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Abstract
In the paper, the authors establish several closed expressions for the Euler numbers in
the form of a determinant or double sums and in terms of, for example, the Stirling
numbers of the second kind.
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1 Introduction and main results
It is well known ([], p., item ..) that the secant function sec z may be expanded at
z =  into the power series

sec z =
∞∑

k=

(–)kEk
zk

(k)!
, |z| <

π


, (.)

where Ek are called in number theory the Euler numbers which may also be defined ([],
p.) by


cosh z

=
ez

ez + 
=

∞∑

k=

Ek
zk

k!
=

∞∑

k=

Ek
zk

(k)!
, |z| <

π


. (.)

In number theory, the numbers

Sk = (–)kEk (.)

are called in [], p., for example, the secant numbers or the zig numbers.
These numbers also occur in combinatorics, specifically when counting the number of

alternating permutations of a set with an even number of elements.
The first few secant numbers Sk for k = , , ,  are , , , ,. The first few Euler

numbers Ek for  ≤ k ≤  are

E = , E = –, E = , E = –, E = ,,

E = –,, E = ,,, E = –,,,

E = ,,,, E = –,,,,.
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It is a classical topic to find closed expressions for the Euler numbers Ek and the tangent
number Sk . These numbers are closely connected with many other numbers and functions,
such as the Bernoulli numbers, the Genocchi numbers, the tangent numbers, the Euler
polynomials, the Stirling numbers of two kinds, and the Riemann zeta function, in number
theory and combinatorics. There has been a plenty of literature such as [, , –] and
closely related references therein.

In mathematics, a closed expression is a mathematical expression that can be evaluated
in a finite number of operations. It may contain constants, variables, four arithmetic op-
erations, and elementary functions, but usually no limit.

In this paper, we establish several closed expressions for the Euler numbers Ek in the
form of a determinant of order k or double sums and in terms of, for example, the Stirling
numbers of the second kind S(n, k) which may be generated ([], p.) by

(ex – )k

k!
=

∞∑

n=k

S(n, k)
xn

n!
, k ∈N,

may be computed ([], p.) by the closed expression

S(k, m) =


m!

m∑

�=

(–)m–�

(
m
�

)
�k ,  ≤ m ≤ k,

and may be interpreted combinatorially as the number of ways of partitioning a set of n
elements into k nonempty subsets.

Our main results may be formulated as the following theorems.

Theorem . For k ∈N,

Ek = (–)k
∣∣∣∣

(
i

j – 

)
cos

(
(i – j + )

π



)∣∣∣∣
(k)×(k)

,

where |cij|k×k is the determinant of a matrix [cij]k×k of elements cij and order k.

Theorem . For k ∈N,

Ek = (k + )
k∑

�=

(–)�


�(� + )

(
k
�

) �∑

q=

(
�

q

)
(q – �)k . (.)

Theorem . For n ∈N,

En =  +
n∑

k=

(k + )!
k S(n, k)

k∑

�=

(–)�
�

� + 

(
� + 
k – �

)
(.)

and

En =  +
n∑

�=

(–)�


� + 

n–�∑

k=

(k + � + )!
k

(
� + 

k

)
S(n, k + �). (.)
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Theorem . For k ∈N,

Ek =
k∑

i=

(–)i 
i

i∑

�=

(–)�
(

i
�

)
(i – �)k . (.)

2 Lemmas
In order to prove our main results, we need the following lemmas.

Lemma . Let u = u(x) and v = v(x) �=  be differentiable functions, let Un+, be an (n +
) ×  matrix whose elements uk, = u(k–)(x) for  ≤ k ≤ n + , let Vn+,n be an (n + ) × n
matrix whose elements vi,j =

(i–
j–

)
v(i–j)(x) for  ≤ i ≤ n +  and  ≤ j ≤ n, and let |Wn+,n+|

denote the determinant of the (n + ) × (n + ) matrix Wn+,n+ = [Un+, Vn+,n]. Then the
nth derivative of the ratio u(x)

v(x) may be computed by

dn

dxn

(
u
v

)
= (–)n |Wn+,n+|

vn+ .

Proof This is a reformulation of [], p., Exercise . �

The Bell polynomials of the second kind Bn,k , or say, the partial Bell polynomials Bn,k ,
may be defined ([], p., Theorem A) by

Bn,k(x, x, . . . , xn–k+) =
∑

≤q≤n,�q∈{}∪N∑n
q= i�q=n

∑n
q= �q=k

n!
∏n–k+

q= �q!

n–k+∏

q=

(
xq

q!

)�q

for n ≥ k ≥ .

Lemma . (Faà di Bruno formula [], p., Theorem C) For n ∈ N, the nth derivative
of a composite function f (g(x)) may be computed in terms of the Bell polynomials of the
second kind Bn,k by

dnf (g(x))
dxn =

n∑

k=

f (k)(g(x)
)
Bn,k

(
g ′(x), g ′′(x), . . . , g(n–k+)(x)

)
. (.)

Lemma . ([], p.) For n ≥ k ≥ , we have

Bn,k(, , . . . , ) = S(n, k) (.)

and

Bn,k
(
abx, abx, . . . , abn–k+xn–k+

)
= akbnBn,k(x, xn, . . . , xn–k+), (.)

where a and b are any complex numbers.

Lemma . ([], Theorem .) For n ≥ k ≥ , the Bell polynomials of the second kind Bn,k

satisfy

Bn,k

(
, , , . . . ,

 + (–)n–k+



)
=


kk!

k∑

�=

(–)�
(

k
�

)
(k – �)n. (.)
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Lemma . ([], Theorem . and [], Theorem .) For n ≥ k ≥ , the Bell polynomials
of the second kind Bn,k satisfy

Bn,k(x, , , . . . , ) =
(n – k)!

n–k

(
n
k

)(
k

n – k

)
xk–n. (.)

Lemma . ([], Theorem .) For n ≥ k ≥ , the Bell polynomials of the second kind Bn,k

satisfy

Bn,k

(
– sin x, – cos x, sin x, cos x, . . . , – sin

[
x + (n – k)

π



])

= (–)k+ 
 [n+ –(–)n

 ] 
k!

cosk x
k∑

�=

(–)�

�

(
k
�

)


cos� x

×
�∑

q=

(
�

q

)
(q – �)n sin

[
(q – �)x +

 + (–)n


π



]
.

3 Proofs of main results
We now start out to prove our main results.

Proof of Theorem . Applying Lemma . to u(z) =  and v(z) = cos z gives

(sec z)(n) = (–)n |[δi]≤i≤n+ A(n+)×n|(n+)×(n+)

cosn+ z

= (–)n
∣∣∣∣

(
i – 
j – 

)
cos

(
z + (i – j)

π



)∣∣∣∣
≤i≤n+,≤j≤n

= (–)n
∣∣∣∣

(
i

j – 

)
cos

(
z + (i – j + )

π



)∣∣∣∣
n×n

,

where

A(n+)×n =
[(

i – 
j – 

)
cos

(
z + (i – j)

π



)]

≤i≤n+,≤j≤n

and

δij =

⎧
⎨

⎩
, i = j,

 i �= j

is the Kronecker delta. Consequently, by taking the limit z → , we find

lim
z→

(sec z)(n) = (–)n
∣∣∣∣

(
i

j – 

)
cos

(
(i – j + )

π



)∣∣∣∣
n×n

and, by (.) and (.),

(–)kEk = Sk = lim
z→

(sec z)(k) =
∣∣∣∣

(
i

j – 

)
cos

(
(i – j + )

π



)∣∣∣∣
(k)×(k)

.

The proof of Theorem . is complete. �
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Proof of Theorem . By (.) applied to f (u) = 
u and u = g(z) = cos z and by Lemma .,

we have

(sec z)(n) =
n∑

k=

(

u

)(k)

Bn,k

(
– sin z, – cos z, sin z, . . . , – sin

[
z + (n – k)

π



])

=
n∑

k=

(–)kk!
uk+ Bn,k

(
– sin z, – cos z, sin z, cos z, . . . , – sin

[
z + (n – k)

π



])

=
n∑

k=

(–)kk!
(cos z)k+ Bn,k

(
– sin z, – cos z, sin z, cos z, . . . , – sin

[
z + (n – k)

π



])

=
n∑

k=

(–)kk!
(cos z)k+ (–)k+ 

 [n+ –(–)n
 ] 

k!
cosk z

k∑

�=

(–)�

�

(
k
�

)


cos� z

×
�∑

q=

(
�

q

)
(q – �)n sin

[
(q – �)z +

 + (–)n


π



]

→ (–)

 [n+ –(–)n

 ]
n∑

k=

k∑

�=

(–)�

�

(
k
�

)

×
�∑

q=

(
�

q

)
(q – �)n sin

[
 + (–)n


π



]

as z → . Hence,

(–)mEm = (–)

 [m+ –(–)m

 ]
m∑

k=

k∑

�=

(–)�

�

(
k
�

)

×
�∑

q=

(
�

q

)
(q – �)m sin

[
 + (–)m


π



]

= (–)m
m∑

k=

k∑

�=

(–)�

�

(
k
�

) �∑

q=

(
�

q

)
(q – �)m.

Consequently, by interchanging the first two sums, we get

Em =
m∑

�=

m∑

k=�

(–)�

�

(
k
�

) �∑

q=

(
�

q

)
(q – �)m

=
m∑

�=

(–)�

�

[
�∑

q=

(
�

q

)
(q – �)m

][ m∑

k=�

(
k
�

)]

=
m∑

�=

(–)�

�

[
�∑

q=

(
�

q

)
(q – �)m

]
m – � + 

� + 

(
m + 

�

)

=
m∑

�=

(–)�

�

[
�∑

q=

(
�

q

)
(q – �)m

]
m + 
� + 

(
m
�

)

which may be rearranged as (.). The proof of Theorem . is complete. �
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Proof of Theorem . Let f (u) = u
u+ and u = g(z) = ez . Then, by (.), (.), and (.) in

sequence,

dn

dzn

(
ez

ez + 

)
=

n∑

k=

dk

duk

(
u

u + 

)
Bn,k

(
ez, ez, . . . , ez)

=
n∑

k=

dk+ ln(u + )
duk+ ekzBn,k(, , . . . , )

=
n∑

k=

S(n, k)ekz dk+ ln(u + )
duk+ ,

where, by applying f (v) = ln v and v = g(u) = u +  in (.) and making use of (.) and
(.), we have

dk+ ln(u + )
duk+ =

k+∑

�=

(ln v)(�)Bk+,�(u, , , . . . , )

=
k+∑

�=

(–)�– (� – )!
v�

�Bk+,�(u, , , . . . , )

=
k+∑

�=

(–)�– (� – )!
(u + )�

� (k +  – �)!
k+–�

(
k + 

�

)(
�

k +  – �

)
u�–k–

=
k+∑

�=

(–)�– (� – )!(k +  – �)!
k+–�

(
k + 

�

)(
�

k +  – �

)
e(�–k–)z

(ez + )�
.

Consequently, we obtain

dn

dzn

(
ez

ez + 

)
=

n∑

k=

S(n, k)
k+∑

�=

(–)�– (� – )!(k +  – �)!
k+–�

×
(

k + 
�

)(
�

k +  – �

)
e(�–)z

(ez + )�
.

Further taking the limit z →  yields

En = lim
z→

dn

dzn

(
ez

ez + 

)

=
n∑

k=

S(n, k)
k+∑

�=

(–)�– (� – )!(k +  – �)!
k+–�

(
k + 

�

)(
�

k +  – �

)

= S(n, ) +
n∑

k=

S(n, k)
k+∑

�=

(–)�– (� – )!(k +  – �)!
k+–�

(
k + 

�

)(
�

k +  – �

)

=  +
n∑

k=

S(n, k)
k∑

�=

(–)�
�!(k – �)!

k–�

(
k + 
� + 

)(
� + 
k – �

)

=  +
n∑

k=


k

[ k∑

�=

(–)��!(k – �)!�

(
k + 
� + 

)(
� + 
k – �

)]
S(n, k)
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and, by interchanging two sums in the above line, we get

En =  +
n∑

�=

n∑

k=�

(–)�
�!(k – �)!

k–�

(
k + 
� + 

)(
� + 
k – �

)
S(n, k)

=  +
n∑

�=

(–)�
[ n–�∑

k=

k!
k

(
k + � + 

� + 

)(
� + 

k

)
S(n, k + �)

]
�!.

As a result of further simplifying, formulas (.) and (.) follow. The proof of Theorem .
is complete. �

Proof of Theorem . Formula (.) was ever established in [], Theorem .. We now give
a different proof for it.

Applying (.) to the functions f (u) = 
u and u = g(z) = cosh z and making use of formula

(.) yield

dn

dzn

(


cosh z

)
=

n∑

k=

(

u

)(k)

Bn,k(sinh z, cosh z, sinh z, . . .)

=
n∑

k=

(–)kk!
uk+ Bn,k(sinh z, cosh z, sinh z, . . .)

=
n∑

k=

(–)kk!
(cosh z)k+ Bn,k(sinh z, cosh z, sinh z, . . .)

→
n∑

k=

(–)kk!Bn,k

(
, , , . . . ,

 + (–)n–k+



)
, z → 

=
n∑

k=

(–)kk!


kk!

k∑

�=

(–)�
(

k
�

)
(k – �)n

=
n∑

k=

(–)k 
k

k∑

�=

(–)�
(

k
�

)
(k – �)n.

By virtue of (.), Theorem . follows immediately. �

Remark . This paper is a slightly corrected and revised version of the preprint [].
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