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Abstract
Using variational minimizing methods, we prove the existence of a connecting orbit
between the center of mass and infinity of Newtonian-like N-body problems with
Newtonian-type weak force potentials.
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1 Introduction
In the  paper of Rabinowitz [], we find the first substantial use of variational methods
to study heteroclinic orbits for Hamiltonian systems. The perspective of that work appears
influential for a number of papers by several authors which followed [–]. Especially,
we would like to draw attention to Souissi [], Maderna and Venturelli [] and Zhang
[] for a study of the parabolic orbits for restricted -body problems and complete N-
body problems. From those studies, we draw motivation for the present work: namely, we
extend the results and methods of Souissi [] and Zhang [] to Newtonian-like N-body
problems.

Given masses m, . . . , mN >  of N bodies, we study the following system of equations
with Newtonian-type weak force potentials:

miq̈i(t) +
∂U(q)
∂qi

= , (.)

where qi ∈ Rk , q = (q, . . . , qN ),  < α < , and

U(q) =
∑

≤i<j≤N

mimj

|qi – qj|α . (.)

We apply the variational minimizing method to prove the following.

Theorem . For (.), there exists one connecting orbit q̃(t) = (q̃(t), . . . , q̃N (t)) between the
center of mass and infinity such that:

(i) For any  ≤ i �= j ≤ N ,

max
≤t≤+∞

∣∣q̃i(t) – q̃j(t)
∣∣ = +∞. (.)
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(ii)

min
≤t≤+∞

N∑



mi
∣∣ ˙̃qi(t)

∣∣ = E ≥ . (.)

2 Variational minimizing critical points
In order to find a connecting orbit of (.), we shall first find a solution of the system (.)
on the open interval (, τ ) and then consider the limit orbit as τ → +∞. To find a solution
on (, τ ), we define the functional

f (q) =
∫ τ



(



N∑

i=

mi
∣∣q̇i(t)

∣∣ + U(q)

)
dt, (.)

where

qi ∈ Hτ =
{

x, ẋ ∈ L[, τ ]|xi() = , xi(τ ) = ai
}

, (.)

where (a, . . . , ai, . . . , aN ) is a central configuration for the N-body problems which satisfies
aj �= ai,  ≤ j �= i ≤ N , and there is λ ∈ R such that

∑

j �=i

mjmi(aj – ai)
|aj – ai|α+ = λmiai. (.)

Since ∀qi ∈ Hτ , qi() = , for q = (q, . . . , qN ) ∈ Hτ × · · · × Hτ we have the equivalent norm

‖q‖τ =

( N∑

i=

mi

∫ τ



∣∣q̇i(t)
∣∣ dt

)/

. (.)

Lemma . (Tonelli []) Let X be a reflexive Banach space and f : X → R ∪ {+∞}. If f
does not always take +∞ and is weakly lower semi-continuous and coercive (f (x) → +∞,
as ‖x‖ → +∞), then f attains its infimum on X.

Lemma . The functional f (q) defined in (.) is weakly lower semi-continuous (w.l.s.c.)
on Hτ × · · · × Hτ .

Proof () It is well known that the norm and its square are w.l.s.c.
() ∀{qn

i } ⊂ Hτ , if qn
i ⇀ qi weakly, then by the compact embedding theorem, we have the

following uniform convergence:

max
≤t≤τ

∣∣qn
i (t) – qi(t)

∣∣ → , n → +∞. (.)

Let S = {t̃ ∈ [, τ ] : ∃ ≤ i �= j ≤ N s.t. qi (t) = qj (t)} and let m(S) denote the Lebesgue
measure of S.

(i) If m(S) = , then U(qn(t)) a.e.→ U(q(t)). From Fatou’s lemma we have
∫ τ


U(q) dt ≤ lim

n→∞

∫ τ


U

(
qn(t)

)
dt. (.)

(ii) If m(S) > , then
∫ τ

 U(q) dt = +∞ and f (q) = +∞.
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Since qn(t) → q(t) uniformly we have
∫ τ

 U(qn(t)) dt → +∞, and so

lim
n→∞

f
(
qn) ≥ f (q). (.)

�

The proof of the next lemma is straightforward.

Lemma . f is coercive on Hτ × · · · × Hτ .

Lemma .
() f (q) attains its infimum on Hτ × · · · × Hτ , and the minimizer

q̃τ (t) = (q̃τ
 (t), . . . , q̃τ

N (t)) is a generalized solution [].
() Furthermore, when τ → +∞ and q̃τ

i (t) → q̃i(t), q̃i(t) has the following properties:
(i) for any  ≤ i �= j ≤ N ,

max
≤t≤+∞

∣∣q̃i(t) – q̃j(t)
∣∣ = +∞, (.)

(ii)

min
≤t≤+∞

N∑



mi
∣∣ ˙̃qi(t)

∣∣ = E. (.)

Definition . Concerning the velocities of the solution of (.),

(◦) if, for all i,

∣∣ ˙̃qi(t)
∣∣ → , t → +∞ (.)

we say q̃(t) is a parabolic solution;
(◦) if, for all i,

∣∣ ˙̃qi(t)
∣∣ → vi > , t → +∞ (.)

we say q̃(t) is a hyperbolic solution;

otherwise, we call it a mixed type solution.

The proof of () in Lemma . is obvious using Lemmas .-..
In the following, we will give the proofs of (.) and (.) of Lemma ..

Lemma . There exist constants c >  and  < θ <  independent of τ such that

f
(
q̃τ

) ≤ cτ θ . (.)

Proof We choose a special orbit defined by

qi(t) = aitβ , t ∈ [, τ ], ai ∈ Rk , (.)
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where (a, a, . . . , aN ) can be a given central configuration, 
 < β < min{, 

α
}, then

f
(
q(t)

)
=




N∑

i=

mi|ai|
∫ τ


βt(β–) dt +

∫ τ



∑

≤i<j≤N

mimj

|ai – aj|α t–αβ dt

≤ 


( N∑

i=

mi|ai|
)

β

β – 
τ β–

+
( ∑

≤i<j≤N

mimj

|ai – aj|α
)


 – αβ

τ –αβ

≤ cτ θ , (.)

where

θ = max(β – ,  – αβ) (.)

and

c =



N∑



mi|ai| β

β – 
+

∑

≤i<j≤N

mimj

|ai – aj|α


 – αβ
> . (.)

When  < α < , we have 
α

> 
 . We can choose 

 < β < 
α

, then β –  > ,  – αβ > , and
hence θ > . When β < , β –  < , then  < θ < . �

Lemma . Let q̃n(t) = (q̃n
 (t), . . . , q̃n

N (t)) be critical points corresponding to the minimizing
critical values minHn f (q), where Hn was defined in (.) when τ = n. Then the maximum
distance between q̃n

i and q̃n
j on R+ satisfies

∥∥q̃n
i (t) – q̃n

j (t)
∥∥∞ → +∞, when n → +∞. (.)

Proof By the definition of f (q̃n) and Lemma ., we have the inequalities

cnθ ≥ f
(
q̃n) ≥

∫ n



∑

≤i<j≤N

mimj

|q̃n
i (t) – q̃n

j (t)|α dt. (.)

Hence

∑

≤i<j≤N

mimj

‖q̃n
i (t) – q̃n

j (t)‖α∞
≤ cnθ– → , (.)

from which it follows that ∀ ≤ i < j ≤ N , ‖q̃n
i (t) – q̃n

j (t)‖∞ → +∞, n → +∞. �

Lemma . {q̃n(t)} is equi-continuous and uniformly bounded on any compact interval.

Proof By the proof of Lemma ., we can see ∀T > ,

N∑

i=

mi

∫ T



∣∣ ˙̃qn
i (t)

∣∣ dt ≤ cTθ . (.)
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Then, for any  ≤ s, r ≤ T , we have

∣∣q̃n
i (s) – q̃n

i (r)
∣∣ ≤

∫ s

r

∣∣ ˙̃qn
i (t)

∣∣dt

≤ |s – r|/
(∫ s

r

∣∣ ˙̃qn
i (t)

∣∣ dt
)/

≤
(

cTθ

mi

)/

|s – r|/. (.)

By qn() =  and the above inequality, for  < s < T , we have

∣∣q̃n
i (s)

∣∣ ≤
(

cTθ

mi

)/

|s|/ ≤
(

cTθ

mi

)/

T /. (.)
�

Now we can prove Theorem ..

Proof of Theorem . For any compact interval [a, b] of R+, Marchal’s theorem [] implies
that q̃n(t) has no collision on (a, b), so, by the Ascoli-Arzelà theorem, we know {q̃n} has a
sub-sequence converging uniformly to a limit q̃(t) on any compact set [c, d] ⊂ (a, b), and
q̃(t) ∈ C(R+, Rk) is a solution of (.). By the energy conservation law and (.), we have

E =
N∑

i=




mi| ˙̃qi| –
∑

≤i<j≤N

mimj

|q̃i – q̃j|α ≥ , (.)

rewritten as

N∑

i=




mi| ˙̃qi| =
∑

≤i<j≤N

mimj

|q̃i – q̃j|α + E. (.)

Now we claim:
(i) for any  ≤ i �= j ≤ N ,

max
t∈R+

∣∣q̃i(t) – q̃j(t)
∣∣ = +∞ (.)

suppose there exist  ≤ i < j ≤ N and d >  such that

∣∣q̃i (t) – q̃j (t)
∣∣ < d, ∀t ∈ R+. (.)

By (.), there exist  ≤ k ≤ N and e >  such that

| ˙̃qk | > e, ∀t ∈ R+, (.)

then we have

ctθ ≥ 


∫ t



N∑

i=

mi| ˙̃qi| dt ≥ 


∫ t


mk | ˙̃qk | dt ≥ 


mk et. (.)

This is a contradiction, since  < θ <  and t ∈ R+.
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Now by (.), we have:

(ii) min
t∈R+

N∑

i=

mi
∣∣ ˙̃qi(t)

∣∣ = E ≥ . (.)
�
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