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Abstract

In this paper, we study the degenerate parabolic variational inequality problemin a
bounded domain. First, the weak solutions of the variational inequality are defined.
Second, the existence of the solutions in the weak sense are proved by using the
penalty method and the reduction method.
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1 Introduction
In this article, we consider the initial-boundary problem of the following parabolic varia-
tional inequality:

uy —udiv(|VulP2Vu) — y|VulP <0, in Qr,

[y — udiv(|VulP2Vu) — y |VulP] - (u— uo(x)) =0, in Qr,

u(x,t) <wuo(x), inQr, 1)
u(x,0) = ug(x), in €,

ulx,t)=0, ondQx(0,T),

where Q7 = Q2 x (0, T), 2 ¢ RY isabounded domain with appropriately smooth boundary
92, p>2,y >0, and uy(x) satisfies

0 < uo € C(Q) N W”(R). )

Readers can refer to [1] and [2] for the motivation and references about the study of
problem (1). The linear parabolic variational inequality problem
2y 12y _(r-16)2V 4V =0, inQr
V >gx), inQr,
2V =122V (r= 1oLV +rV)(V -gw) =0, inQr, (3)
V(t,x) =0, ondQr,
V(x,0) =g(x), in€,

is similar to (1). The existence of solutions to problem (3) was studied in a series of pa-
pers (see [3] and [4] and references therein). Here, r and o are positive constant. In [5],
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the authors discussed a general case in which the linear parabolic operator with constant
coefficients can be replaced by a quasi-linear one with integro-differential terms. Later,
the authors in [6] extended the corresponding conclusions to the R%-values case in which
the existence and uniqueness of solution to parabolic variational inequalities with integro-
differential terms were proved by using the penalty method and the reduction method.

However, to the best of our knowledge, the existence of solutions to the variational in-
equality problem with the degenerate parabolic operators has not been studied. The pur-
pose of this paper is to fill this gap.

In the spirit of [3] and [4], we introduce the following maximal monotone graph:

0, A>0,
G(A) = (4)
[0,+00), A=0.
In addition, we define a function class for the solution as follows:
B={uel®Qr) NI (0, T; Wy"(2))}. ®)

Based on the above basic knowledge, we define the weak solution of problem (1) below.

Definition 1 A pair (i, &) € B x L*(Q27) is called a weak solution of problem (1), if
() ulx,t) <uo(x),
(b) u(x,0) = uo(x),
(©) &€ Gu—u),
(d) Vo e C5o(Rr),

/ (—ugot+u|Vu|p’2Vquo+(1—y)|Vu|P<p)dxdt+fSq)dxdt:O, (6)
Qr Q

(e) limy oo [ 1 (x,£) — ug (x)| dx = 0 holds for some 1 > 0.

In Section 2, we prove that for p > 2, y € (0,1), problem (1) admits a weak solution in
the sense of Definition 1. We end the introduction by showing the following lemma which
is used to prove our main results (see [7]).

P2

Lemma?2 Let6 >0 and A(n) =(n* +6) 7 n. Then

¥, Vnn' eR, 7)

[Am) -AM)] - [n-n]=C|n-7n
where C is a positive constant only depending on p.

2 The existence of weak solutions
This section is devoted to the proof of the existence of solutions to problem (1). We prove
the following theorem.

Theorem 3 Letp > 2 and y € (0,1). Under the assumption (2), problem (1) admits a weak
solution u with % e L*(Qr) where

14% 1

20-1) 2 ®

M:
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To prove Theorem 3, let us consider the approximation problem

(#te) — tte div(| Vi, |p_2vua) -y Vu|P - ﬁs(MOS -u.,)=0, inQrp,
ue(x,0) = uoe(x) = uo(x) +¢, on, )
Uug(x,£) =0, ond x (0,7),

where (') is the penalty function satisfying

O0<e <], ﬂs(x) € CZ(R)! ﬁs(x) <0, ,85(0) =-1,

0, x>0, (10)

e—0 -00, x<0.

Definition 4 A nonnegative function u, is called a weak solution of problem (9), if
(@) ue € L®(Qr) NLP(0, T; W,"(R2)),
(b) fQT (U @y + | VUt P2VUu Vo + (1= y) | Vg [P — Be(tgs — the)@) dxdt = 0 hold, for
any Vo € C°(27),
(©) limyoo [ Ut (x,t) — ug, (x)| dx = 0 holds for some 1 > 0.

According to the standard theory for parabolic equations [7], problem (9) admits a weak
solution

ue € L(Qr) NP (0, T; WP () (11)
in the sense of Definition 4, which satisfies

(ut), € Ly(Qr),  Vue € L(Q). 12)
Further, it follows by the comparison principle and the maximum principle [8, 9] that

& <u < upe < |Uploo + &, Ug < U, fore <ey. (13)

Moreover, from (12) and (13), we assert that there exists a subsequence ¢ (still denoted by
&) such that

ue — u€17(0,T; Wé’p(QT)) ase — 0, (14)

u.>u>0 foranye>D0. (15)

Lemma 5 Assume Q; = {(x,£) € Qr;u, > ¢,c >0}, Q. = {(x,t) € Qr;u > ¢,c > 0} such that,

ase — 0,

|Vu, — Vul’ dxdt — 0, |Vu, — Vul’ dxdt — 0. (16)
Q Qc

Proof Choosing ¢ = u(u? — £2 — u?) as the test function in

/ (Msﬁl)t + U | Vg |p_2VM8V(/) + (1= y)IVuePo — Be(uo: — ”6)(/7) dxedt =0. 17)
Qr

Page 3 of 11
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Then it is easy to see that
ou
/ — P (u? - & — u®) dxdt
oy 0f
_ _/ IVite P2V Vi (2 — € = 12) ) dade
Qr
+y / w2\ Vu P (u? — & — u?) dx de
Qr
+ / w7 (u? - &% — u®) Be (os — 1) dxdt
Qr
=—/ u‘g”IIVuSW’zVugV(u —u )dxdt
Qr
* f > (u? - &% = u®) B uoe — ;) dude
Qr
+(y—p+D) | w2 |VulP(u? - & - u?) drde. (18)
Qr
From (15) and the definition of B, we derive
f w2 |V P (u? — &% — u®) dxdt > —82/ W2V, P dxdt, (19)
Qr Qr

/ u{f’z (u§ —g? - uz)ﬂg(uog —u)dxde
Qr

= (|u0|oo + S)P—z

/ (u2—8 -u )dxdt‘ (20)
Qr

Observing thaty —p + 1 < 0, and combing (18), (19), and (20), we have

ad
f ﬁu{j’% 2-e® —u?)dadt
oy 0t
< —21_1’/ ‘Vu?‘p_ZVLéV(ui - u?)dxdt +p82/ w2\ Vu, P dxedt
Qr Qr

+ (ol + €)”

- /QT (uz—e -u )dxdt‘ (21)

Note that ¢ < u, < |ug|oo + €. Thus, it follows by the trigonometrical inequality and the
Holder inequality that

/ %uﬁ”z (u —&* —u’) dxde
Qr
+/ [|Vu§|p_2Vu \Vu?|” Vi 1V (2 - u?) dxdt
Qr
5—21_1’/ |Vu2|p_2Vu2V(u§—u2) dxdt+p82/ w2\ Vu, P dxedt
Qr Qr

+ (luoloo + €)”

72/ (u2—8 —u)dxdt‘
Qr
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p-1 1
< 21—19(/ |Vu2|pdxdt> ! (/ |V(uf —u2)|pdxdt)p
QT Qr

+ (Juol + e)p_zp.sz/ |V |P dxdt
Qr

+ (1ol + 8)p_2

/ (u —&* —u?) dxdt’.
Qr

Since %u‘g‘ e L*(Q7), using the Holder inequality, one derives

™
/ dxdt
Qr
2 Ou,
=(p-1) ul™? | — | dxdt
Qr ¢
p-2 ou,
<@-1D(luolos +¢) / dxdt
o, | Ot
p-2 aus 2
<@-D(luols +&)° VI dx dt < 0.
Qr

From the above equation and (13), we may conclude that, as ¢ — 0,

dus
/ “ ul ™ (ul — &> —u®)dx dt‘
ot °
Qr

SLSZ\/|QT| / (au€ > dxdt — 0,
p_l Qr
(luoloe + ) / (u? — &> - u?) dxdt‘ — 0.
Qr

Substituting (24) and (25) into (22) yields

lim sup/ [V |p_2Vu§ S\ |p_2Vu2]V(uf -u*)dxdt <0.
e—>0 Qr
This and Lemma 2 lead to

lim |Vu2 - Vi |p dxdz =0.
e—0 Qr

Hence, in view of

Vu? - Vu? =2u,Vu, - 2uVu =2u,(Vu, — Vi) + 2Vu(u, — u),

Vuﬁ - Vu? =2u,Vu, - 2uVu =2u(Vu, — Vi) + 2V, (u; — ),

Page 5 of 11
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we derive
21’/ u?|Vu, — VulP dxdt
Qr
521’/ |Vu§—Vu2|pdxdt+4f”/ [VulP|lug —ulf dedt — 0 (¢ — 0), (30)
QT Qr
2"’/ u?|Vu, — VulP dx dt
Qr
52"/ ‘Vug—Vuzypdxdt+4p |Vug|Plu, — ul’ dedt — 0 (¢ — 0). (31)
Qr Qr

Note that Q¢ C Qr, Q. C Q7. Then it is easy to see thatas ¢ — 0,

cp/ |Vu, — VulP dxdt < / uf|Vu, — Vulf dxdt — 0, (32)
Q: Qr
& |Vu, — Vul? dxdt < / u’|Vu, — Vulf dxdt — 0. (33)
Qc Qr
Thus, the lemma is proved. O

Lemma 6 The solution of (9) satisfies
/ [Vue|Pu® dxdt < C, (34)
Qr

where C is independent of ¢, « € [0,1 - y).

Proof Multiply (9) by #;* and integrate both sides of the equation over 7. After integrat-

ing by parts, we obtain

Oute
/ " u,* dxdt
Qp Ot

= f uy Av{ Vi P2V} + yu | Vue P+ u;® Be(toe — ue) dxde
Q
}dx—(l—ot—y) u,*|Vu [P dxde

T
T
:/ dt/ {ui_“WueV’_Q
0 a0 Qr

+/ u,” Be(uoe — ue) dx dt, (35)
Qr

ou,
ov

where v denotes the outward normal to 92 x (0, T').
Further, putting together (10) and (13) implies

/ u,” Be (tos — ue) dxdt < 0. (36)
Qr

Since u, > ¢, we have

ou,
Jav

<0, ond2x(0,T). (37)
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This leads to
T 9 .
/ / {ui‘“Wus |P-21} drde < 0. (38)
o Joao v
Now, we drop the non-positive terms (36) and (38) in (35) to get
8143 —a -
w dxdt <-1-a-y) u, | Vu P dx de. (39)
o Ot or

Clearly, using integration by parts, we derive

0 1
f e u dedt = — ui"" (x, T)— ui"" (x,0) dw. (40)
Qr ot l-« Q
This and (39) lead to
/ | Ve |Pu® dedt < .t / u%(x,0)dx < Cy, (41)
Qr (l-a-y)1-a)lq
where C; > 0 depending on «, y, 2, and |uo|. Hence, the proof is completed. d

Lemma?7 As e — 0, we have

f |IVue P | Vul?| dxdt — 0, (42)

Qr

/ |t | Ve P>Vt — u|VulPVu|dxedt — 0, (43)
Qr

Be(uos — 1e) — & € Guo — u). (44)

Proof Let x, and x,gg) be the characteristic functions of {(x, t) € Q7;u(x, t) < n} and {(x, ) €
Q7;ug (%, t) < n}, respectively. Since u, — u,as ¢ = 0, x, < X,(f)’ we have

/ [V — |Vul’| drde
Qr
5/ ||Vu|”x,,—|Vug|p)(,(f)|dxdt+/ [IVulP (1= %) = Ve P (1= %) | dwde
Qr Qr
5/ |Vu5|"x,(75)dxdt+/ [Vulf x, dxde
Qr Qr
+/ |Vu|”(x,(f)—x,,)dxdt+/ [IVatelP = [Vul?|(1- %) dxde
QT Qr
=H1 +H2 +H3 +H4. (45)

Taking @ = (1 — y)/2 in Lemma 6 one obtains

MC{
Hi = / |Vt [P == ) daedt
Qr uy

&

< n”‘/ |Vu, |pu;°’)(,(]8) dxedt
Qr

< 77"‘/ [VuPu,* dxdt <Cn* -0 (n—0). (46)
Qr
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Applying Lemma 5, (46), and the fact that x, < x,(f) implies
H, 5[ X$8)|Vu|p dxdt
Qr
< / X,§£)|Vu8|1’ dxdt+/ X,(f)Wue —VulfPdxdt —0 (n— 0),
Qr Qr
Hy,—0 (n—0).
For fixed n > 0, x\) — x, (¢ — 0) a.e. in Qr, so
H; —0 (n—0).
Putting together (46), (47), (48), and (49), we have
/ [IVue P = |VulP|dxdt — 0 (n— 0).
Qr

Thus (42) holds.
Next we prove (43). It follows by the trigonometrical inequality that

f |u8|VuE|p’2Vus—u|Vu|p’2Vu|dxdt
Qr
5/ |u5—u||Vug|1’_1dxdt+/ u| Vi P2\ Vu, — Vu|dxdt
Qr Qr
+/ ulVul - || Vi P> = [VulP~| dade
Qr

:H5 +H6 +H7.

Using the Holder inequality and Lemma 6, we obtain

1
p
H5§C(/ |u5—u|pdxdt> —0 ase—0.
Qr

Page 8 of 11

(47)

(48)

(49)

(51)

(52)

With the inequality |a” - b"| < |a — b|" (r € [0,1], a,b > 0), the Holder inequality, and (42),

we have
H, =/ ulVul - || Ve [P~ = |VulP?| dx de
Qr

p=2
p

p=2
= (IVul?) 7" ) dxdt

- /Q ulVul - (Ve I?)

p-2
< C/ |Vul - || Vue [P = [Vul’| 7 dxde
Qr

P2
»
= C(/ |Vul - [|Vue P = [Vul?| dxdt)
Qr

2
x(/ |Vu|’5dxdt>p—>o (€ — 0).
Qr
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Finally, we estimate Hs. Again by using trigonometrical inequality, we arrive at
Hg = / u|Vu P~ - |Vu, — Vulx, deds
Qr
+/ u|Vu P72 |Vu, — Vul1 - Xn) dxdt
Qr

< n/ |V P72 |V, — Vulx,dxdt
Qr

plp-1) 1/p
+ C(/ |V, |@-2P/0-1) dxdt) (/ |Vu, — VulP(1 - Xp)dxdt>
Qr Qr

= n/ |V P72 - |V, — Vulx,dxdt
Qr

1/p
+ C(f |Vu, — VulP(1 - Xp)dxdt)
Qr

= Hg +H9. (54‘)

For all § > 0 and ¢ € (0,1), let n be small enough and use Lemma 5 such that, as ¢ — 0,

? p 2 p
Hg < (/ |V, |P dxdt) </ |Vu, = Vul2 ) dxdt>
Qr Qr

§|QT|117</ |Vu€|pdxdt> ! (/ |VMS—Vu|podxdt>p—>0. (55)
QT Qr

Clearly, for fixed n > 0, using Lemma 5, we have

Hy— 0 ase— 0. (56)
Substituting (55) and (56) into (54), we obtain
Hs— 0 ase— 0. (57)

Hence, (43) is proved by putting together (52), (53), and (57).
Finally we prove (44). Using (13) and the definition of 8., we have

Be(ug —uge) > & ase— 0. (58)
Now we prove & € G(ug — u). According to the definition of G(-), we only need to prove
that if u(xo, to) < uo(xo), & (%o, tp) = 0. In fact, if u(xo, £y) < uo(x), there exist a constant A > 0

and a § neighborhood B;(xo, to) such that, if ¢ is small enough, we have
U (x) t) < Uoe (x) - )‘” V(x) t) € BS (.?C(), tO)- (59)

Thus, if ¢ is small enough, we have

0 > ﬂs(”Oa - ua) > ,38()‘) = 07 V(xr t) € BS(xO)tO)- (60)
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Furthermore, it follows by ¢ — 0 that
§(x1)=0, V(x1) € Bs(xo, o). (61)
Hence, (44) holds, and the proof of Lemma 7 is completed. O

With Lemma 7 and (14), it is easy to check that u satisfies (c) and (d) in Definition 1.
Moreover, applying (13), it is clear that

u(x, t) < uog(x), inQr, u(x,0) = up(x), in Q. (62)

Thus (a) and (b) hold.
To show the existence of problem (1), we only need to prove that (e) holds. Define

I- / lut — | dx. (63)
Q

Applying the Holder inequality twice, we obtain

t
a
I:‘/|ufj(x,t)—ugg(x)|dx:/ / —ul dx
Q olJo s

<f/ /(a“) de| dx < |2} fff( 8)2““"5

dx

< VHQ|? dedt. (64)
It follows by (12) that
[ ) - 0 v < €2 ©5)
Q

where C is independent of €. Using (14) and letting ¢ — 0 yields

/ |u“(x,t) ug x)’dx<C\/_ (66)
So

f9|u“(x,t)—ug(x)’dx—>0 ast— 0. (67)

Thus the proof of existence is completed.
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