

( + λs)/λ – 

∣∣∣
s= eλt –

λ

xm+

=
te(–λ)t

et – 

m+∑

�=

Pβ
(k)
� (λ)

( eλt–
λ

)�

�!
xm+

=
te(–λ)t

et – 

m+∑

�=

m+∑

i=�

(
m + 

i

)
λi–�S(i,�)Pβ

(k)
� (λ)xm+–i

=
m+∑

i=

m+–i∑

�=

(
m + 

i

)
λm+–i–�S(m +  – i,�)Pβ

(k)
� (λ)

te(–λ)t

et – 
xi

=
m+∑

i=

m+–i∑

�=

(
m + 

i

)
λm+–i–�S(m +  – i,�)Pβ

(k)
� (λ)Bi(x +  – λ) (.)

and

t

e

λ

(eλt–) – 
Gk–(t)–xm+

=
t

et – 
Lik–( – e–s)

es – 

∣∣∣
s= eλt –

λ

xm+

=
t

et – 

m+∑

�=

PB(k)
�

( eλt–
λ

)�

�!
xm+

=
t

et – 

m+∑

�=

m+∑

i=�

(
m + 

i

)
λi–�S(i,�)PB(k)

� xm+–i

=
m+∑

i=

m+–i∑

�=

(
m + 

i

)
λm+–i–�S(m +  – i,�)PB(k)

�

t
et – 

xi

=
m+∑

i=

m+–i∑

�=

(
m + 

i

)
λm+–i–�S(m +  – i,�)PB(k)

� Bi(x). (.)

Hence, by (.)-(.), we complete the proof. �

In the next result we express d
dx Pβ

(k)
n (λ, x) in terms of Pβ

(k)
n (λ, x).

Proposition . For all n ≥ , d
dx Pβ

(k)
n (λ, x) = n!

∑n–
�=

(–λ)n–�–

�!(n–�) Pβ
(k)
� (λ, x).

Proof Note that d
dx sn(x) =

∑n–
�=

(n
�

)〈f̄ (t) | xn–�〉s�(x) for all sn(x) ∼ (g(t), f (t)). Thus, by (.),
we have

〈
f̄ (t) | xn–�

〉
=

〈

λ

log( + λt)
∣∣∣ xn–�

〉
=


λ

∑

m≥

(–)m–λm(m – )!
〈

xm

m!

∣∣∣ xn–�

〉

= (–λ)n–�–(n – � – )!,

which completes the proof. �
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Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) – xPβ

(k)
n–(λ, x – λ)

=

n

n∑

m=

(
n
m

)(
Pβ (k–)

m (λ, x)Bn–m – Pβ (k)
m (λ, x +  – λ)βn–m(λ)

)
.

Proof By (.), we have

Pβ (k)
n (λ, y) =

〈
Lik( – e–t)

( + λt)/λ – 
( + λt)y/λ

∣∣∣ xn
〉

=
〈

Lik( – e–t)
( + λt)/λ – 

d
dt

( + λt)y/λ
∣∣∣ xn–

〉
(.)

+
〈

d
dt

Lik( – e–t)
( + λt)/λ – 

( + λt)y/λ
∣∣∣ xn–

〉
. (.)

The term in (.) is given by

y
〈

Lik( – e–t)
( + λt)/λ – 

( + λt)(y–λ)/λ
∣∣∣ xn–

〉
= yPβ

(k)
n–(λ, y – λ). (.)

For the term in (.), we observe that d
dt

Lik (–e–t )
(+λt)/λ– = 

t (A – B), where

A =
t

et – 
Lik–( – e–t)
( + λt)/λ – 

, B =
t

( + λt)/λ – 
Lik( – e–t)

( + λt)/λ – 
( + λt)/λ–.

Note that the expression A – B has order of at least . Now, we are ready to compute the
term in (.). By (.), we have

〈
d
dt

Lik( – e–t)
( + λt)/λ – 

( + λt)y/λ
∣∣∣ xn–

〉

=
〈


t

(A – B)( + λt)y/λ
∣∣∣ xn–

〉

=

n

〈
A( + λt)y/λ | xn〉 –


n

〈
B( + λt)y/λ | xn〉

=

n

〈
t

et – 

∣∣∣
∑

m≥

Pβ (k–)
m (λ, y)

tm

m!
xn

〉

–

n

〈
t

( + λt)/λ – 

∣∣∣
∑

m≥

Pβ (k)
m (λ, y +  – λ)

tm

m!
xn

〉

=

n

n∑

m=

(
n
m

)
Pβ (k–)

m (λ, y)
〈

t
et – 

∣∣∣ xn–m
〉

–

n

n∑

m=

(
n
m

)
Pβ (k)

m (λ, y +  – λ)
〈

t
( + λt)/λ – 

∣∣∣ xn–m
〉

=

n

n∑

m=

(
n
m

)(
Pβ (k–)

m (λ, y)Bn–m – Pβ (k)
m (λ, y +  – λ)βn–m(λ)

)
. (.)
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Thus, if we replace (.) by (.) and (.) by (.), we obtain

Pβ (k)
n (λ, x) – xPβ

(k)
n–(λ, x – λ)

=

n

n∑

m=

(
n
m

)(
Pβ (k–)

m (λ, x)Bn–m – Pβ (k)
m (λ, x +  – λ)βn–m(λ)

)
,

as claimed. �

4 Connections with families of polynomials
In this section, we present a few examples on the connections with families of polynomials.
We start with the connection to Bernoulli polynomials B(s)

n (x) of order s. Recall that the
Bernoulli polynomials B(s)

n (x) of order s are defined by the generating function ( t
et– )sext =

∑
n≥ B(s)

n (x) tn

n! , equivalently,

B(s)
n (x) ∼

((
et – 

t

)s

, t
)

(.)

(see [–]). In the next result, we express our polynomials Pβ
(k)
n (λ, x) in terms of

Bernoulli polynomials of order s. To do that, we recall that the Bernoulli numbers b(s)
n of

the second kind of order s are defined as

ts

logs( + t)
=

∑

n≥

b(s)
n

tn

n!
. (.)

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

m=

( n∑

�=m

n–�∑

r=

n–�–r∑

j=

j∑

i=

( n
�,r,j,n–�–r–j

)

(j+s
j
) λ�+r+i–mcn,m(�, r, j, i)

)
B(s)

m (x),

where cn,m(�, r, j, i) = S(�, m)S(j + s, j – i + s)S(j – i + s, s)b(s)
r Pβ

(k)
n–�–r–j(λ) and

( a
b,...,bm

)
=

a!
b!···bm ! is the multinomial coefficient.

Proof Let hs(t) = ( (+λt)/λ–
t )s and Pβ

(k)
n (λ, x) =

∑n
m= cn,mB(s)

m (x). By (.), (.), and (.), we
have

m!λmcn,m

=
〈

Lik( – e–t)
( + λt)/λ – 

(
( + λt)/λ – 

t

)s(
λt

log( + λt)

)s ∣∣∣
(
log( + λt)

)mxn
〉
,

which, by (.), implies

λmcn,m =
n∑

�=m

(
n
�

)
λ�S(�, m)

〈
Lik( – e–t)

( + λt)/λ – 
hs(t)

(
λt

log( + λt)

)s ∣∣∣ xn–�

〉

=
n∑

�=m

(
n
�

)
λ�S(�, m)

〈
Lik( – e–t)

( + λt)/λ – 
hs(t)

∣∣∣
(

λt
log( + λt)

)s

xn–�

〉
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=
n∑

�=m

n–�∑

r=

(
n
�

)(
n – �

r

)
λ�+rS(�, m)b(s)

r

〈
Lik( – e–t)

( + λt)/λ – 
hs(t)

∣∣∣ xn–�–r
〉

=
n∑

�=m

n–�∑

r=

(
n
�

)(
n – �

r

)
λ�+rS(�, m)b(s)

r

〈
Lik( – e–t)

( + λt)/λ – 

∣∣∣ hs(t)xn–�–r
〉
.

One can show that

hs(t) =
(

e

λ

log(+λt) – 
t

)s

= s!
∑

j≥

j∑

i=

S(j + s, j – i + s)S(j – i + s, s)
λi

(j + s)!
tj.

Thus, by (.), we have

cn,m =
n∑

�=m

n–�∑

r=

n–�–r∑

j=

j∑

i=

(
s!
(

n
�

)(
n – �

r

)
λ�+r–mS(�, m)b(s)

r S(j + s, j – i + s)

× S(j – i + s, s)
λi

(j + s)!
(n – � – r)j

〈
Lik( – e–t)

( + λt)/λ – 

∣∣∣ xn–�–r–j
〉)

=
n∑

�=m

n–�∑

r=

n–�–r∑

j=

j∑

i=

(( n
�,r,j,n–�–r–j

)

(j+s
j
) λ�+r+i–mS(�, m)S(j + s, j – i + s)

× S(j – i + s, s)b(s)
r Pβ

(k)
n–�–r–j(λ)

)
,

as required. �

Similar techniques as in the proof of the previous theorem, we can express our polyno-
mials Pβ

(k)
n (λ, x) in terms of other families. Below we present three examples, where we

leave the proofs to the interested reader.
The first example is to express our polynomials Pβ

(k)
n (λ, x) in terms of Frobenius-Euler

polynomials. Note that the Frobenius-Euler polynomials H (s)
n (x | μ) of order s are defined

by the generating function ( –μ

et–μ
)sext =

∑
n≥ H (s)

n (x | μ) tn

n! (μ �= ), or equivalently, H (s)
n (x |

μ) ∼ (( et–μ

–μ
)s, t) (see [, ]).

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

m=

( n∑

�=m

n–�∑

r=

s∑

i=

(
n
�

)(
n – �

r

)(
s
i

)
λ�–m(–μ)s–i

( – μ)s cn,m(�, r, i)

)
H (s)

m (x | μ),

where cn,m(�, r, i) = S(�, m)(i | λ)n–�–rPβ
(k)
r (λ).

If we express our polynomials Pβ
(k)
n (λ, x) in terms of falling polynomials (x | λ)n, then we

get the following result.

Theorem . For all n ≥ , Pβ
(k)
n (λ, x) =

∑n
m=

(n
m
)
Pβ

(k)
n–m(λ)(x | λ)m.
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Our last example is to express our polynomials Pβ
(k)
n (λ, x) in terms of degenerate

Bernoulli polynomials β
(s)
n (λ, x) of order s. Note that the degenerate Bernoulli polynomials

β
(s)
n (λ, x) of order s are given by

(
t

( + λt)/λ – 

)s

( + λt)x/λ =
∑

n≥

β (s)
n (λ, x)

tn

n!
.

Theorem . For all n ≥ ,

Pβ (k)
n (λ, x) =

n∑

m=

(
n
m

)(n–m∑

j=

j∑

i=

(n–m
j

)

(j+s
s
) λicn,m(j, i)

)
β (s)

m (λ, x),

where cn,m(j, i) = S(j + s, j – i + s)S(j – i + s, s)Pβ
(k)
n–m–j(λ).
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