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Abstract
In the article, we present the best possible parameters α1,α2,β1,β2 ∈ (0, 1) and
α3,α4,β3,β4 ∈ (0, 1/2) such that the double inequalities

α1A(a,b) + (1 – α1)H(a,b) < X(a,b) < β1A(a,b) + (1 – β1)H(a,b),

α2A(a,b) + (1 – α2)G(a,b) < X(a,b) < β2A(a,b) + (1 – β2)G(a,b),

H
[
α3a + (1 – α3)b,α3b + (1 – α3)a

]
< X(a,b) < H

[
β3a + (1 – β3)b,β3b + (1 – β3)a

]
,

G
[
α4a + (1 – α4)b,α4b + (1 – α4)a

]
< X(a,b) < G

[
β4a + (1 – β4)b,β4b + (1 – β4)a

]

hold for all a,b > 0 with a �= b. Here, X(a,b), A(a,b), G(a,b) and H(a,b) are the Sándor,
arithmetic, geometric and harmonic means of a and b, respectively.
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1 Introduction
Let r ∈ R and a, b >  with a �= b. Then the harmonic mean H(a, b), geometric mean
G(a, b), logarithmic mean L(a, b), Seiffert mean P(a, b), arithmetic mean A(a, b), Sándor
mean X(a, b) [] and rth power mean Mr(a, b) of a and b are, respectively, defined by

H(a, b) =
ab

a + b
, G(a, b) =

√
ab, L(a, b) =

a – b
log a – log b

, (.)

P(a, b) =
a – b

 arcsin( a–b
a+b )

, A(a, b) =
a + b


, X(a, b) = A(a, b)e

G(a,b)
P(a,b) – (.)

and

Mr(a, b) =
(

ar + br



)/r

(r �= ), M(a, b) =
√

ab. (.)

It is well known that Mr(a, b) is continuous and strictly increasing with respect to r ∈R

for fixed a, b >  with a �= b, and the inequalities

H(a, b) < G(a, b) < L(a, b) < P(a, b) < A(a, b) (.)

hold for all a, b >  with a �= b.
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Recently, the Sándor mean has attracted the attention of several researchers. In [],
Sándor established the inequalities

X(a, b) <
P(a, b)
A(a, b)

,
A(a, b)G(a, b)

P(a, b)
< X(a, b) <

A(a, b)P(a, b)
P(a, b) – G(a, b)

,

X(a, b) >
A(a, b)L(a, b)

P(a, b)
e

G(a,b)
L(a,b) –, X(a, b) >

A(a, b)[P(a, b) + G(a, b)]
P(a, b) – G(a, b)

,

A(a, b)G(a, b)
P(a, b)L(a, b)

e
L(a,b)
A(a,b) – < X(a, b) < A(a, b)

[

e

+
(

 –

e

)
G(a, b)
P(a, b)

]
,

A(a, b) + G(a, b) – P(a, b) < X(a, b) < A–/(a, b)
[

A(a, b) + G(a, b)


]/

,

P/(logπ–log )(a, b)A–/(logπ–log )(a, b)

< X(a, b) < P–(a, b)
[

A(a, b) + G(a, b)


]

for all a, b >  with a �= b.
Yang et al. [] proved that the double inequality

Mp(a, b) < X(a, b) < Mq(a, b) (.)

holds for all a, b >  with a �= b if and only if p ≤ / and q ≥ log /( + log ) = . . . . .
In [], Zhou et al. proved that the double inequality

Hα(a, b) < X(a, b) < Hβ (a, b) (.)

holds for all a, b >  with a �= b if and only if α ≤ / and β ≥ log /( + log ) = . . . . ,
where Hp(a, b) = [(ap + (ab)p/ + bp)/]/p (p �= ) and H(p) =

√
ab is the pth power-type

Heronian mean of a and b.
Inequalities (.) and (.) together with the identities H(a, b) = M–(a, b), G(a, b) =

M(a, b) and A(a, b) = M(a, b) lead to the inequalities

H(a, b) < G(a, b) < X(a, b) < A(a, b) (.)

for all a, b >  with a �= b.
Let a, b >  with a �= b, x ∈ [, /], f (x) = H[xa + ( – x)b, xb + ( – x)a] and g(x) = G[xa +

( – x)b, xb + ( – x)a]. Then both functions f and g are continuous and strictly increasing
on [, /]. Note that

f () = H(a, b) < X(a, b) < f (/) = A(a, b) (.)

and

g() = G(a, b) < X(a, b) < g(/) = A(a, b). (.)
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Motivated by inequalities (.)-(.), we naturally ask: what are the best possible param-
eters α,α,β,β ∈ (, ) and α,α,β,β ∈ (, /) such that the double inequalities

αA(a, b) + ( – α)H(a, b) < X(a, b) < βA(a, b) + ( – β)H(a, b),

αA(a, b) + ( – α)G(a, b) < X(a, b) < βA(a, b) + ( – β)G(a, b),

H
[
αa + ( – α)b,αb + ( – α)a

]
< X(a, b) < H

[
βa + ( – β)b,βb + ( – β)a

]
,

G
[
αa + ( – α)b,αb + ( – α)a

]
< X(a, b) < G

[
βa + ( – β)b,βb + ( – β)a

]

hold for all a, b >  with a �= b? The purpose of this paper is to answer this question.

2 Lemmas
In order to prove our main results, we need four lemmas, which we present in this section.

Lemma . Let p ∈ (, ) and

f (x) =
x
√

 – x[( – p)x + ]
p + ( – p)( – x)

– arcsin(x). (.)

Then the following statements are true:
() If p = /, then f (x) <  for all x ∈ (, ).
() If p = /e, then there exists λ ∈ (, ) such that f (x) >  for x ∈ (,λ) and f (x) <  for

x ∈ (λ, ).

Proof Simple computations lead to

f () = , f () = –
π


, (.)

f ′(x) =
x

√
 – x[p + ( – p)( – x)]

f(x), (.)

where

f(x) = ( – p)x – ( – p)( – p)x +  – p. (.)

() If p = /, then (.) leads to

f(x) = –
x


(
 – x) <  (.)

for x ∈ (, ).
Therefore, f (x) <  for x ∈ (, ) follows easily from (.), (.) and (.).
() If p = /e, then (.) leads to

f() =
e – 

e
> , f() = –


e

< , (.)

f ′
 (x) = ( – p)

[
( – p)x – ( – p)

]
x < –

(
 – p)x <  (.)

for x ∈ (, ).
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From (.) and (.) we clearly see that there exists λ ∈ (, ) such that f(x) >  for
x ∈ (,λ) and f(x) <  for x ∈ (λ, ).

We divide the proof into two cases.
Case . x ∈ (,λ]. Then f (x) >  follows easily from (.) and (.) together with f(x) > 

on the interval (,λ).
Case . x ∈ (λ, ). Then (.) and f(x) <  on the interval (λ, ) lead to the conclusion

that f (x) is strictly decreasing on [λ, ).
From (.) and f (λ) >  together with the monotonicity of f (x) on [λ, ) we clearly

see that there exists λ ∈ (λ, ) ⊂ (, ) such that f (x) >  for x ∈ (λ,λ) and f (x) <  for
x ∈ (λ, ). �

Lemma . Let p ∈ (, ) and

g(x) =
px

√
 – x + ( – p)x

( – p)
√

 – x + p
– arcsin(x). (.)

Then the following statements are true:
() If p = /, then g(x) >  for all x ∈ (, ).
() If p = /e, then there exists μ ∈ (, ) such that g(x) <  for x ∈ (,μ) and g(x) >  for

x ∈ (μ, ).

Proof Simple computations lead to

g() = , g() =

p

–  –
π


, (.)

g ′(x) =
x

√
 – x[p + ( – p)

√
 – x]

g(x), (.)

where

g(x) = p(p – )
√

 – x +  – p – p. (.)

() If p = /, then (.) leads to

g(x) =


(
 –

√
 – x

)
>  (.)

for x ∈ (, ).
Therefore, g(x) >  for all x ∈ (, ) follows easily from (.), (.) and (.).
() If p = /e, then (.) leads to

g() =
e – 

e
< , g() =

e – e – 
e > , (.)

g ′
(x) =

p( – p)x√
 – x

>  (.)

for all x ∈ (, ).
From (.) and (.) we clearly see that there exists μ ∈ (, ) such that g(x) <  for

x ∈ (,μ) and g(x) >  for x ∈ (μ, ).
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We divide the proof into two cases.
Case . x ∈ (,μ]. Then g(x) <  for x ∈ (,μ] follows easily from (.) and (.) to-

gether with g(x) <  on the interval (,μ).
Case . x ∈ (μ, ). Then (.) and g(x) >  on the interval (μ, ) lead to the conclusion

that g(x) is strictly increasing on [μ, ). Note that

g(μ) < , g() = e –  –
π


> . (.)

From (.) and the monotonicity of g(x) on the interval [μ, ) we clearly see that there
exists μ ∈ (μ, ) ⊂ (, ) such that g(x) <  for x ∈ (μ,μ) and g(x) >  for x ∈ (μ, ). �

Lemma . Let p ∈ (, /) and

h(x) = arcsin(x) –
x
√

 – x[ + ( – p)x]
 – ( – p)x . (.)

Then the following statements are true:
() If p = / –

√
/ = . . . . , then h(x) >  for all x ∈ (, ).

() If p = / –
√

 – /e/ = . . . . , then there exists σ ∈ (, ) such that h(x) <  for
x ∈ (,σ) and h(x) >  for x ∈ (σ, ).

Proof Simple computations lead to

h() = , h() =
π


, (.)

h′(x) = –
x

√
 – x[ – ( – p)x]

h(x), (.)

where

h(x) =
(
p – p + p – p + 

)
x

+
(
–p + p – p + p – 

)
x + 

(
p – p + 

)
. (.)

() If p = / –
√

/, then (.) leads to

h(x) = –



x( – x) <  (.)

for x ∈ (, ).
Therefore, h(x) >  for all x ∈ (, ) follows easily from (.) and (.) together with

(.).
() If p = / –

√
 – /e/, then

h() = 
(
p – p + 

)
> , h() = –p( – p) < , (.)

h′
(x) = 

(
p – p + p – p + 

)
x

+ 
(
–p + p – p + p – 

)
x. (.)
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Note that

p – p + p – p +  = . . . . > , (.)

p – p + p –  = –. . . . < . (.)

It follows from (.)-(.) that

h′
(x) < 

(
p – p + p – p + 

)
x + 

(
–p + p – p + p – 

)
x

= 
(
p – p + p – 

)
x <  (.)

for x ∈ (, ).
From (.) and (.) we clearly see that there exists σ ∈ (, ) such that h(x) >  for

x ∈ (,σ) and h(x) <  for x ∈ (σ, ).
We divide the proof into two cases.
Case . x ∈ (,σ]. Then h(x) <  for x ∈ (,σ] follows easily from (.) and (.) to-

gether with h(x) >  on the interval (,σ).
Case . x ∈ (σ, ). Then (.) and h(x) <  on the interval (σ, ) lead to the conclusion

that h(x) is strictly increasing on (σ, ). Therefore, there exists σ ∈ (σ, ) ⊂ (, ) such
that h(x) <  for x ∈ (σ,σ) and h(x) >  for x ∈ (σ, ) follows from (.) and h(σ) < 
together with the monotonicity of h(x) on the interval (σ, ). �

Lemma . Let p ∈ (, /) and

J(x) = arcsin(x) –
x
√

 – x

 – ( – p)x . (.)

Then the following statements are true:
() If p = / –

√
/ = . . . . , then J(x) >  for all x ∈ (, ).

() If p = / –
√

 – /e/ = . . . . , then there exists τ ∈ (, ) such that J(x) <  for
x ∈ (, τ) and h(x) >  for x ∈ (τ, ).

Proof Simple computations lead to

J() = , J() =
π


, (.)

J ′(x) =
x

√
 – x[ – ( – p)x]

J(x), (.)

where

J(x) =
(
p – p + p – p + 

)
x –

(
p – p + 

)
. (.)

() If p = / –
√

/, then (.) leads to

J(x) =



x >  (.)

for x ∈ (, ).
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Therefore, J(x) >  for all x ∈ (, ) follows easily from (.) and (.) together with
(.).

() If p = / –
√

 – /e/, then (.) leads to

J() = –
(
p – p + 

)
< , J() = p

(
p – p + p + 

)
> , (.)

J ′
(x) = 

(
p – p + p – p + 

)
x >  (.)

for x ∈ (, ).
It follows from (.) and (.) that there exists τ ∈ (, ) such that J(x) <  for x ∈

(, τ) and J(x) >  for x ∈ (τ, ).
We divide the proof into two cases.
Case . x ∈ (, τ]. Then J(x) <  for x ∈ (, τ] follows easily from (.) and (.) to-

gether with J(x) <  on the interval (, τ).
Case . x ∈ (τ, ). Then (.) and J(x) >  on the interval (τ, ) lead to the conclusion

that J(x) is strictly increasing on (τ, ).
Therefore, there exists τ ∈ (τ, ) ⊂ (, ) such that J(x) <  for x ∈ (τ, τ) and J(x) > 

for x ∈ (τ, ) follows from (.) and J(τ) <  together with the monotonicity of J(x) on
the interval (τ, ). �

3 Main results
Theorem . The double inequality

αA(a, b) + ( – α)H(a, b) < X(a, b) < βA(a, b) + ( – β)H(a, b)

holds for all a, b >  with a �= b if and only if α ≤ /e = . . . . and β ≥ /.

Proof Since H(a, b), X(a, b) and A(a, b) are symmetric and homogenous of degree one, we
assume that a > b > . Let x = (a – b)/(a + b) ∈ (, ) and p ∈ (, ). Then (.) and (.) lead
to

X(a, b) – H(a, b)
A(a, b) – H(a, b)

=
e

√
–x arcsin(x)

x – – ( – x)
x , (.)

log
X(a, b)

pA(a, b) + ( – p)H(a, b)
=

√
 – x arcsin(x)

x
–  – log

[
p + ( – p)

(
 – x)]. (.)

Let

F(x) =
√

 – x arcsin(x)
x

–  – log
[
p + ( – p)

(
 – x)]. (.)

Then simple computations lead to

F
(
+)

= , (.)

F() = – log p – , (.)

F ′(x) =


x
√

 – x
f (x), (.)

where f (x) is defined by (.).
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We divide the proof into two cases.
Case . p = /. Then (.)-(.) and (.) together with Lemma .() lead to the con-

clusion that

X(a, b) <



A(a, b) +



H(a, b). (.)

Case . p = /e. Then (.) and Lemma .() lead to the conclusion that there exists
λ ∈ (, ) such that F(x) is strictly increasing on (,λ] and strictly decreasing on [λ, ).

Note that (.) becomes

F() = . (.)

It follows from (.)-(.) and (.) together with the piecewise monotonicity of F(x)
that

X(a, b) >

e

A(a, b) +
(

 –

e

)
H(a, b). (.)

Note that

lim
x→+

e
√

–x arcsin(x)
x – – ( – x)

x =



, (.)

lim
x→–

e
√

–x arcsin(x)
x – – ( – x)

x =

e

. (.)

Therefore, Theorem . follows from (.) and (.) in conjunction with the following
statements.

• If α > /, then equations (.) and (.) lead to the conclusion that there exists δ ∈
(, ) such that X(a, b) < αA(a, b) + ( – α)H(a, b) for all a > b >  with (a – b)/(a + b) ∈
(, δ).

•• If β < /e, then equations (.) and (.) lead to the conclusion that there exists δ ∈
(, ) such that X(a, b) > βA(a, b) + ( – β)H(a, b) for all a > b >  with (a – b)/(a + b) ∈
( – δ, ). �

Theorem . The double inequality

αA(a, b) + ( – α)G(a, b) < X(a, b) < βA(a, b) + ( – β)G(a, b)

holds for all a, b >  with a �= b if and only if α ≤ / and β ≥ /e = . . . . .

Proof Since A(a, b), G(a, b) and X(a, b) are symmetric and homogenous of degree one, we
assume that a > b > . Let x = (a – b)/(a + b) ∈ (, ) and p ∈ (, ). Then (.) and (.) lead
to

X(a, b) – G(a, b)
A(a, b) – G(a, b)

=
e

√
–x arcsin(x)

x – –
√

 – x

 –
√

 – x
, (.)
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log
X(a, b)

pA(a, b) + ( – p)G(a, b)
=

√
 – x arcsin(x)

x
–  – log

[
p + ( – p)

√
 – x

]
. (.)

Let

G(x) =
√

 – x arcsin(x)
x

–  – log
[
p + ( – p)

√
 – x

]
. (.)

Then simple computations lead to

G
(
+)

= , (.)

G() = – log p – , (.)

G′(x) =


x
√

 – x
g(x), (.)

where g(x) is defined by (.).
We divide the proof into two cases.
Case . p = /. Then (.)-(.) and (.) together with Lemma .() lead to the

conclusion that

X(a, b) >



A(a, b) +



G(a, b). (.)

Case . p = /e. Then from Lemma .() and (.) we know that there exists μ ∈ (, )
such that G(x) is strictly decreasing on (,μ] and strictly increasing on [μ, ). Note that
(.) becomes

G() = . (.)

It follows from (.)-(.) and (.) together with the piecewise monotonicity of G(x)
that

X(a, b) <

e

A(a, b) +
(

 –

e

)
G(a, b). (.)

Note that

lim
x→+

e
√

–x arcsin(x)
x – –

√
 – x

 –
√

 – x
=




, (.)

lim
x→–

e
√

–x arcsin(x)
x – –

√
 – x

 –
√

 – x
=


e

. (.)

Therefore, Theorem . follows easily from (.) and (.) together with (.)-
(.). �

Theorem . Let α,β ∈ (, /). Then the double inequality

H
[
αa + ( – α)b,αb + ( – α)a

]
< X(a, b) < H

[
βa + ( – β)b,βb + ( – β)a

]
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holds for all a, b >  with a �= b if and only if α ≤ / –
√

 – /e/ = . . . . and β ≥
/ –

√
/ = . . . . .

Proof Since H(a, b) and X(a, b) are symmetric and homogenous of degree one, we assume
that a > b > . Let x = (a – b)/(a + b) ∈ (, ) and p ∈ (, /). Then (.) and (.) lead to

log
H[pa + ( – p)b, pb + ( – p)a]

X(a, b)
= log

[
 – ( – p)x]–

√
 – x arcsin(x)

x
+ . (.)

Let

H(x) = log
[
 – ( – p)x] –

√
 – x arcsin(x)

x
+ . (.)

Then simple computations lead to

H
(
+)

= , (.)

H() =  +  log  + log
(
p – p), (.)

H ′(x) =


x
√

 – x
h(x), (.)

where h(x) is defined by (.).
We divide the proof into four cases.
Case . p = / –

√
/. Then (.)-(.) and (.) together with Lemma .() lead

to

X(a, b) < H
[(




–
√




)
a +

(



+
√




)
b,

(



–
√




)
b +

(



+
√




)
a
]

.

Case .  < p < / –
√

/. Let q = ( – p) and x → +, then / < q <  and power
series expansion leads to

H(x) = –
(

q –



)
x + o

(
x). (.)

Equations (.), (.) and (.) lead to the conclusion that there exists  < δ <  such
that

X(a, b) > H
[
pa + ( – p)b, pb + ( – p)a

]
(.)

for all a > b >  with (a – b)/(a + b) ∈ (, δ).
Case . p = / –

√
 – /e/. Then (.) and Lemma .() lead to the conclusion that

there exists σ ∈ (, ) such that H(x) is strictly decreasing on (,σ] and strictly increasing
on [σ, ).

Note that (.) becomes

H() = . (.)
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Therefore,

X(a, b) > H
[(




–

√
 – 

e



)
a +

(



+

√
 – 

e



)
b,

(



–

√
 – 

e



)
b +

(



+

√
 – 

e



)
a
]

follows from (.)-(.) and (.) together with the piecewise monotonicity of H(x).
Case . / –

√
 – /e/ < p < /. Then (.) leads to

H() > . (.)

Equations (.) and (.) together with inequality (.) imply that there exists  <
δ′ <  such that

X(a, b) < H
[
pa + ( – p)b, pb + ( – p)a

]

for a > b >  with (a – b)(a + b) ∈ ( – δ′, ). �

Theorem . Let α,β ∈ (, /). Then the double inequality

G
[
αa + ( – α)b,αb + ( – α)a

]
< X(a, b) < G

[
βa + ( – β)b,βb + ( – β)a

]

holds for all a, b >  with a �= b if and only if α ≤ / –
√

 – /e/ = . . . . and β ≥
/ –

√
/ = . . . . .

Proof Since G(a, b) and X(a, b) are symmetric and homogenous of degree one, we assume
that a > b > . Let x = (a – b)/(a + b) ∈ (, ) and p ∈ (, /). Then (.) and (.) lead to

log
G[pa + ( – p)b, pb + ( – p)a]

X(a, b)

=



log
[
 – ( – p)x] –

√
 – x arcsin(x)

x
+ . (.)

Let

K(x) =



log
[
 – ( – p)x] –

√
 – x arcsin(x)

x
+ . (.)

Then simple computations lead to

K
(
+)

= , (.)

K() =  + log  +



log
(
p – p), (.)

K ′(x) =


x
√

 – x
J(x), (.)

where J(x) is defined by (.).
We divide the proof into four cases.
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Case . p = p = / –
√

/. Then

X(a, b) < G
[
pa + ( – p)b, pb + ( – p)a

]

follows from (.)-(.) and (.) together with Lemma .().
Case .  < p < / –

√
/. Let q = ( – p) and x → +, then / < q <  and power

series expansion leads to

K(x) = –



(
q –




)
x + o

(
x). (.)

From (.), (.) and (.) we clearly see that there exists  < δ <  such that

X(a, b) > G
[
pa + ( – p)b, pb + ( – p)a

]

for a > b >  with (a – b)/(a + b) ∈ (, δ).
Case . p = p = / –

√
 – /e/. Then (.) and Lemma .() lead to the conclu-

sion that there exists τ ∈ (, ) such that K(x) is strictly decreasing on (, τ] and strictly
increasing on [τ, ).

Note that (.) becomes

K() = . (.)

Therefore,

X(a, b) > G
[
pa + ( – p)b, pb + ( – p)a

]

follows from (.)-(.) and (.) together with the piecewise monotonicity of K(x).
Case . / –

√
 – /e/ < p < /. Then (.) leads to

K() > . (.)

Equations (.) and (.) together with inequality (.) imply that there exists  <
δ′ <  such that

X(a, b) < G
[
pa + ( – p)b, pb + ( – p)a

]
(.)

for a > b >  with (a – b)/(a + b) ∈ ( – δ′, ). �
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