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Abstract
In this paper, we employ the empirical likelihood method to estimate the unknown
parameters in Poisson autoregressive model in the presence of auxiliary information.
It is shown that our approach proposed, compared to the maximum likelihood
estimator, the least squares estimator, and the weighted least squares estimator,
yields more efficient estimators. Some simulation studies are also conducted to
investigate the finite sample performance of the proposed method.
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1 Introduction
Integer-valued time series occur in many different situations. They arise, for example, as
the number of births at a hospital in successive months, the number of bases of DNA se-
quences, the number of road accidents and the number of diseases in a certain area in
successive months. Therefore, in recent years, there has been growing interest in study-
ing integer-valued time series [–]. In order to model the number of cases of campy-
lobacterosis infections from January  to the end of October  in the north of
the Province of Québec, Ferland et al. [] proposed the following Poisson autoregressive
model:

{
Xt|Ft– : P(λt); ∀t ∈ Z,
λt = α +

∑p
i= αiXt–i,

(.)

where Ft– is the σ field generated by (Xt–, Xt–, . . .), α > , αi ≥  (i = , , . . . , p), and
α = (α,α, . . . ,αp) is an unknown parameter vector.

For model (.), Zhu and Wang [] gave the condition for ergodicity and a necessary and
sufficient condition for the existence of moments. They also established the asymptotics
for the maximum likelihood estimator and the least squares estimators. The problem of
interest here is to estimate the unknown parameter in model (.) by using the empirical
likelihood method when auxiliary information is available. In practice, some auxiliary in-
formation can often be obtained, such as that the unknown distribution is symmetric or
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the variance of population is a function of the mean. By making full use of the auxiliary
information, we can increase the precision of statistical inference. Here, we assume that
we have some auxiliary information that can be represented as the following conditional
moment restrictions:

E
(
g(Xt , . . . , Xt–p; θ)|X(t – )

)
=  (.)

for each t = , , , . . . , where the unknown parameter vector θ ∈ Rd , X(t – ) = (Xt–,
. . . , Xt–p) and g(x; θ ) ∈ Rr is some function with r ≥ d. In order to simplify the notation,
we further denote g(Xt , . . . , Xt–p; θ ) by gt(θ ). We note here that θ can be different from α

and the notion gt(θ ) contains a broad class of information that can be formulated from
the knowledge on the probability distribution of Xt , e.g. the moment and their generaliza-
tions []. By using the conditional moment restrictions, as we expect, we can increase the
efficiency of the resulting estimator [–].

The EL as an alternative to the bootstrap for constructing confidence regions was intro-
duced by Owen [, ]. The method defines an EL ratio function to construct confidence
regions. Important features of the empirical likelihood method are its automatic determi-
nation of the shape and orientation of the confidence region by the data. These attractive
properties have motivated various authors to extend the empirical likelihood methodol-
ogy to other situations. To use the auxiliary information, some statisticians have also de-
veloped some statistical inference methods under the framework of empirical likelihood
method [–]. In this paper, we further generalize these methods to the statistical in-
ference of time series models. Specifically, based on the empirical likelihood method, we
consider the parameter estimation problem for Poisson autoregressive model with condi-
tional moment restrictions. Our approach yields more efficient estimates compared to the
maximum likelihood estimator, the least squares estimator and the weighted least squares
estimator, which do not utilize the conditional moment restrictions. Based on the mean
square errors, a comparison is also made by simulation. Our simulation indicates that the
use of auxiliary information provides improved inferences.

The rest of this paper is organized as follows. In Section , we introduce the methodology
and the main results. Simulation results are reported in Section . Section  provides the
proofs of the main results.

The symbols ‘
d−→’ and ‘

p−→’ denote convergence in distribution and convergence in
probability, respectively. Convergence ‘almost surely’ is written as ‘a.s.’ . Furthermore,
‘Mτ

k×p’ denotes the transpose matrix of the k × p matrix Mk×p, A ⊗ B denotes the Kro-
necker product of matrices A and B, and ‖ · ‖ denotes Euclidean norm of the matrix or
vector.

2 Methodology and main results
In this section, we will first discuss how to apply the empirical likelihood method [, ]
to estimate the unknown parameter α when auxiliary information is available.

Before we state our main results, the following assumptions will be made:

(A) The parametric space ϒ is compact with ϒ = {α : δ ≤ α ≤ M,  ≤ α + · · · + αp ≤
M∗ < ,αi ≥ , i = , , . . . , p}, where δ and M are finite positive constants, and the true
parameter value α is an interior point in ϒ .
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Remark  It is shown by Corollary  in Ferland et al. [] and Theorem  and Theorem 
in Zhu and Wang [] that, under (A), {Xt , t ≥ } is stationary and ergodic, and E(Xm

t ) < ∞
for any fixed positive integer m.

(A) There exists θ such that E(gt(θ)) = , the matrix 	(θ ) = E(gt(θ )gτ
t (θ )) is positive

definite at θ, ∂g(x; θ )/∂θ is continuous in a neighborhood of the true value θ,
‖∂g(x; θ )/∂θ‖ and ‖g(x; θ )‖ are bounded by some integrable function W̃ (x) in this
neighborhood, and the rank of E(∂gt(θ )/∂θ ) is d.

First, the conditional moment restrictions in (.) imply that E(gt(θ)) = . Further, by
using the empirical likelihood method, we can obtain data adaptive weights ωt through

L(θ ) = sup

{ n∏
t=

ωt : ωt ≥ ,
n∑

i=

ωt = ,
n∑

t=

ωtgt(θ) = 

}
,

where θ is an unknown parameter. By using the auxiliary information combining with
the least squares method, we propose to estimate α by

α̂ = arg min
α

n∑
t=

ωt
(
Xt – Zτ

t α
), (.)

where Zτ
t = (, Xt–, . . . , Xt–p). By introducing a Lagrange multiplier λ ∈ Rr , standard deriva-

tions in the empirical likelihood lead to

ωt(θ) =

n


 + λτ

θ
gt(θ)

, (.)

where λθ satisfies


n

n∑
t=

gt(θ)
 + λτ

θ
gt(θ)

= . (.)

Utilizing the weights given by (.), we obtain the estimate of α:

α̂ =

( n∑
t=

ωt(θ)ZtZτ
t

)– n∑
t=

ωt(θ)XtZt . (.)

In the following, we will give the asymptotic properties of α̂.

Theorem . Assume that (A) and (A) hold. If α is the true value of α, then

√
n
(
α̂ – α) d−→ N

(
, W –(� – �	

–(θ)�τ


)
W –),

where W = E(ZtZτ
t ), � = E(ZtZτ

t (Xt – Zτ
t α)), and � = E(Ztgτ

t (θ)(Xt – Zτ
t α)).

Zhu and Wang [] prove that the asymptotic variance of the ordinary least squares
estimator ᾱ = (

∑n
t= ZtZτ

t )– ∑n
t= XtZt is W –�W –. Note that � and 	–(θ) are both

positive definite matrices. Therefore, by Theorem ., we find that a variance reduction
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quantified by W –�	
–(θ)�τ

W – is induced by incorporating the auxiliary informa-
tion E(gt(θ)|X(t – )) = .

To apply the proposed estimator (.), we need to further estimate the unknown param-
eter θ . We consider θ̂ = arg maxθ L(θ ). Following the results in Qin and Lawless [], the
corresponding weights {ωt}n

t= satisfy

ωt(θ̂ ) =

n


 + λτ

θ̂
gt(θ̂ )

, (.)

where λθ̂ is the solution to


n

n∑
t=

gt(θ̂ )
 + λτ

θ̂
gt(θ̂ )

= 

and (λθ̂ , θ̂ ) solves


n

n∑
t=

∂gt (θ )
∂θτ λθ̂

 + λτ

θ̂
gt(θ̂ )

= .

Let

α̂ = arg min
α

n∑
t=

ωt(θ̂ )
(
Xt – Zτ

t α
), (.)

where {ωt(θ̂ )}n
t= is identified by (.). When r = d, we know that ωt(θ̂ ) = 

n and hence α̂

is the ordinary least squares estimator. When r > d, ωt(θ̂ ) is no longer equal to 
n and we

shall show that this scheme provides an efficiency gain over the conventional least squares
estimator.

In order to study the estimator (.), we define (θ) = E( ∂gt (θ)
∂θ

), �(θ) = ((θ)	–(θ) ×
τ (θ))– and B = 	–(θ)(I –(θ)�(θ)τ (θ)	–(θ)), where I is the identity matrix. The
limiting distribution of α̂ is given in the following theorem.

Theorem . Assume that (A) and (A) hold. If α is the true value of α, then

√
n
(
α̂ – α) d−→ N

(
, W –(� – �B�τ


)
W –). (.)

The matrix B is non-negative definite. Hence the asymptotic variance of α̂ is no greater
than that of the least squares estimator. When B is positive definite, variance reduction is
attained. This implies that having much more auxiliary information can improve the least
squares estimator.

3 Simulation study
In this section we conduct some simulation studies which show that our proposed meth-
ods perform very well. Consider the following one order Poisson autoregressive model:

{
Xt|Ft– : P(λt); ∀t ∈ Z,
λt = α + αXt–.

(.)
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In order to compare the performance of the estimator (denoted by ALS) given by (.)
with those of the ordinary least squares estimator (LS), the weighted least squares estima-
tor (WLS), and the maximum likelihood estimation (MLE), we compute the mean square
errors based on the four methods: the ALS, the LS, the WLS, and the MLE. We use the
vector gt(α,α) = (, Xt–, X

t–)τ (Xt – α – αXt–) as the conditional moment restrictions
in (.). Specifically, for a particular pair of (α,α)τ , we generate realizations from (.)
with n = ,  and ,. Further, based on , repetitions, we compute the mean
square errors of the above four kinds of estimators. The simulation results for α =  are
summarized in Table . Table  presents the simulation results for α = .

From Tables  and , we see that the mean square errors obtained by the estimator (.)
are less than those of the maximum likelihood estimator, the least squares estimator and
the weighted least squares estimator. This indicates that using the conditional moment re-
strictions, the estimates are more accurate, regardless of the samples size and the different
unknown parameter.

4 Proofs of the main results
In order to prove Theorem ., we first present several lemmas.

Lemma . Assume that (A) and (A) hold. Then

max
≤t≤n

∥∥gt(θ)
∥∥ = op

(
n



)
. (.)

Proof Let 	n(θ) = 
n
∑n

t=(gt(θ)gτ
t (θ)) and gt(θ) = (gt(θ), . . . , gtr(θ))τ . Note that in or-

der to prove (.), we need only to prove that


n

max
≤t≤n

gtk(θ)
p−→ , k = , . . . , r. (.)

We denote the (h, l)th element of 	(θ) as σhl , h, l = , , . . . , r. By the ergodic theorem,
we have

	n(θ)
p−→ 	(θ). (.)

For all  ≤ k ≤ r and  ≤ m ≤ n, define the sets

Bk
n,m =

m⋂
j=

Bk,j
n,m,

where Bk,j
n,m = {ω : | 

n
∑[n(j/m)]

t= g
tk(θ) – j

mσkk| ≤ 
m }, j = , . . . , m.

First we show that

lim
n→∞ P

(
Bk,j

n,m
)

= , j = , . . . , m. (.)

After some algebra, we obtain

Bk,j
n,m =

{
ω :

∣∣∣∣∣ [n j
m ]

n
m
j


[n j

m ]

[n(j/m)]∑
t=

g
tk(θ) – σkk

∣∣∣∣∣ ≤ 
m

m
j

}
.
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Table 1 Simulation results when α0 = 1

(α0, α1) ALS LS WLS MLE

n = 100 (1, 0.1) (0.0226, 0.0085) (0.0223, 0.0079) (0.0231, 0.0081) (0.0452, 0.0169)
(1, 0.2) (0.0242, 0.0104) (0.0240, 0.0108) (0.0279, 0.0127) (0.0485, 0.0208)
(1, 0.3) (0.0250, 0.0103) (0.0261, 0.0107) (0.0310, 0.0126) (0.0501, 0.0206)
(1, 0.4) (0.0145, 0.0067) (0.0175, 0.0076) (0.0275, 0.0099) (0.0808, 0.0626)
(1, 0.5) (0.0283, 0.0098) (0.0333, 0.0102) (0.0647, 0.0145) (0.1811, 0.1731)
(1, 0.6) (0.0673, 0.0120) (0.0774, 0.0145) (0.1235, 0.0207) (0.1580, 0.0577)
(1, 0.7) (0.1085, 0.0090) (0.1550, 0.0123) (0.2932, 0.0196) (0.2232, 0.0265)
(1, 0.8) (0.1500, 0.0061) (0.2162, 0.0079) (0.4171, 0.0123) (0.3046, 0.0152)
(1, 0.9) (0.3878, 0.0046) (0.3945, 0.0055) (0.9465, 0.0102) (0.6821, 0.0089)
(1, 0.95) (2.5205, 0.0054) (3.1072, 0.0064) (5.3794, 0.0109) (4.7175, 0.0104)

n = 300 (1, 0.1) (0.0071, 0.0032) (0.0072, 0.0033) (0.0077, 0.0036) (0.0142, 0.0065)
(1, 0.2) (0.0092, 0.0041) (0.0094, 0.0044) (0.0105, 0.0050) (0.0183, 0.0082)
(1, 0.3) (0.0087, 0.0034) (0.0094, 0.0037) (0.0128, 0.0049) (0.0174, 0.0067)
(1, 0.4) (0.0102, 0.0041) (0.0119, 0.0045) (0.0191, 0.0060) (0.0204, 0.0082)
(1, 0.5) (0.0113, 0.0032) (0.0128, 0.0036) (0.0238, 0.0053) (0.0226, 0.0065)
(1, 0.6) (0.0169, 0.0027) (0.0195, 0.0034) (0.0452, 0.0062) (0.0337, 0.0054)
(1, 0.7) (0.0188, 0.0016) (0.0261, 0.0023) (0.0723, 0.0046) (0.0376, 0.0032)
(1, 0.8) (0.0307, 0.0014) (0.0499, 0.0021) (0.0146, 0.0046) (0.0615, 0.0028)
(1, 0.9) (0.0536, 0.0009) (0.0881, 0.0012) (0.2846, 0.0024) (0.1071, 0.0018)
(1, 0.95) (0.2441, 0.0006) (0.2555, 0.0007) (0.6927, 0.0014) (0.4882, 0.0013)

n = 1,000 (1, 0.1) (0.0018, 0.0009) (0.0017, 0.0009) (0.0018, 0.0010) (0.0035, 0.0018)
(1, 0.2) (0.0025, 0.0011) (0.0025, 0.0011) (0.0027, 0.0013) (0.0050, 0.0022)
(1, 0.3) (0.0029, 0.0012) (0.0033, 0.0013) (0.0046, 0.0018) (0.0058, 0.0023)
(1, 0.4) (0.0027, 0.0010) (0.0029, 0.0012) (0.0055, 0.0019) (0.0055, 0.0021)
(1, 0.5) (0.0030, 0.0007) (0.0036, 0.0009) (0.0083, 0.0017) (0.0061, 0.0013)
(1, 0.6) (0.0034, 0.0007) (0.0045, 0.0008) (0.0109, 0.0014) (0.0068, 0.0014)
(1, 0.7) (0.0077, 0.0008) (0.0090, 0.0010) (0.0270, 0.0020) (0.0155, 0.0016)
(1, 0.8) (0.0095, 0.0005) (0.0140, 0.0008) (0.0428, 0.0015) (0.0191, 0.0010)
(1, 0.9) (0.0211, 0.0003) (0.0281, 0.0004) (0.0854, 0.0007) (0.0421, 0.0005)
(1, 0.95) (0.0244, 0.0001) (0.0518, 0.0001) (0.2280, 0.0004) (0.0488, 0.0002)

Observe that

[n j
m ]

n
m
j

→ , n → ∞. (.)

Furthermore, by (.), we have


[n j

m ]

[n(j/m)]∑
t=

g
tk(θ)

p−→ σkk . (.)

Using (.) and (.), we complete the proof of (.).
Next we prove that

lim
n→∞ P

(
Bk

n,m
)

= , m = , , . . . . (.)

After some calculation, we obtain

P
(
Bk

n,m
)

= P

( m⋂
j=

Bk,j
n,m

)

= P

(m–⋂
j=

Bk,j
n,m

)
+ P

(
Bk,m

n,m
)

– P

((m–⋂
j=

Bk,j
n,m

)
∪ Bk,m

n,m

)
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Table 2 Simulation results when α0 = 2

(α0, α1) ALS LS WLS MLE

n = 100 (2, 0.1) (0.0672, 0.0113) (0.0658, 0.0108) (0.0665, 0.0106) (0.1762, 0.0479)
(2, 0.2) (0.0751, 0.0086) (0.0752, 0.0087) (0.0797, 0.0095) (0.5044, 0.1226)
(2, 0.3) (0.0951, 0.0103) (0.0986, 0.0106) (0.1146, 0.0121) (0.1908, 0.0298)
(2, 0.4) (0.1464, 0.0124) (0.1591, 0.0133) (0.1914, 0.0154) (0.2929, 0.0321)
(2, 0.5) (0.1706, 0.0097) (0.1826, 0.0105) (0.2329, 0.0132) (0.3307, 0.0209)
(2, 0.6) (0.2284, 0.0096) (0.2546, 0.0110) (0.3457, 0.0140) (0.4378, 0.0191)
(2, 0.7) (0.2862, 0.0066) (0.3291, 0.0077) (0.4491, 0.0101) (0.5638, 0.0132)
(2, 0.8) (0.5566, 0.0065) (0.7199, 0.0084) (1.0957, 0.0119) (1.1036, 0.0358)
(2, 0.9) (2.0644, 0.0042) (2.3995, 0.0051) (3.4865, 0.0075) (4.1109, 0.0082)
(2, 0.95) (10.19088, 0.0049) (11.6877, 0.0057) (15.3550, 0.0076) (20.3388, 0.0098)

n = 300 (2, 0.1) (0.0200, 0.0032) (0.0202, 0.0032) (0.0211, 0.0033) (1.3292, 0.3556)
(2, 0.2) (0.0288, 0.0041) (0.0287, 0.0042) (0.0300, 0.0044) (0.1811, 0.0696)
(2, 0.3) (0.0383, 0.0037) (0.0403, 0.0037) (0.0456, 0.0041) (0.0755, 0.0134)
(2, 0.4) (0.0379, 0.0029) (0.0419, 0.0034) (0.0532, 0.0043) (0.0711, 0.0033)
(2, 0.5) (0.0548, 0.0035) (0.0624, 0.0039) (0.0796, 0.0048) (0.1052, 0.0075)
(2, 0.6) (0.0612, 0.0026) (0.0779, 0.0033) (0.1276, 0.0049) (0.1194, 0.0053)
(2, 0.7) (0.0824, 0.0023) (0.0961, 0.0025) (0.1537, 0.0034) (0.1613, 0.0045)
(2, 0.8) (0.1095, 0.0014) (0.1194, 0.0015) (0.1929, 0.0022) (0.2158, 0.0027)
(2, 0.9) (0.3058, 0.0010) (0.4142, 0.0013) (0.8087, 0.0022) (0.6160, 0.0020)
(2, 0.95) (1.0248, 0.0007) (1.1210, 0.0008) (1.7182, 0.0012) (2.0500, 0.0015)

n = 1,000 (2, 0.1) (0.0063, 0.0009) (0.0063, 0.0009) (0.0064, 0.0009) (1.0834, 0.2918)
(2, 0.2) (0.0081, 0.0010) (0.0084, 0.0010) (0.0091, 0.0011) (0.0408, 0.0338)
(2, 0.3) (0.0102, 0.0009) (0.0110, 0.0010) (0.0132, 0.0011) (0.0192, 0.0025)
(2, 0.4) (0.0084, 0.0008) (0.0091, 0.0008) (0.0116, 0.0010) (0.0160, 0.0024)
(2, 0.5) (0.0164, 0.0010) (0.0193, 0.0011) (0.0304, 0.0016) (0.0310, 0.0021)
(2, 0.6) (0.0124, 0.0005) (0.0162, 0.0007) (0.0332, 0.0013) (0.0239, 0.0010)
(2, 0.7) (0.0202, 0.0006) (0.0245, 0.0007) (0.0496, 0.0011) (0.0392, 0.0012)
(2, 0.8) (0.0328, 0.0004) (0.0406, 0.0005) (0.0850, 0.0008) (0.0650, 0.0009)
(2, 0.9) (0.0706, 0.0002) (0.1106, 0.0003) (0.2335, 0.0006) (0.1391, 0.0004)
(2, 0.95) (0.1591, 0.0001) (0.2423, 0.0002) (0.5047, 0.0003) (0.3143, 0.0003)

= · · ·
= P

(
Bk,

n,m
)

+ P
(
Bk,

n,m
)

– P
(
Bk,

n,m ∪ P
(
Bk,

n,m
))

+ · · ·

+ P
(
Bk,m–

n,m
)

– P

((m–⋂
j=

Bk,j
n,m

)
∪ Bk,m–

n,m

)

+ P
(
Bk,m

n,m
)

– P

((m–⋂
j=

Bk,j
n,m

)
∪ Bk,m

n,m

)
. (.)

For all  ≤ i ≤ m, (.) implies that

lim
n→∞ P

(( i–⋂
j=

Bk,j
n,m

)
∪ Bk,i

n,m

)
= .

Thus, again by (.), (.) can be proved.
Finally we prove (.).
Note that


n

max
≤t≤n

g
tk(θ) ≤ 

n
sup

s∈[,]

[n(s+ 
m )]∑

t=[ns]+

g
tk(θ).
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For given s ∈ [, ] choose j ∈ {, . . . , m} so that s ∈ [ j–
m , j

m ]. Then, for each s ∈ [, ], ω ∈
Bk

n,m implies


n

[n(s+ 
m )]∑

t=[ns]+

g
tk(θ) ≤ 

n

[n(j+)/m]∑
t=[n(j–)/m]+

g
tk(θ)

=

(

n

[n(j+)/m]∑
t=

g
tk(θ) –

j + 
m

σkk

)

–

(

n

[n(j–)/m]∑
t=

g
tk(θ) –

j – 
m

σkk

)
+


m

σkk

≤ 
m

+

m

σkk

= ( + σkk)

m

. (.)

Therefore, for all m ≥ ,

lim
n→∞ P

{

n

max
≤t≤n

g
tk(θ) ≤ 

m
( + σkk)

}
≥ lim

n→∞ P
(
Bk

n,m
)

= ,

showing (.). The proof of Lemma . is thus completed. �

Lemma . Assume that (A) and (A) hold. Then

√
n

n∑
t=

(
Zτ

t
(
Xt – Zτ

t α), gτ
t (θ)

)τ d−→ N(, M),

where

M =

(
� �

�τ
 	

)
. (.)

Proof By the Cramer-Wold device, it suffices to show that, for all c ∈ R(p++r) \ (, . . . , ),

√
n

n∑
t=

cτ
(
Zτ

t
(
Xt – Zτ

t α), gτ
t (θ)

)τ d−→ N
(
, cτ Mc

)
.

For simplicity, we write cτ (Zτ
t (Xt – Zτ

t α), gτ
t (θ))τ for Gt,c(θ). Further, let ξnt = √

n Gt,c(θ)
and Fnt = σ (ξnr ,  ≤ r ≤ t). Then {∑n

t= ξnt ,Fnt ,  ≤ t ≤ n, n ≥ } is a zero-mean, square
integrable martingale array. By making use of a martingale central limit theorem [], it
suffices to show that

max
≤t≤n

|ξnt|
p−→ , (.)

n∑
t=

ξ 
nt

p−→ cτ Mc, (.)

E
(

max
≤t≤n

ξ 
nt

)
is bounded in n, (.)
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and the fields are nested:

Fnt ⊆ F(n+)t for  ≤ t ≤ n, n ≥ . (.)

Note that (.) is obvious. In what follows, we first consider (.). By a simple calcu-
lation, we have, for all ε > ,

P
{

max
≤t≤n

|ξnt| > ε
}

≤
n∑

t=

P
{|ξnt| > ε

}

=
n∑

t=

P
{∣∣∣∣ √

n
Gt,c(θ)

∣∣∣∣ > ε

}

= nP
{∣∣Gt,c(θ)

∣∣ >
√

nε
}

= n
∫

�

I
(∣∣Gt,c(θ)

∣∣ >
√

nε
)

dP

≤ n
∫

�

I
(∣∣Gt,c(θ)

∣∣ >
√

nε
) (Gt,c(θ))

(
√

nε) dP

=

ε

∫
�

I
(∣∣Gt,c(θ)

∣∣ >
√

nε
)(

Gt,c(θ)
) dP. (.)

Now by the Lebesgue control convergence theorem, we immediately find that (.) con-
verges to  as n → ∞. This settles (.).

Next consider (.). By the ergodic theorem, we have

n∑
t=

ξ 
nt =

n∑
t=

(
√
n

Gt,c(θ)
)

a.s.−→ E
(
Gt,c(θ)

)

= cτ Mc.

Hence (.) is proved.
Finally, consider (.). Note that {( √

n Gt,c(θ)), t ≥ } is a stationary sequence. Then we
have

E
(

max
≤t≤n

ξ 
nt

)
= E

(
max
≤t≤n

(
√
n

Gt,c(θ)
))

≤ 
n

E

( n∑
t=

(
Gt,c(θ)

)
)

=

n

n∑
t=

E
(
Gt,c(θ)

)

= cτ Mc. (.)

This proves that (.). Thus, we complete the proof of Lemma .. �
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Lemma . Assume that (A) and (A) hold. Then

λθ = Op
(
n– 


)
.

Proof Let λθ = ζβ, where ‖β‖ =  is a unit vector and ζ = ‖λθ‖. Then (.) implies that

 =
βτ


n

n∑
t=

gt(θ)
 + ζβτ

 gt(θ)

=
βτ


n

n∑
t=

gt(θ) –
ζ

n

n∑
t=

(βτ
 gt(θ))

 + ζβτ
 gt(θ)

≤ βτ


n

n∑
t=

gt(θ) –
ζ

 + ζ max≤t≤n ‖gt(θ)‖βτ
	n(θ)β.

This implies that

ζβτ
	n(θ )β – max

≤t≤n

∥∥gt(θ)
∥∥βτ


n

n∑
t=

gτ
t (θ) ≤ βτ


n

n∑
t=

gτ
t (θ). (.)

Note that∣∣∣∣∣β
τ


n

n∑
t=

gτ
t (θ)

∣∣∣∣∣ ≤
∥∥∥∥∥ 

n

n∑
t=

gτ
t (θ)

∥∥∥∥∥ = Op
(
n– 


)
. (.)

By using Lemma . and (.), we can obtain

max
≤t≤n

∥∥gt(θ)
∥∥βτ


n

n∑
t=

gτ
t (θ) = op(). (.)

By (.), we have

βτ
	n(θ)β

p−→ βτ
	(θ)β. (.)

By this, together with (.)-(.), we can prove Lemma .. �

Proof of Theorem . By (.), we have

λθ =
(
	n(θ)

)– 
n

n∑
t=

gt(θ) +
(
	n(θ)

)–Rn(θ), (.)

where

Rn(θ) =

n

n∑
t=

gτ
t (θ)

(λτ
θ

gt(θ))

 + λτ
θ

gt(θ)
.

By Lemmas .-., we know that

Rn(θ) = op
(
n– 


)
. (.)
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This implies uniformly for t

ωt(θ) =

n


 + λτ

θ
gt(θ)

=

n

(
 – λτ

θ gt(θ)
(
 + op()

))
. (.)

Moreover, note that

√
n
(
α̂ – α) = T–

n Sn, (.)

where Tn =
∑n

t= ωt(θ)ZtZτ
t and Sn =

√
n

∑n
t= ωt(θ)Zt(Xt – Zτ

Tα).
First, we consider Tn. By (.), we have

Tn =
n∑

t=

ωt(θ)ZtZτ
t

=

n

n∑
t=

(
 – λτ

θ gt(θ)
(
 + op()

))
ZtZτ

t

=

n

n∑
t=

ZtZτ
t –


n

n∑
t=

(
ZtZτ

t
) ⊗ (((

	n(θ)
)–Rn(θ)

)τ gt(θ)
(
 + op()

))

–

n

n∑
t=

(
ZtZτ

t
) ⊗

(((
	n(θ)

)– 
n

n∑
t=

gt(θ)

)τ

gt(θ)
(
 + op()

))

.= U – U – U.

Then by (.) and (.), conditions (A) and (A), Lemma ., and the ergodic theorem,
we can prove that

U = op(). (.)

Similarly, we can obtain

U
a.s.−→ . (.)

This, together with (.), yields

Tn
p−→ W . (.)

Next consider Sn. By (.), we have

Sn =
√

n
n∑

t=

ωt(θ)Zt
(
Xt – Zτ

t α)

=
√
n

n∑
t=

(
 – λτ

θ gt(θ)
(
 + op()

))
Zt

(
Xt – Zτ

t α).
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Thus, combining with (.), (.), we can obtain

Sn =
√
n

n∑
t=

Zt
(
Xt – Zτ

t α)

–

n

n∑
t=

(
Xt – Zτ

t α)Ztgτ
t (θ)

(
	n(θ)

)– √
n

n∑
t=

gt(θ) + op().

By the ergodic theorem, we have


n

n∑
t=

(
Xt – Zτ

t α)Ztgτ
t (θ)

a.s.−→ �.

This, together with (.) and Lemma ., proves that

Sn
d−→ N

(
,� – �	

–�τ


)
, (.)

which, combining with (.), proves Theorem .. �

Proof of Theorem . Similar to the proof of Lemma  and Theorem  in Qin and Lawless
[], we can prove that

λθ̂ = B

n

n∑
t=

gt(θ) + op
(
n– 


)
. (.)

Moreover, note that

√
n
(
α̂ – α) = T̃–

n S̃n, (.)

where

T̃n =
n∑

t=

ωt(θ̂ )ZtZτ
t

and

S̃n =
√

n
n∑

t=

ωt(θ̂ )Zt
(
Xt – Zτ

t α).

By an argument similar to the proof of Theorem ., we can prove that

T̃n
p−→ W (.)

and

S̃n
d−→ N

(
,� – �B�τ


)
, (.)

showing (.). The proof of Theorem . is thus completed. �
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