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1 Introduction
In this article, we consider the initial-boundary problem of the following parabolic varia-
tional inequality:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut – u div(|∇u|p–∇u) – γ |∇u|p ≤ , in �T ,
[ut – u div(|∇u|p–∇u) – γ |∇u|p] · (u – u(x)) = , in �T ,
u(x, t) ≤ u(x), in �T ,
u(x, ) = u(x), in �,
u(x, t) = , on ∂� × (, T),

()

where �T = �×(, T), � ⊂R
N is a bounded domain with appropriately smooth boundary

∂�, p ≥ , γ > , and u(x) satisfies

 ≤ u ∈ C(�̄) ∩ W ,p
 (�). ()

Readers can refer to [] and [] for the motivation and references about the study of
problem (). The linear parabolic variational inequality problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂
∂τ

V – 
σ  ∂

∂x V – (r – 
σ ) ∂

∂x V + rV ≥ , in �T ,
V ≥ g(x), in �T ,
( ∂
∂τ

V – 
σ  ∂

∂x V – (r – 
σ ) ∂

∂x V + rV )(V – g(x)) = , in �T ,
V (t, x) = , on ∂�T ,
V (x, ) = g(x), in �,

()

is similar to (). The existence of solutions to problem () was studied in a series of pa-
pers (see [] and [] and references therein). Here, r and σ are positive constant. In [],
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the authors discussed a general case in which the linear parabolic operator with constant
coefficients can be replaced by a quasi-linear one with integro-differential terms. Later,
the authors in [] extended the corresponding conclusions to the Rd-values case in which
the existence and uniqueness of solution to parabolic variational inequalities with integro-
differential terms were proved by using the penalty method and the reduction method.

However, to the best of our knowledge, the existence of solutions to the variational in-
equality problem with the degenerate parabolic operators has not been studied. The pur-
pose of this paper is to fill this gap.

In the spirit of [] and [], we introduce the following maximal monotone graph:

G(λ) =

{
, λ > ,
[, +∞), λ = .

()

In addition, we define a function class for the solution as follows:

B =
{

u ∈ L∞(�T ) ∩ Lp(, T ; W ,p
 (�)

)}
. ()

Based on the above basic knowledge, we define the weak solution of problem () below.

Definition  A pair (u, ξ ) ∈ B × L∞(�T ) is called a weak solution of problem (), if
(a) u(x, t) ≤ u(x),
(b) u(x, ) = u(x),
(c) ξ ∈ G(u – u),
(d) ∀ϕ ∈ C∞

 (�T ),

∫

�T

(
–uϕt + u|∇u|p–∇u∇ϕ + ( – γ )|∇u|pϕ)

dx dt +
∫

�

ξφ dx dt = , ()

(e) limt→∞
∫

�
|uμ(x, t) – uμ

 (x)|dx =  holds for some μ > .

In Section , we prove that for p ≥ , γ ∈ (, ), problem () admits a weak solution in
the sense of Definition . We end the introduction by showing the following lemma which
is used to prove our main results (see []).

Lemma  Let θ ≥  and A(η) = (η + θ ) P–
 η. Then

[
A(η) – A

(
η′)] · [η – η′] ≥ C

∣
∣η – η′∣∣p, ∀η,η′ ∈R, ()

where C is a positive constant only depending on p.

2 The existence of weak solutions
This section is devoted to the proof of the existence of solutions to problem (). We prove
the following theorem.

Theorem  Let p ≥  and γ ∈ (, ). Under the assumption (), problem () admits a weak
solution u with ∂uμ

∂t ∈ L(�T ) where

μ =
γ p

(p – )
+




. ()
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To prove Theorem , let us consider the approximation problem

⎧
⎪⎨

⎪⎩

(uε)t – uε div(|∇uε|p–∇uε) – γ |∇uε|p – βε(uε – uε) = , in �T ,
uε(x, ) = uε(x) = u(x) + ε, on �,
uε(x, t) = , on ∂� × (, T),

()

where βε(·) is the penalty function satisfying

 < ε ≤ , βε(x) ∈ C(R), βε(x) ≤ , βε() = –,

β ′
ε(x) ≥ , β ′′

ε (x) ≤ , lim
ε→

βε(x) =

{
, x > ,
–∞, x < .

()

Definition  A nonnegative function uε is called a weak solution of problem (), if
(a) uε ∈ L∞(�T ) ∩ Lp(, T ; W ,p

 (�)),
(b)

∫

�T
(uεϕt + uε|∇uε|p–∇uε∇ϕ + ( – γ )|∇uε|pϕ – βε(uε – uε)ϕ) dx dt =  hold, for

any ∀ϕ ∈ C∞
 (�T ),

(c) limt→∞
∫

�
|uμ

ε (x, t) – uμ
ε(x)|dx =  holds for some μ > .

According to the standard theory for parabolic equations [], problem () admits a weak
solution

uε ∈ L∞(�T ) ∩ Lp(, T ; W ,p
 (�T )

)
()

in the sense of Definition , which satisfies

(
uμ

ε

)

t ∈ L(�T ), ∇uε ∈ Lp(�T ). ()

Further, it follows by the comparison principle and the maximum principle [, ] that

ε ≤ uε ≤ uε ≤ |u|∞ + ε, uε ≤ uε for ε ≤ ε. ()

Moreover, from () and (), we assert that there exists a subsequence ε (still denoted by
ε) such that

uε → u ∈ Lp(, T ; W ,p
 (�T )

)
as ε → , ()

uε ≥ u ≥  for any ε > . ()

Lemma  Assume Qε
c = {(x, t) ∈ �T ; uε ≥ c, c > }, Qc = {(x, t) ∈ �T ; u ≥ c, c > } such that,

as ε → ,
∫

Qε
c

|∇uε – ∇u|p dx dt → ,
∫

Qc

|∇uε – ∇u|p dx dt → . ()

Proof Choosing ϕ = up–
ε (u

ε – ε – u) as the test function in

∫

�T

(
uεϕt + uε|∇uε|p–∇uε∇ϕ + ( – γ )|∇uε|pϕ – βε(uε – uε)ϕ

)
dx dt = . ()
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Then it is easy to see that

∫

�T

∂uε

∂t
up–

ε

(
u

ε – ε – u)dx dt

= –
∫

�T

|∇uε|p–∇uε∇
{

up–
ε

(
u

ε – ε – u)}dx dt

+ γ

∫

�T

up–
ε |∇uε|p

(
u

ε – ε – u)dx dt

+
∫

�T

up–
ε

(
u

ε – ε – u)βε(uε – uε) dx dt

= –
∫

�T

up–
ε |∇uε|p–∇uε∇

(
u

ε – u)dx dt

+
∫

�T

up–
ε

(
u

ε – ε – u)βε(uε – uε) dx dt

+ (γ – p + )
∫

�T

up–
ε |∇uε|p

(
u

ε – ε – u)dx dt. ()

From () and the definition of βε , we derive

∫

�T

up–
ε |∇uε|p

(
u

ε – ε – u)dx dt ≥ –ε
∫

�T

up–
ε |∇uε|p dx dt, ()

∫

�T

up–
ε

(
u

ε – ε – u)βε(uε – uε) dx dt

≤ (|u|∞ + ε
)p–

∣
∣
∣
∣

∫

�T

(
u

ε – ε – u)dx dt
∣
∣
∣
∣. ()

Observing thatγ – p +  < , and combing (), (), and (), we have

∫

�T

∂uε

∂t
up–

ε

(
u

ε – ε – u)dx dt

≤ ––p
∫

�T

∣
∣∇u

ε

∣
∣p–∇u

ε∇
(
u

ε – u)dx dt + pε
∫

�T

up–
ε |∇uε|p dx dt

+
(|u|∞ + ε

)p–
∣
∣
∣
∣

∫

�T

(
u

ε – ε – u)dx dt
∣
∣
∣
∣. ()

Note that ε ≤ uε ≤ |u|∞ + ε. Thus, it follows by the trigonometrical inequality and the
Hölder inequality that

∫

�T

∂uε

∂t
up–

ε

(
u

ε – ε – u)dx dt

+
∫

�T

[∣
∣∇u

ε

∣
∣p–∇u

ε –
∣
∣∇u∣∣p–∇u]∇(

u
ε – u)dx dt

≤ ––p
∫

�T

∣
∣∇u∣∣p–∇u∇(

u
ε – u)dx dt + pε

∫

�T

up–
ε |∇uε|p dx dt

+
(|u|∞ + ε

)p–
∣
∣
∣
∣

∫

�T

(
u

ε – ε – u)dx dt
∣
∣
∣
∣
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≤ –p
(∫

�T

∣
∣∇u∣∣p dx dt

) p–
p

(∫

�T

∣
∣∇(

u
ε – u)∣∣p dx dt

) 
p

+
(|u| + ε

)p–
με

∫

�T

|∇uε|p dx dt

+
(|u|∞ + ε

)p–
∣
∣
∣
∣

∫

�T

(
u

ε – ε – u)dx dt
∣
∣
∣
∣. ()

Since ∂
∂t uμ

ε ∈ L(�T ), using the Hölder inequality, one derives

∫

�T

∣
∣
∣
∣
∂up–

ε

∂t

∣
∣
∣
∣dx dt

= (p – )
∫

�T

up–
ε

∣
∣
∣
∣
∂uε

∂t

∣
∣
∣
∣dx dt

≤ (p – )
(|u|∞ + ε

)p–
∫

�T

∣
∣
∣
∣
∂uε

∂t

∣
∣
∣
∣dx dt

≤ (p – )
(|u|∞ + ε

)p–√|�T |
√

∫

�T

∣
∣
∣
∣
∂uε

∂t

∣
∣
∣
∣



dx dt < ∞. ()

From the above equation and (), we may conclude that, as ε → ,
∣
∣
∣
∣

∫

�T

∂uε

∂t
up–

ε

(
u

ε – ε – u)dx dt
∣
∣
∣
∣

≤ 
p – 

∫

�T

∣
∣
∣
∣
∂up–

ε

∂t
(
u

ε – ε – u)
∣
∣
∣
∣dx dt

≤ 
p – 

√
√
√
√

∫

�T

(
∂up–

ε

∂t

)

dx dt ·
√∫

�T

(
u

ε – ε – u
) dx dt

≤ 
p – 

ε
√|�T |

√
√
√
√

∫

�T

(
∂up–

ε

∂t

)

dx dt → , ()

(|u|∞ + ε
)p–

∣
∣
∣
∣

∫

�T

(
u

ε – ε – u)dx dt
∣
∣
∣
∣ → . ()

Substituting () and () into () yields

lim sup
ε→

∫

�T

[∣
∣∇u

ε

∣
∣p–∇u

ε –
∣
∣∇u∣∣p–∇u]∇(

u
ε – u)dx dt ≤ . ()

This and Lemma  lead to

lim
ε→

∫

�T

∣
∣∇u

ε – ∇u∣∣p dx dt = . ()

Hence, in view of

∇u
ε – ∇u = uε∇uε – u∇u = uε(∇uε – ∇u) + ∇u(uε – u), ()

∇u
ε – ∇u = uε∇uε – u∇u = u(∇uε – ∇u) + ∇uε(uε – u), ()
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we derive

p
∫

�T

up
ε |∇uε – ∇u|p dx dt

≤ p
∫

�T

∣
∣∇u

ε – ∇u∣∣p dx dt + p
∫

�T

|∇u|p|uε – u|p dx dt →  (ε → ), ()

p
∫

�T

up|∇uε – ∇u|p dx dt

≤ p
∫

�T

∣
∣∇u

ε – ∇u∣∣p dx dt + p
∫

�T

|∇uε|p|uε – u|p dx dt →  (ε → ). ()

Note that Qε
c ⊂ �T , Qc ⊂ �T . Then it is easy to see that as ε → ,

cp
∫

Qε
c

|∇uε – ∇u|p dx dt ≤
∫

�T

up
ε |∇uε – ∇u|p dx dt → , ()

cp
∫

Qc

|∇uε – ∇u|p dx dt ≤
∫

�T

up|∇uε – ∇u|p dx dt → . ()

Thus, the lemma is proved. �

Lemma  The solution of () satisfies

∫

�T

|∇uε|pu–α
ε dx dt ≤ C, ()

where C is independent of ε, α ∈ [,  – γ ).

Proof Multiply () by u–α
ε and integrate both sides of the equation over �T . After integrat-

ing by parts, we obtain

∫

�T

∂uε

∂t
u–α

ε dx dt

=
∫

�T

u–α
ε div

{|∇uε|p–∇uε

}
+ γ u–α

ε |∇uε|p + u–α
ε βε(uε – uε) dx dt

=
∫ T


dt

∫

∂�

{

u–α
ε |∇uε|p– ∂uε

∂ν

}

dx – ( – α – γ )
∫

�T

u–α
ε |∇uε|p dx dt

+
∫

�T

u–α
ε βε(uε – uε) dx dt, ()

where ν denotes the outward normal to ∂� × (, T).
Further, putting together () and () implies

∫

�T

u–α
ε βε(uε – uε) dx dt ≤ . ()

Since uε ≥ ε, we have

∂uε

∂ν
≤ , on ∂� × (, T). ()
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This leads to
∫ T



∫

∂�

{

u–α
ε |∇uε|p– ∂uε

∂ν

}

dx dt ≤ . ()

Now, we drop the non-positive terms () and () in () to get
∫

�T

∂uε

∂t
u–α

ε dx dt ≤ –( – α – γ )
∫

�T

u–α
ε |∇uε|p dx dt. ()

Clearly, using integration by parts, we derive
∫

�T

∂uε

∂t
u–α

ε dx dt =


 – α

∫

�

u–α
ε (x, T) – u–α

ε (x, ) dx. ()

This and () lead to
∫

�T

|∇uε|pu–α
ε dx dt ≤ 

( – α – γ )( – α)

∫

�

u–α
ε (x, ) dx ≤ C, ()

where C >  depending on α, γ , �, and |u|. Hence, the proof is completed. �

Lemma  As ε → , we have
∫

�T

∣
∣|∇uε|p – |∇u|p∣∣dx dt → , ()

∫

�T

∣
∣uε|∇uε|p–∇uε – u|∇u|p∇u

∣
∣dx dt → , ()

βε(uε – uε) → ξ ∈ G(u – u). ()

Proof Let χη and χ (ε)
η be the characteristic functions of {(x, t) ∈ �T ; u(x, t) < η} and {(x, t) ∈

�T ; uε(x, t) < η}, respectively. Since uε → u, as ε → , χη ≤ χ (ε)
η , we have

∫

�T

∣
∣|∇uε|p – |∇u|p∣∣dx dt

≤
∫

�T

∣
∣|∇u|pχη – |∇uε|pχ (ε)

η

∣
∣dx dt +

∫

�T

∣
∣|∇u|p( – χη) – |∇uε|p

(
 – χ (ε)

η

)∣
∣dx dt

≤
∫

�T

|∇uε|pχ (ε)
η dx dt +

∫

�T

|∇u|pχη dx dt

+
∫

�T

|∇u|p(χ (ε)
η – χη

)
dx dt +

∫

�T

∣
∣|∇uε|p – |∇u|p∣∣( – χ (ε)

η

)
dx dt

= H + H + H + H. ()

Taking α = ( – γ )/ in Lemma  one obtains

H =
∫

�T

|∇uε|p uα
ε

uα
ε

χ (ε)
η dx dt

≤ ηα

∫

�T

|∇uε|pu–α
ε χ (ε)

η dx dt

≤ ηα

∫

�T

|∇uε|pu–α
ε dx dt ≤ Cηα →  (η → ). ()
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Applying Lemma , (), and the fact that χη ≤ χ (ε)
η implies

H ≤
∫

�T

χ (ε)
η |∇u|p dx dt

≤
∫

�T

χ (ε)
η |∇uε|p dx dt +

∫

�T

χ (ε)
η |∇uε – ∇u|p dx dt →  (η → ), ()

H →  (η → ). ()

For fixed η > , χ (ε)
η → χη (ε → ) a.e. in �T , so

H →  (η → ). ()

Putting together (), (), (), and (), we have

∫

�T

∣
∣|∇uε|p – |∇u|p∣∣dx dt →  (η → ). ()

Thus () holds.
Next we prove (). It follows by the trigonometrical inequality that

∫

�T

∣
∣uε|∇uε|p–∇uε – u|∇u|p–∇u

∣
∣dx dt

≤
∫

�T

|uε – u||∇uε|p– dx dt +
∫

�T

u|∇uε|p–|∇uε – ∇u|dx dt

+
∫

�T

u|∇u| · ∣∣|∇uε|p– – |∇u|p–∣∣dx dt

= H + H + H. ()

Using the Hölder inequality and Lemma , we obtain

H ≤ C
(∫

�T

|uε – u|p dx dt
) 

p
→  as ε → . ()

With the inequality |ar – br| ≤ |a – b|r (r ∈ [, ], a, b ≥ ), the Hölder inequality, and (),
we have

H =
∫

�T

u|∇u| · ∣∣|∇uε|p– – |∇u|p–∣∣dx dt

=
∫

�T

u|∇u| · ((|∇uε|p
) p–

p –
(|∇u|p)

p–
p

)
dx dt

≤ C
∫

�T

|∇u| · ∣∣|∇uε|p – |∇u|p∣∣
p–

p dx dt

≤ C
(∫

�T

|∇u| · ∣∣|∇uε|p – |∇u|p∣∣dx dt
) p–

p

×
(∫

�T

|∇u| p
 dx dt

) 
p

→  (ε → ). ()
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Finally, we estimate H. Again by using trigonometrical inequality, we arrive at

H =
∫

�T

u|∇uε|p– · |∇uε – ∇u|χη dx dt

+
∫

�T

u|∇uε|p– · |∇uε – ∇u|( – χη) dx dt

≤ η

∫

�T

|∇uε|p– · |∇uε – ∇u|χρ dx dt

+ C
(∫

�T

|∇uε|(p–)p/(p–) dx dt
)p/(p–)(∫

�T

|∇uε – ∇u|p( – χρ) dx dt
)/p

= η

∫

�T

|∇uε|p– · |∇uε – ∇u|χρ dx dt

+ C
(∫

�T

|∇uε – ∇u|p( – χρ) dx dt
)/p

= H + H. ()

For all δ >  and ε ∈ (, ), let η be small enough and use Lemma  such that, as ε → ,

H ≤
(∫

�T

|∇uε|p dx dt
) p–

p
(∫

�T

|∇uε – ∇u| p
 χ


p
ρ dx dt

) 
p

≤ |�T | 
p

(∫

�T

|∇uε|p dx dt
) p–

p
(∫

�T

|∇uε – ∇u|pχρ dx dt
) 

p
→ . ()

Clearly, for fixed η > , using Lemma , we have

H →  as ε → . ()

Substituting () and () into (), we obtain

H →  as ε → . ()

Hence, () is proved by putting together (), (), and ().
Finally we prove (). Using () and the definition of βε , we have

βε(uε – uε) → ξ as ε → . ()

Now we prove ξ ∈ G(u – u). According to the definition of G(·), we only need to prove
that if u(x, t) < u(x), ξ (x, t) = . In fact, if u(x, t) < u(x), there exist a constant λ > 
and a δ neighborhood Bδ(x, t) such that, if ε is small enough, we have

uε(x, t) ≤ uε(x) – λ, ∀(x, t) ∈ Bδ(x, t). ()

Thus, if ε is small enough, we have

 ≥ βε(uε – uε) ≥ βε(λ) = , ∀(x, t) ∈ Bδ(x, t). ()
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Furthermore, it follows by ε →  that

ξ (x, t) = , ∀(x, t) ∈ Bδ(x, t). ()

Hence, () holds, and the proof of Lemma  is completed. �

With Lemma  and (), it is easy to check that u satisfies (c) and (d) in Definition .
Moreover, applying (), it is clear that

u(x, t) ≤ u(x), in �T , u(x, ) = u(x), in �. ()

Thus (a) and (b) hold.
To show the existence of problem (), we only need to prove that (e) holds. Define

I =
∫

�

∣
∣uμ

ε – uμ
ε

∣
∣dx. ()

Applying the Hölder inequality twice, we obtain

I =
∫

�

∣
∣uμ

ε (x, t) – uμ
ε(x)

∣
∣dx =

∫

�

∣
∣
∣
∣

∫ t



∂

∂s
uμ

ε dx
∣
∣
∣
∣dx

≤ √
t
∫

�

∣
∣
∣
∣

√
∫ t



(
∂uμ

ε

∂s

)

dt
∣
∣
∣
∣dx ≤ |�| 


√

t
∫

�

∫ t



(
∂uμ

ε

∂s

)

dt dx

≤ √
t|�| 

 dx dt. ()

It follows by () that

∫

�

∣
∣uμ

ε (x, t) – uμ
ε(x)

∣
∣dx ≤ C

√
t, ()

where C is independent of ε. Using () and letting ε →  yields

∫

�

∣
∣uμ(x, t) – uμ

 (x)
∣
∣dx ≤ C

√
t. ()

So
∫

�

∣
∣uμ(x, t) – uμ

 (x)
∣
∣dx →  as t → . ()

Thus the proof of existence is completed.
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