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Abstract
In this paper, we present two sharpened versions of the Erdös-Mordell inequality and
extend them to the cases with one parameter. As applications of our results, the
Walker inequality and a new inequality in non-obtuse triangles are obtained. We also
propose three interesting conjectures as open problems.
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1 Introduction
Throughout this paper, let ABC be a triangle and P be its interior point. Denote the dis-
tances from P to the vertices A, B, C by R, R, R, and the distances from P to the sides
BC, CA, AB by r, r, r, respectively. The famous Erdös-Mordell inequality [], p. states
that

R + R + R ≥ (r + r + r), (.)

with equality holding if and only if the triangle ABC is equilateral and P is its center.
Many authors have given proofs for this inequality by using different tools; see, for ex-

ample, [–]. On the other hand, this inequality has been extended in various directions,
we refer the reader to [, –]. Some other related results can be found in several papers;
see [–] and references therein.

In [], to prove Oppenheim’s inequality [] (see also [], inequality .),

RR + RR + RR ≥ (r + r)(r + r) + (r + r)(r + r) + (r + r)(r + r), (.)

the author presented the following new inequality as a lemma:

R + R ≥ r +
(r + r)

R
, (.)

with equality holding if and only if CA = AB and P is the circumcenter of triangle ABC.
It is clear that R + (r+r)

R
≥ (r + r) follows from the arithmetic-geometric mean in-

equality, thus inequality (.) implies the Erdös-Mordell inequality (.).
Motivated by inequality (.), we shall establish in this paper two sharpened versions of

the Erdös-Mordell inequality. We shall also extend them to the cases with one parameter.
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2 Two results
We state the first main result in the following.

Theorem  Let P be an interior point of the triangle ABC (P may lie on the boundary
except the vertices of ABC), then

(r + r)

R
+

(r + r)

R
+

(r + r)

R
≤ R + R + R, (.)

with equality holding if and only if �ABC is equilateral and P is its center or �ABC is a
right isosceles triangle and P is its circumcenter.

The Erdös-Mordell inequality (.) can easily be obtained from (.) and the above-
mentioned inequality R + (r+r)

R
≥ (r + r). Therefore, although the value of the left

hand of (.) is not always greater than or equal to (r + r + r), inequality (.) can still
be regarded as a sharpened version of the Erdös-Mordell inequality.

The proof of Theorem  needs the following well-known lemma, which will be used in
other results of this note.

Lemma  [, ] Let a, b, c be the sides BC, CA, AB of the triangle ABC, respectively, then
for any interior point P

aR ≥ br + cr, bR ≥ cr + ar, cR ≥ ar + br. (.)

Each equality in (.) holds if and only if P lies on the line AO, BO, CO, respectively, where
O is the circumcenter of the triangle ABC.

We now prove Theorem .

Proof By Lemma , to prove inequality (.), we only need to prove that

br + cr

a
+

cr + ar

b
+

ar + br

c
≥ a(r + r)

br + cr
+

b(r + r)

cr + ar
+

c(r + r)

ar + br
, (.)

which is equivalent to

(br + cr)(cr + ar)(ar + br)
[
bc(br + cr) + ca(cr + ar)

+ ab(ar + br)
]

– abc(cr + ar)(ar + br)(r + r)

– bca(ar + br)(br + cr)(r + r) – cab(br + cr)(cr + ar)(r + r)

≥ . (.)

Expanding and arranging gives the following inequality (required for the proof ):

a(b – c)r
r

 + b(c – a)r
r

 + c(a – b)r
 r



+ rrr(bcr + car + abr)
[
a(b – c) + b(c – a) + c(a – b)]

≥ , (.)

which is obviously true and inequality (.) is proved.
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We now consider the equality condition of (.). If P lies inside �ABC, then we have
strict inequalities r > , r > , and r > . Thus, the equality in (.) holds only when
a = b = c. Furthermore, by Lemma  we conclude that the equality in (.) holds if and only
if �ABC is equilateral and P is its center. If P lies on the boundary (except the vertices) of
�ABC, then one of r, r, r is equal to zero. Thus, we deduce that �ABC must be isosceles
when the equality in (.) holds. By Lemma  we further deduce that the equality in (.)
holds if and only if �ABC is a right isosceles triangle and P is its circumcenter. Combining
the arguments of the above two cases, we obtain the equality condition of (.) as stated
in Theorem . This completes the proof of Theorem . �

As an interesting application of Theorem , we shall next derive an important inequality
for non-obtuse triangles, i.e., the Walker inequality. As usually, we shall denote by A, B,
C the angles of �ABC and denote by s, R, r the semi-perimeter, the circumradius, and
the inradius of triangle ABC, respectively. Suppose that �ABC is non-obtuse and P is its
circumcenter, then we have R = R = R = R, r = R cos A, r = R cos B, r = R cos C, and it
follows from (.) that

(cos B + cos C) + (cos C + cos A) + (cos A + cos B) ≤ , (.)

i.e.,

cos A + cos B + cos C + cos B cos C + cos C cos A + cos A cos B ≤ 


.

Using the following known identities (see [], pp.-):

cos A + cos B + cos C =
R + Rr + r – s

R , (.)

cos B cos C + cos C cos A + cos A cos B =
s + r – R

R , (.)

we further obtain the following Walker inequality (cf. [], pp.-).

Corollary  If ABC is a non-obtuse triangle, then

s ≥ R + Rr + r. (.)

Equality holds iff �ABC is equilateral or right isosceles.

Next, we give a result similar to Theorem .

Theorem  Let P be an interior point of the triangle ABC (P may lie on the boundary
except the vertices of ABC), then

(r + r)

R + r + r
+

(r + r)

R + r + r
+

(r + r)

R + r + r
≤ r + r + r (.)

with equality holding if and only if �ABC is equilateral and P is its center or �ABC is a
right isosceles triangle and P is its circumcenter.
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Evidently, inequality (.) can be regarded as an extension of the Erdös-Mordell in-
equality. One the other hand, it is also a sharpened version of the Erdös-Mordell inequality.
Since we have, by the arithmetic-geometric mean inequality,

R + r + r +
(r + r)

R + r + r
≥ (r + r),

or

(r + r)

R + r + r
≥ (r + r) – R.

By this and its two analogs, we immediately obtain the Erdös-Mordell inequality (.) from
(.).

We now prove Theorem .

Proof By Lemma , to prove inequality (.) we need only to prove that

r + r + r ≥ (r + r)

br+cr
a + r + r

+
(r + r)

cr+ar
b + r + r

+
(r + r)

ar+br
c + r + r

, (.)

or

r + r + r ≥ a(r + r)

(c + a)r + (a + b)r
+

b(r + r)

(a + b)r + (b + c)r
+

c(r + r)

(b + c)r + (c + a)r
,

which is equivalent to

(r + r + r)
[
(c + a)r + (a + b)r

]

· [(a + b)r + (b + c)r
][

(b + c)r + (c + a)r
]

– a(r + r)[(a + b)r + (b + c)r
][

(b + c)r + (c + a)r
]

– b(r + r)[(b + c)r + (c + a)r
][

(c + a)r + (a + b)r
]

– c(r + r)[(c + a)r + (a + b)r
][

(a + b)r + (b + c)r
] ≥ . (.)

This can be simplified as

a(b – c)r
r

 + b(c – a)r
r

 + c(a – b)r
 r



+



rrr
[
(b + c)r + (c + a)r + (a + b)r

]

· [(b – c) + (c – a) + (a – b)] ≥ , (.)

which is clearly true. Therefore, inequalities (.) and (.) are proved.
Using similar arguments in the proof of Theorem , we easily deduce that the equality

in (.) holds only when the following two cases occur: the �ABC is equilateral and P is
its center or �ABC is a right isosceles triangle and P is its circumcenter. This completes
the proof of Theorem . �
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In Theorem , if we let �ABC be a non-obtuse triangle and let P be its circumcenter,
then we can obtain the following trigonometric inequality:

(cos B + cos C)

 + cos B + cos C
+

(cos C + cos A)

 + cos C + cos A
+

(cos A + cos B)

 + cos A + cos B

≤ cos A + cos B + cos C. (.)

From (.), it is not difficult to obtain the following inequality (we omit the details).

Corollary  If ABC is a non-obtuse triangle, then

s ≥ (R + r)(R + Rr + Rr + r)
R + Rr – r . (.)

Equality holds iff �ABC is equilateral or right isosceles.

Remark  Inequality (.) is incomparable with Walker’s inequality (.).

3 Generalizations of Theorem 1 and Theorem 2
In this section, we present generalizations of Theorem  and Theorem .

Theorem  Let P be an interior point of the triangle ABC (P may lie on the boundary
except the vertices of ABC) and let k ≥  be a real number, then

(kr + r + r)

R + kr
+

(kr + r + r)

R + kr
+

(kr + r + r)

R + kr
≤ k + 


(R + R + R). (.)

If k = , the equality in (.) holds if and only if �ABC is equilateral and P is its center or
�ABC is a right isosceles triangle and P is its circumcenter. If k > , the equality in (.)
holds if and only if �ABC is equilateral and P is its center.

When k = , then the above theorem reduces to Theorem . In order to prove this the-
orem, we first give the following lemma.

Lemma  In any triangle ABC, we let

Q = b
(
c – cb + b)a + c(c – b)a + bc,

Q = (b + c)a + (b – c)a + (b + c)
(
b – bc + c)a + bc,

Q = 
(
b – bc + c)a + bc(b + c)a – bc

(
b – bc + c)a

+
(
b – bc + c)(b + c),

Q = 
(
b + c)a – abc(b + c) + bc(b + c),

Q =
(
b + c)a – abc

(
b – bc + c) + bc(b + c)

(
b – bc + c),

Q = 
(
b + c)a – bc(b + c)a + bc

(
b + bc + c)a

+ a(b + c)
(
b – cb + bc – cb + c) + bc.
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Then

Qi ≥ , (.)

where i = , , , , , . All the equalities in (.) hold if and only if the triangle ABC is
equilateral.

Proof Q can be rewritten as

Q = a
(
ab + c)(b – c) + bc(a – b), (.)

so that Q ≥ .
It is easy to check that

Q = a(b + c)
[
(a – b) + (a – c)] + a(b + c – a)(b – c) + X, (.)

where

X =
(
b – bc + c)a – bc(b + c)a + bc.

Let 
 (b + c – a) = x, 

 (c + a – b) = y, and 
 (a + b – c) = z, then x > , y > , z > , and

⎧
⎪⎨

⎪⎩

a = y + z,
b = z + x,
c = x + y.

(.)

Also it is easy to obtain

X = x – 
(
y + z)x + y – yz + z.

Note that X is a quadratic function of x with the following discriminant:

F = –(y + z)(y – z) ≤ 

and y – yz + z > . Thus, X ≥  holds true and then Q ≥  follows from (.).
Using the substitution (.), we obtain the following equality:

Q = x + (y + z)x + 
(
y – yz + z)x + (y + z)

(
y – yz + z)x

+
(
y – yz + z)(y + z)x + (y + z)

(
y + z)(y – yz + z),

which can be rewritten as follows:

Q = x
[
x + (y + z)x + y + yz + z][(x – y) + (x – z)] + X, (.)

where

X =
(
y + z – yz – yz

)
x –

(
y + yz + yz + yz + z)x

+ y + z + yz + yz.
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Since y + z – yz – yz >  and it is easy to obtain the quadratic discriminant F of
X:

F = –
(
y + zy + yz + yz + zy + zy + z)(y – z) ≤ .

Thus we have X ≥  and then inequality Q ≥  follows from (.).
Inequality Q ≥  can easily be proved. Indeed, Q can be viewed a quadratic function

of a with positive quadratic coefficient and positive constant term, and its discriminant is
given by F = –bc(b + c)(b – c). Hence, we have Q ≥ .

We now prove inequality Q ≥ . It is easy to check the following identity:

Q = (a + b + c)
(
b + c)(a – b – c) + (b – c)X, (.)

where

X = a
(
b – bc + c) – (b + c)

(
b – bc + c).

Under the substitution (.), X can be written as

X = x + (y + z)x + x
(
y + yz + z) + (y + z)

(
y + z). (.)

Thus, inequality X >  holds strictly and Q ≥  follows from (.).
Finally, we prove Q ≥ . Using the substitution (.), we obtain

Q = x + (y + z)x + 
(
y + yz + z)x + (y + z)

(
y – yz + z)x

+
(
y – yz – yz – yz + z)x + (y + z)

(
y – yz – yz

+ yz + z)x + 
(
y + z) + yz

(
y + z) + yz(y + z).

Through analysis, we find the equality

Q = (y – z)X +
[
(x – y) + (x – z)]X, (.)

where

X = 
(
y + z) + x

(
y + z) + yz

(
y + z) + xyz(y + z) + yz,

X = x + (y + z)x +
(
y + yz + z)x + x(y + z)

+ 
(
y + z) + yz

(
y + z) + yz.

Thus, we have inequality Q ≥ .
Form the above proofs of Qi ≥ , we easily conclude that the equalities in Qi ≥  (i =

, , . . . , ) are all valid if and only if a = b = c, i.e., �ABC is equilateral. This completes the
proof of Lemma . �

In the following, we shall prove Theorem . For brevity, we shall, respectively, denote
cyclic sums and products over triples (a, b, c), (r, r, r), and (x, y, z) by

∑
and

∏
.
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Proof According to Lemma , for proving inequality (.) it suffices to prove that

k + 


∑ br + cr

a
≥

∑ (kr + r + r)

br+cr
a + kr

. (.)

If we set r = x, r = y, r = z, then inequality (.) becomes

(k + )
∑

bc(zb + yc) ≥ abc
∑ a(kx + y + z)

kxa + zb + yc
, (.)

where x ≥ , y ≥ , z ≥ , and at most one of x, y, z is equal to zero.
Putting

E = (k + )
∑

bc(zb + yc)
∏

(kxa + zb + yc)

– abc
∑

a(kyb + xc + za)(kzc + ya + xb)(kx + y + z),

then we see that inequality (.) is equivalent to

E ≥ . (.)

With the help of the famous mathematical software Maple (we used Maple ), we can
obtain the following identity:

E = ek + ek + (e + e + e + e)k + (e + e + e)k + e + e, (.)

where

k ≥ ,

e = xyzabc
∑

xa(b – c),

e =
[

xyzabc +
∑

yzbc(zb + yc)
]∑

xa(b – c),

e = abc
∑

a(b – c)x,

e =
∑

a
{

y
[
bc + a(b – c)b + c

(
b – bc + c)a]

+ z
[
cb + a(c – b)c + b

(
c – cb + b)a]}x,

e =
∑

bcyz[(b + c)a + (b – c)a + (b + c)
(
b – bc + c)a + bc],

e = xyz
∑

xa
[

(
b – bc + c)a + (b + c)bca – 

(
b – bc + c)bca

+
(
b – bc + c)(b + c)],

e =
∑

a(zb + yc)
[

(
b + c)a – bc(b + c)a + bc(b + c)]x,

e =
∑

a
[(

b + c)a – bc
(
b – bc + c)a + bc(b + c)

(
b – bc + c)]yz,

e = xyz
∑

x
[

(
b + c)a – bc(b + c)a + bc

(
b + bc + c)a

+ (b + c)
(
b – cb + bc – bc + c)a + bc],
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e = 
∑

a(b – c)yz,

e = xyz
∑

xbc
∑

a(b – c).

Clearly, inequalities e ≥ , e ≥ , e ≥ , e ≥ , and e ≥  hold for any triangle ABC
and non-negative real numbers x, y, z. Also, by Lemma , we have e ≥ , e ≥ , e ≥ ,
e ≥ , e ≥ , and e ≥ . Thus, from identity (.) we see that E ≥  holds for x ≥ ,
y ≥ , z ≥ , and k ≥ . Therefore, inequalities (.), (.), and (.) are proved.

When k = , inequality (.) becomes (.) and we have obtained the equality conditions
(as stated in Theorem ). When k > , by Lemma  and identity (.) we conclude that
the equality (.) holds if and only if P is the circumcenter of ABC and the equalities in
ei ≥  (i = , , . . . , ) are all valid. Note that at most one of x, y, z is equal to zero. Thus, the
equalities of e ≥ , e ≥ , e ≥ , e ≥ , e ≥ , and e ≥  occur only when a = b = c.
We further deduce that the equality in (.) holds if and only if �ABC is equilateral and P
is its center. This completes the proof of Theorem . �

We now state and prove the following generalization of Theorem .

Theorem  Let P be an interior point of the triangle ABC (P may lie on the boundary
except the vertices of ABC) and let k ≥  be a real number, then

(r + r)

R + k(r + r)
+

(r + r)

R + k(r + r)
+

(r + r)

R + k(r + r)
≤ 

k + 
(r + r + r). (.)

If k = , the equality in (.) holds if and only if �ABC is equilateral and P is its center or
�ABC is a right isosceles triangle and P is its circumcenter. If k > , the equality in (.)
holds if and only if �ABC is equilateral and P is its center.

Proof We still denote cyclic sums and products by
∑

and
∏

, respectively. If we let k = +t,
then t ≥  by the assumption k ≥ . According to Lemma , for proving inequality (.)
we have only to prove that

∑ (r + r)

br+cr
a + (t + )(r + r)

≤ 
t + 

∑
r. (.)

Let r = x, r = y, and r = z, then the above inequality becomes

∑ (y + z)

zb+yc
a + (t + )(y + z)

≤ 
t + 

∑
x,

or

∑ a(y + z)

zb + yc + (t + )(y + z)a
≤ 

t + 
∑

x, (.)

where x ≥ , y ≥ , z ≥ , t ≥ , and at most one of x, y, z is equal to zero.
We set

M = 
∑

x
∏[

zb + yc + (t + )(y + z)a
]

– (t + )
∑

a
[
xc + za + (t + )(z + x)b

][
ya + xb + (t + )(x + y)c

]
(y + z),
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then (.) is equivalent to

M ≥ . (.)

With the help of the Maple software, we easily obtain the following identity:

M = mt + (m + m + m)t + m + m, (.)

where

t ≥ ,

m =
∏

(y + z)
∑

xa(b – c),

m =
[
a(y + z) + bz + yc

]
(b – c)x,

m =
∑[

a – (b + c)a + 
(
b + c – bc

)
a + bc(b + c)

]
yz,

m = xyz
∑

x
[
(b + c)a +

(
b – bc + c)a + (b + c)

(
b – bc + c)],

m = 
∑

yza(b – c),

m = xyz
∑

(b + c)x
∑

(b – c).

It is clear that inequalities m ≥ , m ≥ , m ≥ , and m ≥  hold for any triangle ABC
and non-negative real numbers x, y, z. In addition, by the following identity:

a – (b + c)a + 
(
b + c – bc

)
a + bc(b + c)

= a(b – c) + (a + b)(c – a) + (a + c)(a – b), (.)

one sees that m ≥ . Also, by the identity


[
(b + c)a +

(
b – bc + c)a + (b + c)

(
b – bc + c)]

= (b + c)(b + c – a) + (a + b + c)(b – c), (.)

we have m ≥ . Therefore, inequality M ≥  follows from (.) and then inequalities
(.) and (.) are proved.

When k = , inequality (.) reduces to (.) and we have pointed out the equality
conditions in Theorem . When k > , we have t >  from the assumption. In this case,
by Lemma  and (.) we conclude that the equality in (.) holds if and only if P is the
circumcenter of ABC and the equalities in mi ≥  (i = , , . . . , ) are all valid. Note that at
most one of x, y, z is equal to zero. We further deduce that the equality in (.) holds if
and only if �ABC is equilateral and P is its center. The proof of Theorem  is completed.

�

4 Open problems
The author of this paper has found some sharpened versions of the Erdös-Mordell in-
equality, which have not been proved at present but have been checked by computer. We
introduce here three of them as open problems.
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A sharpened version of the Erdös-Mordell inequality similar to the inequalities of The-
orem  and Theorem  is as follows.

Conjecture  For any interior point P of �ABC, we have

(r + r + r)

R + R
+

(r + r + r)

R + R
+

(r + r + r)

R + R
≤ (r + r + r). (.)

The two conjectured inequalities below are obvious sharpened versions of the Erdös-
Mordell inequality.

Conjecture  For any interior point P of �ABC, we have

R + R + R ≥ 
(

ma

wa
r +

mb

wb
r +

mc

wc
r

)
, (.)

where ma, mb, mc are the corresponding medians of triangle ABC and wa, wb, wc the bisec-
tors.

Since we have inequality ma ≥ wa etc., thus (.) is stronger than the Erdös-Mordell
inequality.

Conjecture  For any interior point P of �ABC, we have

R + R + R ≥ wa + ha

ha
r +

wb + hb

hb
r +

wc + hc

hc
r, (.)

where wa, wb, wc are the corresponding bisectors of triangle ABC and ha, hb, hc the altitudes.

From the fact that wa ≥ ha etc., we can see that (.) is stronger than the Erdös-Mordell
inequality.
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1. Mitrinović, DS, Pečarić, JE, Volenec, V: Recent Advances in Geometric Inequalities. Kluwer Academic, Dordrecht (1989)
2. Mordell, LJ, Barrow, DF: Solution of problem 3740. Am. Math. Mon. 44, 252-254 (1937)
3. Avez, A: A short proof of a theorem of Erdös and Mordell. Am. Math. Mon. 100, 60-62 (1993)
4. Lee, H: Another proof of the Erdös-Mordell theorem. Forum Geom. 1, 7-8 (2001)
5. Alsina, C, Nelsen, RB: A visual proof of the Erdös-Mordell inequality. Forum Geom. 7, 99-102 (2007)
6. Liu, J: A new proof of the Erdös-Mordell inequality. Int. Electron. J. Geom. 4(2), 114-119 (2011)
7. Sakurai, A: Vector analysis proof of Erdös’ inequality for triangles. Am. Math. Mon. 8, 682-684 (2012)
8. Ozeki, N: On Paul Erdös-Mordell inequality for the triangle. J. Coll. Arts Sci., Chiba Univ. A. 2, 247-250 (1957)
9. Dergiades, N: Signed distances and the Erdös-Mordell inequality. Forum Geom. 4, 67-68 (2004)
10. Si, L, He, BW, Leng, GS: Erdös-Mordell inequality on a sphere in R3 . J. Shanghai Univ. Nat. Sci. 10, 56-58 (2004)
11. Gueron, S, Shafrir, I: A weighted Erdös-Mordell inequality for polygons. Am. Math. Mon. 112, 257-263 (2005)
12. Oppenheim, A: The Erdös-Mordell inequality and other inequalities for a triangle. Am. Math. Mon. 68, 226-230 (1961)
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