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1 Introduction
Let X be a real linear space. A linear combination αa + βb of points a, b ∈ X and coeffi-
cients α,β ∈ R is affine if α + β = . A set S ⊆ X is affine if it contains all binomial affine
combinations of its points. A function h : S → R is affine if the equality

h(αa + βb) = αh(a) + βh(b) ()

holds for every binomial affine combination αa + βb of the affine set S .
Convex combinations and sets are introduced by restricting to affine combinations with

nonnegative coefficients. A function h : S →R is convex if the inequality

f (αa + βb) ≤ αf (a) + βf (b) ()

holds for every binomial convex combination αa + βb of the convex set S .
The above concept applies to all n-membered affine or convex combinations. Jensen (see

[]) extended the inequality in equation () by relying on induction.

2 Focusing on the set center and barycenter
We use the real line X = R. If κ, . . . ,κn ∈ R are nonnegative coefficients satisfying
∑n

i= κi = , and if S = {x, . . . , xn} is a set of points xi ∈ R, then the convex combination
point

c =
n∑

i=

κixi ()

is called the center of the set S respecting coefficients κi, or just the set center.
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An integral version utilizes a measure. If μ is a measure on R, and if S ⊆R is a measur-
able set of positive measure, then the integral mean point

c =


μ(S)

∫

S
x dμ ()

is called the barycenter of the set S respecting measure μ, or just the set barycenter.
In both discrete and integral cases, the point c belongs to the convex hull of the set S ,

as the smallest convex set containing S .
Throughout the paper we will use a bounded interval of real numbers with endpoints

a < b. Each point x ∈ [a, b] can be presented by the unique binomial convex combination

x =
b – x
b – a

a +
x – a
b – a

b. ()

The next three lemmas present the properties of a convex function f : [a, b] → R con-
cerning its supporting and secant lines.

The discrete version refers to interval points and interval endpoints sharing the common
center.

Lemma A Let [a, b] ⊂R be a closed interval, and let
∑n

i= κixi be a convex combination of
points xi ∈ [a, b]. Let αa + βb be the unique endpoints convex combination such that

n∑

i=

κixi = αa + βb. ()

Then every convex function f : [a, b] →R satisfies the double inequality

f (αa + βb) ≤
n∑

i=

κif (xi) ≤ αf (a) + βf (b). ()

Proof Taking c =
∑n

i= κixi, we have the following two cases.
If c ∈ {a, b}, then equation () is reduced to f (c) ≤ f (c) ≤ f (c).
If c ∈ (a, b), then using a supporting line y = h(x) of the convex curve y = f (x) at the graph

point C(c, f (c)), and the secant line y = h(x) passing through the graph points A(a, f (a))
and B(b, f (b)), we get the inequality

f (αa + βb) = h(αa + βb) =
n∑

i=

κih(xi)

≤
n∑

i=

κif (xi)

≤
n∑

i=

κih(xi) = h(αa + βb) = αf (a) + βf (b) ()

containing equation (). �

The discrete-integral version refers to the connection of the interval barycenter with
interval endpoints.
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Lemma B Let [a, b] ⊂ R be a closed interval, and let μ be a positive measure on R such
that μ([a, b]) > . Let αa + βb be the unique endpoints convex combination such that


μ([a, b])

∫

[a,b]
x dμ = αa + βb. ()

Then every convex function f : [a, b] →R satisfies the double inequality

f (αa + βb) ≤ 
μ([a, b])

∫

[a,b]
f (x) dμ ≤ αf (a) + βf (b). ()

Proof The proof coincides with the proof of Lemma A, provided that we use the integral
means instead of n-membered convex combinations. �

The integral version refers to the given interval and its subinterval sharing the common
barycenter.

Lemma C Let A,B ⊂ R be bounded closed intervals such that A ⊂ B. Let μ be a positive
measure on R such that  < μ(A) < μ(B) and


μ(A)

∫

A
x dμ =


μ(B)

∫

B
x dμ. ()

Then every convex function f : B →R satisfies the double inequality


μ(A)

∫

A
f (x) dμ ≤ 

μ(B)

∫

B
f (x) dμ ≤ 

μ(B \A)

∫

B\A
f (x) dμ. ()

Proof Equation () can be extended with the barycenter of the set B \A. Using the secant
line y = h(x) of the convex curve y = f (x) respecting the interval A (f (x) ≤ h(x), x ∈A and
f (x) ≥ h(x), x ∈ B \A), we firstly prove the inequality of the left and right terms of equation
(). Then we express the middle term of equation () as the convex combination of the
left and right terms. �

A functional approach related to the above lemmas can be found in []. A more general
version of Lemma C can be found in [].

Using the Riemann integral in Lemma B, the condition in () gives the midpoint


b – a

∫ b

a
x dx =




a +



b, ()

and its use in equation () implies the classic Hermite-Hadamard inequality

f
(

a + b


)

≤ 
b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


. ()

In fact, the above inequality holds for every integrable function f : [a, b] →R that admits
a supporting line at the midpoint c = (a + b)/, and fits into the supporting-secant line
inequality

h(x) ≤ f (x) ≤ h(x), x ∈ [a, b]. ()
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For example, the function f (x) =
√|x| is integrable on [–, ], admits a supporting line at

zero, and satisfies equation (), so it satisfies equation (). This function is not convex
on any subinterval of [–, ].

Moreover, the inequality in equation () follows by integrating the inequality in equa-
tion () over the interval [a, b].

We finish the section with a historic note on the important Hermite-Hadamard inequal-
ity. In , studying convex functions, Hermite (see []) attained the inequality in equa-
tion (). In , not knowing Hermite’s result, Hadamard (see []) got the left-hand side
of equation (). For information as regards this inequality, one may refer to books [] and
[], and papers [–] and [].

3 Main results
To refine the Hermite-Hadamard inequality in equation (), we will use convex combina-
tions of points of the closed interval [a, b]. In the next theorem, we will refine the double
inequality in equation () by using two convex combinations of the midpoint x = (a+b)/.

Theorem . Let [a, b] ⊂R be a closed interval, let c, d ∈ [a, b] be interval points, and let

α =
c – a
b – a

, β =
b – c
b – a

, γ =
d – a
b – a

, δ =
b – d
b – a

.

Then every convex function f : [a, b] →R satisfies the series of inequalities

f
(

a + b


)

≤ αf
(

a + c


)

+ βf
(

c + b


)

≤ 
b – a

∫ b

a
f (x) dx

≤ γ f (a) + δf (b) + f (d)


≤ f (a) + f (b)


. ()

Proof If c, d ∈ {a, b}, then the inequality in equation () is actually reduced to the
Hermite-Hadamard inequality in equation ().

Suppose that c /∈ {a, b}. Applying equation () to the inclusion (a + b)/ ∈ [(a + c)/, (c +
b)/], we get the convex combination equality

a + b


= α
a + c


+ β

c + b


. ()

Applying the convexity of f to the right-hand side of equation (), and the left-hand side
of the Hermite-Hadamard inequality to midpoints (a + c)/ and (c + b)/, we get

f
(

a + b


)

≤ αf
(

a + c


)

+ βf
(

c + b


)

≤ 
b – a

∫ c

a
f (x) dx +


b – a

∫ b

c
f (x) dx

=


b – a

∫ b

a
f (x) dx ()

proving the first half of equation ().
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Suppose that d /∈ {a, b}. In this case, we will use the convex combination equality

γ


a +

δ


b +




d =



a +



b ()

in terms of equation (). Applying the right-hand side of the Hermite-Hadamard inequal-
ity to intervals [a, d] and [d, b], and Lemma A to the combination in (), we obtain


b – a

∫ b

a
f (x) dx =


b – a

∫ d

a
f (x) dx +


b – a

∫ b

d
f (x) dx

≤ γ


f (a) +

δ


f (b) +




f (d)

≤ 


f (a) +



f (b) ()

proving the second half of equation (). �

If c = d = (a + b)/, equation () takes the form

f
(

a + b


)

≤ 


[

f
(

a + b


)

+ f
(

a + b


)]

≤ 
b – a

∫ b

a
f (x) dx

≤ 


[

f
(

a + b


)

+
f (a) + f (b)



]

≤ f (a) + f (b)


. ()

The above improvement of the Hermite-Hadamard inequality was specified in [].
Now we estimate the double inequality of equation () containing the integral term.

Taking d = c and using the arithmetic mean form, we can find that the following estimation
holds.

Corollary . Let [a, b] ⊂R be a closed interval, let c ∈ [a, b] be an interval point, and let

α =
c – a
b – a

, β =
b – c
b – a

.

Then every convex function f : [a, b] →R satisfies the inequality


b – a

∫ b

a
f (x) dx ≤ 



(

αf
(

a + c


)

+ βf
(

c + b


))

+



αf (a) + βf (b) + f (c)


. ()

Proof If c ∈ {a, b}, the inequality in equation () yields the well-known estimation


b – a

∫ b

a
f (x) dx ≤ 


f
(

a + b


)

+



f (a) + f (b)


. ()

We now suppose that c ∈ (a, b). From the series of inequalities in equation (), we ex-
tract the second last inequality referring to the inclusion d ∈ [a, b] as


b – a

∫ b

a
f (x) dx ≤ d – a

b – a
f (a) +

b – d
b – a

f (b) + f (d). ()
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Applying the above inequality to inclusions (a + c)/ ∈ [a, c] and (c + b)/ ∈ [c, b], we get


b – a

∫ b

a
f (x) dx =

c – a
b – a

[


c – a

∫ c

a
f (x) dx

]

+
b – c
b – a

[


b – c

∫ b

c
f (x) dx

]

≤ α

[



f (a) +



f (c) + f
(

a + c


)]

+ β

[



f (c) +



f (b) + f
(

c + b


)]

= αf
(

a + c


)

+ βf
(

c + b


)

+
αf (a) + βf (b) + f (c)


, ()

and dividing by , we obtain the inequality in equation (). �

The interpolated terms in equation () can be expanded.

Corollary . Let [a, b] ⊂R be a closed interval, let c, . . . , cn ∈ [a, b] and d, . . . , dm ∈ [a, b]
be interval points, and let

αi =
ci – a

n(b – a)
, βi =

b – ci

n(b – a)
, γj =

dj – a
m(b – a)

, δj =
b – dj

m(b – a)
.

Then every convex function f : [a, b] →R satisfies the series of inequalities

f
(

a + b


)

≤
n∑

i=

[

αif
(

a + ci



)

+ βif
(

ci + b


)]

≤ 
b – a

∫ b

a
f (x) dx

≤
∑m

j=[γjf (a) + δjf (b) + m–f (dj)]


≤ f (a) + f (b)


. ()

Proof The inequality in equation () can be achieved by including the convex combina-
tions

a + b


=
n∑

i=

[

αi
a + ci


+ βi

ci + b


]

()

and

m∑

j=

[
γj


a +

δj


b +


m

dj

]

=



a +



b ()

to the procedure of the proof of Theorem .. �

The following theorem presents a generalization of the Hermite-Hadamard inequality
to any point of the open interval (a, b).

Theorem . Let [a, b] ⊂ R be a closed interval, and let αa + βb be the endpoints convex
combination whose coefficients are positive.
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Then every convex function f : [a, b] →R satisfies the series of inequalities

f (αa + βb) ≤ αf
(

a + αa + βb


)

+ βf
(

αa + βb + b


)

≤ α

β(b – a)

∫ αa+βb

a
f (x) dx +

β

α(b – a)

∫ b

αa+βb
f (x) dx

≤ f (αa + βb)


+
αf (a) + βf (b)


≤ αf (a) + βf (b). ()

Proof Applying equation () to the inclusion αa + βb ∈ [(a + αa + βb)/, (αa + βb + b)/],
we get the convex combination equality

αa + βb = α
a + αa + βb


+ β

αa + βb + b


. ()

Applying the convexity of f to the right-hand side of equation (), and the left-hand side
of the Hermite-Hadamard inequality to midpoints (a + αa + βb)/ and (αa + βb + b)/, we
get the first half of equation ().

Applying the right-hand side of the Hermite-Hadamard inequality to intervals [a,αa +
βb] and [αa + βb, b], and the convexity inequality in equation (), we obtain the second
half of equation (). �

If α = β = /, then the inequality in equation () is reduced to the inequality in equa-
tion ().

The integral refinements of the Hermite-Hadamard inequality can be obtained by ap-
plying Lemma C.

Theorem . Let [a, b] ⊂ R be a closed interval, and let δ be a positive number less than
(b – a)/.

Then every convex function f : [a, b] →R satisfies the series of inequalities

f
(

a + b


)

≤ 
b – a – δ

∫ b–δ

a+δ

f (x) dx

≤ 
b – a

∫ b

a
f (x) dx

≤ 
δ

(∫ a+δ

a
f (x) dx +

∫ b

b–δ

f (x) dx
)

≤ f (a) + f (b)


. ()

Proof Let A = [a +δ, b –δ] and B = [a, b] be observed intervals, and let |A| and |B| be their
lengths, respectively. The barycenter of the sets A, B and B \ A falls into the midpoint
c = (a + b)/. Let y = h(x) be the supporting line of the curve y = f (x) at the graph point
C(c, f (c)), and let y = h(x) be the secant line passing through the graph points A(a+δ, f (a+
δ)) and B(b – δ, f (b – δ)).

To prove the first inequality of equation (), we use the supporting line

f
(

a + b


)

= h

(
a + b



)

=


|A|
∫

A
h(x) dx ≤ 

|A|
∫

A
f (x) dx. ()
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To prove the last inequality of equation (), we use the secant line


|B \A|

∫

B\A
f (x) dx ≤ 

|B \A|
∫

B\A
h(x) dx = h

(
a + b



)

=
f (a) + f (b)


. ()

The double inequality of equation () containing the integrals follows from the inequal-
ity in equation (). �

Considerations similar to those in Corollary . can be carried out for equations (),
() and ().

4 Refinements of the most important means
Thorough this section we use positive numbers a and b, positive coefficients α and β

whose sum is equal to , and a strictly monotone continuous function ϕ : [a, b] →R.
The discrete quasi-arithmetic mean of the numbers a and b with the coefficients α and

β respecting the function ϕ is defined by the number

Mϕ(a, b;α,β) = ϕ–(αϕ(a) + βϕ(b)
)
. ()

Using the identity function ϕ(x) = x, we get the generalized arithmetic mean

A(a, b;α,β) = αa + βb, ()

using the hyperbolic function ϕ(x) = /x, we have the generalized harmonic mean

H(a, b;α,β) =
(
αa– + βb–)–, ()

and using the logarithmic function ϕ(x) = ln x, we obtain the generalized geometric mean

G(a, b;α,β) = aαbβ . ()

The above means satisfy the generalized harmonic-geometric-arithmetic mean inequality

H(a, b;α,β) < G(a, b;α,β) < A(a, b;α,β). ()

Applying equation () to the convex function f (x) = – ln x using substitutions a 	→ /a
and b 	→ /b, and then acting on the rearranged inequality with the exponential function,
we can derive the series of inequalities

H(a, b;α,β) ≤
[

H
(

a, b;
α + 


,
β



)]α[

H
(

a, b;
α


,
β + 



)]β

≤ ea
α
β

b
b–a b

β
α

a
a–b

(
αa– + βb–)

α–β
αβ

αb+βa
b–a

≤ [
H(a, b;α,β)G(a, b;α,β)

] 
 ≤ G(a, b;α,β) ()

refining the generalized harmonic-geometric mean inequality.
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Applying equation () to the exponential function f (x) = ex using substitutions a 	→ ln a
and b 	→ ln b, we can obtain the series of inequalities

G(a, b;α,β) ≤ αG
(

a, b;
α + 


,
β



)

+ βG
(

a, b;
α


,
β + 



)

≤
α
β

a – β

α
b – α–β

αβ
aαbβ

ln a – ln b

≤ G(a, b;α,β) + A(a, b;α,β)


≤ A(a, b;α,β) ()

refining the generalized geometric-arithmetic mean inequality.
To denote the elementary means with coefficients α = β = /, we will use the abbrevi-

ations A(a, b), H(a, b) and G(a, b).
The integral quasi-arithmetic mean of the numbers a and b respecting the function ϕ is

the number

Mϕ(a, b) = ϕ–
(


b – a

∫ b

a
ϕ(x) dx

)

. ()

Using the identity function, we get the arithmetic mean

A(a, b) =


b – a

∫ b

a
x dx =

a + b


, ()

using the hyperbolic function, we have the logarithmic mean

L(a, b) =
(


b – a

∫ b

a


x

dx
)–

=
b – a

ln b – ln a
, ()

and using the logarithmic function, we obtain the identric mean

I(a, b) = exp

(


b – a

∫ b

a
ln x dx

)

=

e

(
bb

aa

) 
b–a

. ()

The well-known mean inequality says that

H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b). ()

Applying equation () to the function f (x) = – ln x, using substitutions a 	→ /a, b 	→
/b, c 	→ /c and d 	→ /d, and then acting on the rearranged inequality with the exponen-
tial function, we can obtain the refined harmonic-geometric mean inequality

H(a, b) ≤ c
(

a
a + c

) b(c–a)
c(b–a)

(
b

c + b

) a(b–c)
c(b–a)

≤ [
I
(
a–, b–)]–

≤ a
b(d–a)

d(b–a) b
a(b–d)

d(b–a) d

 ≤ G(a, b). ()
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Applying the first half of the inequality in equation () to the exponential function
f (x) = ex, using substitutions a 	→ ln a, b 	→ ln b and c 	→ ln c, we get the refined geometric-
logarithmic mean inequality

G(a, b) ≤ ln c – ln a
ln b – ln a

√
ac +

ln b – ln c
ln b – ln a

√
cb ≤ L(a, b). ()

To prove the logarithmic-identric mean inequality L(a, b) < I(a, b), we can apply the in-
tegral form of Jensen’s inequality (see [])

f
(


b – a

∫ b

a
g(x) dx

)

≤ 
b – a

∫ b

a
f
(
g(x)

)
dx ()

to the functions f (x) = – ln x and g(x) = /x, and then act on the rearranged inequality with
the exponential function. To refine the logarithmic-identric mean inequality, we can use
the procedure applied in [].

Applying the first half of the reverse inequality in equation () to the concave function
f (x) = ln x, and then acting on the rearranged inequality with the exponential function, we
have the refined identric-arithmetic mean inequality

I(a, b) ≤ 


(a + c)
c–a
b–a (c + b)

b–c
b–a ≤ A(a, b). ()

5 Quasi-arithmetic version of the Hermite-Hadamard inequality
The following is the generalization of Lemma B that includes a strictly monotone contin-
uous function. In this generalization, we use the Riemann integral.

Lemma . Let [a, b] ⊂R be a closed interval, and let ϕ : [a, b] →R be a strictly monotone
continuous function. Let αϕ(a) + βϕ(b) be the unique convex combination of endpoints of
the interval ϕ([a, b]) such that


b – a

∫ b

a
ϕ(x) dx = αϕ(a) + βϕ(b). ()

Then every convex function f whose domain contains the image of ϕ satisfies the double
inequality

f
(
αϕ(a) + βϕ(b)

) ≤ 
b – a

∫ b

a
f
(
ϕ(x)

)
dx ≤ αf

(
ϕ(a)

)
+ βf

(
ϕ(b)

)
. ()

Proof We put a = ϕ(a), b = ϕ(b), and c = αa + βb. The point c belongs to the interior
of the interval ϕ([a, b]). Let z = h(y) be a supporting line of the curve z = f (y) at the graph
point C(c, f (c)), and let z = h(y) be the secant line passing through the graph points
A(a, f (a)) and B(b, f (b)). Applying the procedure of proving equation () with the use
of equalities

h,

(


b – a

∫ b

a
ϕ(x) dx

)

=


b – a

∫ b

a
h,

(
ϕ(x)

)
dx, ()

we obtain the double inequality in equation (). �
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To present the quasi-arithmetic version of the Hermite-Hadamard inequality, we need
one more notation. If ϕ and ψ are strictly monotone continuous functions on the common
interval, then it is said that ψ is ϕ-convex if the composition function ψ ◦ ϕ– is convex.
The same notation is used for concavity.

Theorem . Let [a, b] ⊂R be a closed interval, and let ϕ,ψ : [a, b] →R be strictly mono-
tone continuous functions. Let αϕ(a) + βϕ(b) be the unique binomial convex combination
such that

Mϕ(a, b) = Mϕ(a, b;α,β). ()

If ψ is either ϕ-convex and increasing or ϕ-concave and decreasing, then

Mϕ(a, b;α,β) ≤ Mψ (a, b) ≤ Mψ (a, b;α,β). ()

If ψ is either ϕ-convex and decreasing or ϕ-concave and increasing, then the reverse in-
equality is valid in equation ().

Proof We prove the case that ψ is ϕ-convex and increasing. The condition in equation ()
actually represents the equality in equation () which enables us to use the inequality in
equation () with the convex function f = ψ ◦ ϕ–, and get

(
ψ ◦ ϕ–)(αϕ(a) + βϕ(b)

) ≤ 
b – a

∫ b

a
ψ(x) dx ≤ αψ(a) + βψ(b). ()

Acting on the above inequality with the increasing function ψ , we obtain the quasi-
arithmetic mean inequality in equation (). �
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