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1 Introduction
Unless stated otherwise throughout this section I is an interval of R.

Definition  A function f : I →R is called convex if the inequality

f
(
λx + ( – λ)x

) ≤ λf (x) + ( – λ)f (x) (.)

holds for each x, x ∈ I and λ ∈ [, ].

Remark 
(a) If inequality (.) is strict for each x �= x and λ ∈ (, ), then f is called strictly

convex.
(b) If the inequality in (.) is reversed, then f is called concave. If it is strict for each

x �= x and λ ∈ (, ), then f is called strictly concave.

The following proposition gives us an alternative definition of convex functions [], p..

Proposition  A function f : I →R is convex if the inequality

(x – x)f (x) + (x – x)f (x) + (x – x)f (x) ≥ 

holds for each x, x, x ∈ I such that x < x < x.
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The following result can be deduced from Proposition .

Proposition  If a function f : I →R is convex, then the inequality

f (x) – f (x)
x – x

≤ f (y) – f (y)
y – y

holds for each x, x, y, y ∈ I such that x ≤ y, x ≤ y, x �= x, y �= y.

Now we define the generalized convex function which can be found in [, ] and
[].

Definition  The nth order divided difference of a function f : I → R at distinct points
xi, xi+, . . . , xi+n ∈ I = [a, b] ⊂R for some i ∈N is defined recursively by

[xj; f ] = f (xj), j ∈ {i, . . . , i + n},

[xi, . . . , xi+n; f ] =
[xi+, . . . , xi+n; f ] – [xi, . . . , xi+n–; f ]

xi+n – xi
.

It may easily be verified that

[xi, . . . , xi+n; f ] =
n∑

k=

f (xi+k)
∏i+n

j=i,j �=i+k(xi+k – xj)
.

Remark  Let us denote [xi, . . . , xi+n; f ] by �(n)f (xi). The value [xi, . . . , xi+n; f ] is indepen-
dent of the order of the points xi, xi+, . . . , xi+n. We can extend this definition by including
the cases in which two or more points coincide by taking respective limits.

Definition  A function f : I →R is called convex of order n or n-convex if for all choices
of (n + ) distinct points xi, . . . , xi+n we have �(n)f (xi) ≥ .

If the nth order derivative f (n) exists, then f is n-convex if and only if f (n) ≥ .

Remark  For n =  and i = , we get the second order divided difference of a function
f : I →R, which is defined recursively by

[xj; f ] = f (xj), j ∈ {, , },

[xj, xj+; f ] =
f (xj+) – f (xj)

xj+ – xj
, j ∈ {, }, (.)

[x, x, x; f ] =
[x, x; f ] – [x, x; f ]

x – x
,

for arbitrary points x, x, x ∈ I . Now, we discuss some limiting cases as follows: taking
the limit as x → x in (.), we get

lim
x→x

[x, x, x; f ] = [x, x, x; f ] =
f (x) – f (x) – f ′(x)(x – x)

(x – x) , x �= x,
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provided that f ′(x) exists. Furthermore, taking the limits as xi → x, i ∈ {, } in (.), we
obtain

lim
x→x
x→x

[x, x, x; f ] = [x, x, x; f ] =
f ′′(x)


,

provided that f ′′(x) exists.

For fixed m ≥ , let x = (x, . . . , xm) and y = (y, . . . , ym) denote two real m-tuples and
x[] ≥ x[] ≥ · · · ≥ x[m], y[] ≥ y[] ≥ · · · ≥ y[m] their ordered components.

Definition  For x, y ∈R
m,

x ≺ y if

⎧
⎨

⎩

∑k
i= x[i] ≤ ∑k

i= y[i], k ∈ {, . . . , m – },
∑m

i= x[i] =
∑m

i= y[i],

when x ≺ y, x is said to be majorized by y or y majorizes x.

This notion and notation of majorization was introduced by Hardy et al. []. Now, we
state the well-known majorization theorem from the same book [] as follows.

Proposition  Let x, y ∈ [a, b]m. The inequality

m∑

i=

f (xi) ≤
m∑

i=

f (yi) (.)

holds for every continuous convex function f : [a, b] → R if and only if x ≺ y. Moreover, if
f is a strictly convex function, then equality in (.) is valid if and only if x[i] = y[i] for each
i ∈ {, . . . , m}.

The following weighted version of the majorization theorem was given by Fuchs in []
(see also [], p. and [], p.).

Proposition  Let w ∈R
m and let x, y ∈ [a, b]m be two decreasing real m-tuples such that

k∑

i=

wixi ≤
k∑

i=

wiyi, k ∈ {, . . . , m – } and (.)

m∑

i=

wixi =
m∑

i=

wiyi. (.)

Then for every continuous convex function f : [a, b] →R, the following inequality holds:

m∑

i=

wif (xi) ≤
m∑

i=

wif (yi). (.)

Remark  Under the assumptions of Proposition , for every concave function f the re-
verse inequality holds in (.).
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The following proposition is a consequence of Theorem  in [] (see also [], p.) and
represents an integral majorization result.

Proposition  Let x, y : [α,β] → I be two decreasing continuous functions and w : [α,β] →
R continuous. Then if

∫ u

α

w(t)x(t) dt ≤
∫ u

α

w(t)y(t) dt, for each u ∈ (α,β), and (.)

∫ β

α

w(t)x(t) dt =
∫ β

α

w(t)y(t) dt, (.)

hold, then for every continuous convex function f : I →R the following inequality holds:

∫ β

α

w(t)f
(
x(t)

)
dt ≤

∫ β

α

w(t)f
(
y(t)

)
dt. (.)

Remark  Let x, y : [α,β] → I be two increasing continuous functions and w : [α,β] →R

continuous. If
∫ β

u
w(t)x(t) dt ≤

∫ β

u
w(t)y(t) dt, for each u ∈ (α,β), and

∫ β

α

w(t)x(t) dt =
∫ β

α

w(t)y(t) dt,

then again inequality (.) holds. In this paper we will state our results for decreasing x
and y satisfying the assumption of Proposition , but they are still valid for increasing x
and t satisfying the above condition; see for example [], p..

In paper [] the following extension of Montgomery identity via Taylor’s formula is ob-
tained.

Proposition  Let n ∈ N, f : I → R be such that f (n–) is absolutely continuous, I ⊂ R an
open interval, a, b ∈ I , a < b. Then the following identity holds:

f (x) =


b – a

∫ b

a
f (t) dt +

n–∑

k=

f (k+)(a)
k!(k + )

(x – a)k+

b – a
–

n–∑

k=

f (k+)(b)
k!(k + )

(x – b)k+

b – a

+


(n – )!

∫ b

a
Tn(x, s)f (n)(s) ds, (.)

where

Tn(x, s) =

⎧
⎨

⎩
– (x–s)n

n(b–a) + x–a
b–a (x – s)n–, a ≤ s ≤ x,

– (x–s)n

n(b–a) + x–b
b–a (x – s)n–, x < s ≤ b.

(.)

In case n =  the sum
∑n–

k= · · · is empty, so identity (.) reduces to the well-known
Montgomery identity (see for instance [])

f (x) =


b – a

∫ b

a
f (t) dt +

∫ b

a
P(x, s)f ′(s) ds,
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where P(x, s) is the Peano kernel, defined by

P(x, s) =

⎧
⎨

⎩

s–a
b–a , a ≤ s ≤ x,
s–b
b–a , x < s ≤ b.

The aim of this paper is to present a new generalization of weighted majorization the-
orem for n-convex functions, by using generalization of Taylor’s formula. We also obtain
bounds for the remainders in new majorization identities by using the Čebyšev type in-
equalities. We give mean value theorems and n-exponential convexity for functionals re-
lated to these new majorization identities.

2 Majorization inequality by extension of Montgomery identity via Taylor’s
formula

Theorem  Suppose all the assumptions from Proposition  hold. Additionally suppose
that m ∈N, xi, yi ∈ [a, b] and wi ∈R for i ∈ {, , . . . , m}. Then

m∑

i=

wif (yi) –
m∑

i=

wif (xi)

=


b – a

[ n–∑

k=


k!(k + )!

m∑

i=

wi
[
f (k+)(a)

[
(yi – a)k+ – (xi – a)k+]

– f (k+)(b)
[
(yi – b)k+ – (xi – b)k+]]

]

+


(n – )!

∫ b

a

( m∑

i=

wi
(
Tn(yi, s) – Tn(xi, s)

)
)

f (n)(s) ds. (.)

Proof We take extension of Montgomery identity via Taylor’s formula (.) to obtain

m∑

i=

wif (yi) –
m∑

i=

wif (xi)

=


b – a

∫ b

a
f (t) dt

m∑

i=

wi –


b – a

∫ b

a
f (t) dt

m∑

i=

wi

+
m∑

i=

wi

( n–∑

k=

f (k+)(a)
k!(k + )

(yi – a)k+

b – a
–

n–∑

k=

f (k+)(b)
k!(k + )

(yi – b)k+

b – a

)

–
m∑

i=

wi

( n–∑

k=

f (k+)(a)
k!(k + )

(xi – a)k+

b – a
–

n–∑

k=

f (k+)(b)
k!(k + )

(xi – b)k+

b – a

)

+


(n – )!

m∑

i=

wi

∫ b

a
Tn(yi, s)f (n)(s) ds –


(n – )!

m∑

i=

wi

∫ b

a
Tn(xi, s)f (n)(s) ds.

By simplifying this expressions we obtain (.). �

We may state its integral version as follows:
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Theorem  Let x, y : [α,β] → [a, b] be two functions and w : [α,β] → R continuous func-
tion. Let f : I →R be such that f (n–) is absolutely continuous for some n ∈N, I ⊂R an open
interval, a, b ∈ I , a < b, then for all s ∈ [a, b] we have the following identity:

∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

=


b – a

[ n–∑

k=


k!(k + )!

∫ β

α

w(t)
[
f (k+)(a)

[(
y(t) – a

)k+ –
(
x(t) – a

)k+]

– f (k+)(b)
[(

y(t) – b
)k+ –

(
x(t) – b

)k+]]dt

]

+


(n – )!

∫ b

a

(∫ β

α

w(t)
(
Tn

(
y(t), s

)
– Tn

(
x(t), s

))
dt

)
f (n)(s) ds, (.)

where Tn(·, s) is as defined in Theorem .

Proof Our required result is obtained by using extension of Montgomery identity via Tay-
lor’s formula (.) in the following expression:

∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

and then using Fubini’s theorem. �

Now we state the main generalization of the majorization inequality by using the iden-
tities just obtained.

Theorem  Let all the assumptions of Theorem  hold with the additional condition

m∑

i=

wiTn(xi, s) ≤
m∑

i=

wiTn(yi, s), ∀s ∈ [a, b]. (.)

Then for every n-convex function f : I →R the following inequality holds:

m∑

i=

wif (yi) –
m∑

i=

wif (xi)

≥ 
b – a

[ n–∑

k=


k!(k + )!

m∑

i=

wi
[
f (k+)(a)

[
(yi – a)k+ – (xi – a)k+]

– f (k+)(b)
[
(yi – b)k+ – (xi – b)k+]]

]

. (.)

Proof Since the function f is n-convex so we have f (n) ≥ . Using this fact and (.) in (.)
we easily arrive at our required result. �

Remark  If reverse inequality holds in (.) then reverse inequality holds in (.).

Now we state important consequence as follows:
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Corollary  Suppose all the assumptions from Theorem  hold. Additionally suppose that
x, y ∈ [a, b]m are two decreasing m-tuples and w ∈ R

m which satisfy conditions (.), (.).
If f is n-convex then the following inequality holds:

m∑

i=

wif (yi) –
m∑

i=

wif (xi)

≥ 
b – a

[n–∑

k=


k!(k + )!

m∑

i=

wi
[
f (k+)(a)

[
(yi – a)k+ – (xi – a)k+]

– f (k+)(b)
[
(yi – b)k+ – (xi – b)k+]]

]

. (.)

Moreover, if f (j)(a) ≥  and (–)jf (j)(b) ≥  for j = , . . . , n –  then

m∑

i=

wif (yi) ≥
m∑

i=

wif (xi). (.)

Proof Since

Tn(x, s) =

⎧
⎨

⎩
– (x–s)n

n(b–a) + x–a
b–a (x – s)n–, a ≤ s ≤ x ≤ b,

– (x–s)n

n(b–a) + x–b
b–a (x – s)n–, a ≤ x < s ≤ b.

and

d

dx Tn(x, s) =

⎧
⎨

⎩

n–
b–a [(x – s)n– + (n – )(x – a)(x – s)n–], a ≤ s ≤ x ≤ b,
n–
b–a [(x – s)n– + (n – )(x – b)(x – s)n–], a ≤ x < s ≤ b.

Tn(·, s) is continuous for every n ≥  and convex function for even n. Thus it satisfies in-
equality (.) by weighted majorization theorem (Proposition ) and hence (.) by Theo-
rem  provides us (.) with n instead of n. Furthermore, we consider condition f (j)(a) ≥ 
and (–)jf (j)(b) ≥  for each j = , . . . , n – . By applying Proposition  with the continuous
convex function f (x) = (x – a)k+, x ∈ [a, b] we have

m∑

i=

wi(yi – a)k+ ≥
m∑

i=

wi(xi – a)k+.

Since continuous function f (x) = (x – b)k+, x ∈ [a, b] is convex if k is even and concave if
k is odd, by the same proposition we have

m∑

i=

wi(yi – b)k+ ≥
m∑

i=

wi(xi – b)k+ if k is even,

m∑

i=

wi(yi – b)k+ ≤
m∑

i=

wi(xi – b)k+ if k is odd.
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Now considering the assumption f (j)(a) ≥  and (–)jf (j)(b) ≥  for each j = , . . . , n –  we
have

m∑

i=

wi
[
f (k+)(a)

[
(yi – a)k+ – (xi – a)k+] – f (k+)(b)

[
(yi – b)k+ – (xi – b)k+]]

= f (k+)(a)
m∑

i=

wi
[
(yi – a)k+ – (xi – a)k+] – f (k+)(b)

m∑

i=

wi
[
(yi – b)k+ – (xi – b)k+]

is positive for all k = , , . . . , n – . Thus the right-hand side of (.) is positive and (.)
holds. �

Remark  Since in case a ≤ s ≤ x ≤ b d

dx Tn(x, s) is always positive, Tn(x, s) cannot be
concave and reverse inequalities cannot be observed.

Also, if wi = , i = , . . . , m the result of the previous corollary holds for any x, y ∈ R
m

such that x ≺ y.

Its integral analogs are given as follows:

Theorem  Let all the assumptions of Theorem  hold with the additional condition
∫ β

α

w(t)Tn
(
x(t), s

)
dt ≤

∫ β

α

w(t)Tn
(
y(t), s

)
dt, ∀s ∈ [a, b], (.)

where Tn(·, s) is defined in Proposition . Then for every n-convex function f : I → R the
following inequality holds:

∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

≥ 
b – a

[ n–∑

k=


k!(k + )!

∫ β

α

w(t)
[
f (k+)(a)

[(
y(t) – a

)k+ –
(
x(t) – a

)k+]

– f (k+)(b)
[(

y(t) – b
)k+ –

(
x(t) – b

)k+]]dt

]

. (.)

Proof Since the function f is n-convex so we have f (n) ≥ . Using this fact and (.) in (.)
we easily arrive at our required result. �

Remark  If reverse inequality holds in (.) then reverse inequality holds in (.).

Corollary  Suppose all the assumptions from Theorem  hold. Additionally suppose that
x and y are decreasing and satisfy conditions (.), (.). If f is n-convex then the following
inequality holds:

∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

≥ 
b – a

[n–∑

k=


k!(k + )!

∫ β

α

w(t)
[
f (k+)(a)

[(
y(t) – a

)k+ –
(
x(t) – a

)k+]

– f (k+)(b)
[(

y(t) – b
)k+ –

(
x(t) – b

)k+]]dt

]

. (.)
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Moreover, if f (j)(a) ≥  and (–)jf (j)(b) ≥  for j = , . . . , n –  then

∫ β

α

w(t)f
(
y(t)

)
dt ≥

∫ β

α

w(t)f
(
x(t)

)
dt.

Proof By using the same arguments as we have given in Corollary , we easily arrive at our
required results simply by replacing (.) by (.), (.) by (.) and (.) by (.). �

3 Bounds for identities related to generalization of majorization inequality
Let g, h : [a, b] →R be two Lebesgue integrable functions. We consider the Čebyšev func-
tional

T(g, h) =


b – a

∫ b

a
g(x)h(x) dx –

(


b – a

∫ b

a
g(x) dx

)(


b – a

∫ b

a
h(x) dx

)
. (.)

The following results can be found in [].

Proposition  Let g : [a, b] →R be a Lebesgue integrable function and h : [a, b] →R be an
absolutely continuous function with (·– a)(b – ·)[h′] ∈ L[a, b]. Then we have the inequality

∣
∣T(g, h)

∣
∣ ≤ √



(


b – a
∣
∣T(g, g)

∣
∣
∫ b

a
(x – a)(b – x)

[
h′(x)

] dx
)/

. (.)

The constant √
 in (.) is the best possible.

Proposition  Let h : [a, b] → R be a monotonic nondecreasing function and let g :
[a, b] → R be an absolutely continuous function such that g ′ ∈ L∞[a, b]. Then we have the
inequality

∣
∣T(g, h)

∣
∣ ≤ 

(b – a)
∥
∥g ′∥∥∞

∫ b

a
(x – a)(b – x) dh(x). (.)

The constant 
 in (.) is the best possible.

Now by using aforementioned results, we are going to obtain generalizations of the re-
sults proved in the previous section.

For m-tuples w = (w, . . . , wm), x = (x, . . . , xm), and y = (y, . . . , ym) with xi, yi ∈ [a, b], wi ∈
R (i = , . . . , m), and the function Tn defined as in (.), denote

δ(s) =
m∑

i=

wiTn(yi, s) –
m∑

i=

wiTn(xi, s), ∀s ∈ [a, b]. (.)

Similarly for continuous functions x, y : [α,β] → [a, b] and w : [α,β] →R, denote

�(s) =
∫ β

α

w(t)Tn
(
y(t), s

)
dt –

∫ β

α

w(t)Tn
(
x(t), s

)
dt, ∀s ∈ [a, b]. (.)

Hence by using these notations we define Čebyšev functionals as follows:

T(δ, δ) =


b – a

∫ b

a
δ(s) ds –

(


b – a

∫ b

a
δ(s) ds

)

,



Aljinović et al. Journal of Inequalities and Applications  (2015) 2015:196 Page 10 of 22

T(�,�) =


b – a

∫ b

a
�(s) ds –

(


b – a

∫ b

a
�(s) ds

)

.

Now, we are ready to state the main results of this section:

Theorem  Let n ∈N, f : [a, b] →R be such that f (n) is an absolutely continuous function
with (· – a)(b – ·)[f (n+)] ∈ L[a, b] and xi, yi ∈ [a, b], wi ∈ R (i = , , . . . , m), and let the
functions Tn, T , and δ be defined in (.), (.) and (.), respectively. Then we have

m∑

i=

wif (yi) –
m∑

i=

wif (xi)

=


b – a

m∑

i=

wi

[ n–∑

k=


k!(k + )!

[
f (k+)(a)

[
(yi – a)k+ – (xi – a)k+]

– f (k+)(b)
[
(yi – b)k+ – (xi – b)k+]]

]

+
[f (n–)(b) – f (n–)(a)]

(n – )!(b – a)

∫ b

a
δ(s) ds + R

n(f ; a, b), (.)

where the remainder R
n(f ; a, b) satisfies the estimation

∣
∣R

n(f ; a, b)
∣
∣ ≤ 

(n – )!

(
b – a



∣∣
∣∣T(δ, δ)

∫ b

a
(s – a)(b – s)

[
f (n+)(s)

] ds
∣∣
∣∣

)/

. (.)

Proof If we apply Proposition  for g → δ and h → f (n), then we obtain

∣∣
∣∣


b – a

∫ b

a
δ(s)f (n)(s) ds –

(


b – a

∫ b

a
δ(s) ds

)(


b – a

∫ b

a
f (n)(s) ds

)∣∣
∣∣

≤ √


(


b – a
∣∣T(δ, δ)

∣∣
∫ b

a
(s – a)(b – s)

[
f (n+)(s)

] ds
)/

.

Therefore we have


(n – )!(b – a)

∫ b

a
δ(s)f (n)(s) ds =

[f (n–)(b) – f (n–)(a)]
(n – )!(b – a)

∫ b

a
δ(s) ds +


b – a

R
n(f ; a, b),

where R
n(f ; a, b) satisfies inequality (.). Now from identity (.) we obtain (.). �

Here we state the integral version of the previous theorem.

Theorem  Let f : [a, b] →R be such that f ∈ Cn[a, b] for n ∈ N with (·– a)(b – ·)[f (n+)] ∈
L[a, b] and x, y : [α,β] → [a, b] and w : [α,β] → R and let the functions Tn, T and � be
defined in (.), (.) and (.), respectively. Then we have

∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

=


b – a

[ n–∑

k=


k!(k + )!

∫ β

α

w(t)
[
f (k+)(a)

[(
y(t) – a

)k+ –
(
x(t) – a

)k+]
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– f (k+)(b)
[(

y(t) – b
)k+ –

(
x(t) – b

)k+]]dt

]

+
[f (n–)(b) – f (n–)(a)]

(n – )!(b – a)

∫ b

a
�(s) ds + R

n(f ; a, b), (.)

where the remainder R
n(f ; a, b) satisfies the estimation

∣
∣R

n(f ; a, b)
∣
∣ ≤ 

(n – )!

(
b – a



∣∣
∣∣T(�,�)

∫ b

a
(s – a)(b – s)

[
f (n+)(s)

] ds
∣∣
∣∣

)/

. (.)

Proof This result easily follows by proceeding as in the proof of previous theorem and by
replacing (.) by (.). �

By using Proposition  we obtain the following Grüss type inequality.

Theorem  Let f : [a, b] → R be such that f ∈ Cn[a, b] for n ∈ N with f (n+) ≥  on [a, b]
and let the functions T and δ be defined in (.) and (.), respectively. Then we have the
representation (.) and the remainder R

n(f ; a, b) satisfies the following condition:

∣∣R
n(f ; a, b)

∣∣ ≤ 
(n – )!

∥∥δ′∥∥∞

[
b – a


[
f (n–)(b)+ f (n–)(a)

]
–

[
f (n–)(b)– f (n–)(a)

]
]

. (.)

Proof If we apply Proposition  for g → δ and h → f (n), then we obtain

∣∣
∣∣


b – a

∫ b

a
δ(s)f (n)(s) ds –

(


b – a

∫ b

a
δ(s) ds

)(


b – a

∫ b

a
f (n)(s) ds

)∣∣
∣∣

≤ 
(b – a)

∥
∥δ′∥∥∞

∫ b

a
(s – a)(b – s)f (n+)(s) ds.

Since

∫ b

a
(s – a)(b – s)f (n+)(s) ds

=
∫ b

a
(s – a – b)f (n)(s) ds

= (b – a)
[
f (n–)(b) + f (n–)(a)

]
– 

[
f (n–)(b) – f (n–)(a)

]
. (.)

Therefore, by using the identities (.) and (.) we deduce (.). �

Integral version of the above theorem can be given as:

Theorem  Let f : [a, b] → R be such that f ∈ Cn[a, b] for n ∈ N with f (n+) ≥  on [a, b]
and let the functions T and � be defined in (.) and (.), respectively. Then we have the
representation (.) and the remainder R

n(f ; a, b) satisfies the following condition:

∣∣R
n(f ; a, b)

∣∣ ≤ 
(n – )!

∥∥�′∥∥∞

[
b – a


[
f (n–)(b) + f (n–)(a)

]
–

[
f (n–)(b) – f (n–)(a)

]
]

.
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Here, the symbol Lp[a, b] ( ≤ p < ∞) denotes the space of p-power integrable functions
on the interval [a, b] equipped with the norm

‖f ‖p =
(∫ b

a

∣
∣f (t)

∣
∣p dt

) 
p

and L∞[a, b] denotes the space of essentially bounded functions on [a, b] with the norm

‖f ‖∞ = ess sup
t∈[a,b]

∣
∣f (t)

∣
∣.

Now we state some Ostrowski-type inequalities related to the generalized majorization
inequalities.

Theorem  Let all the assumptions of Theorem  hold. Furthermore, let (p, q) be a pair
of conjugate exponents, that is,  ≤ p, q ≤ ∞, 

p + 
q = . Let f (n) ∈ Lp[a, b] for some n ∈ N,

n > . Then we have

∣
∣∣
∣∣

m∑

i=

wif (yi) –
m∑

i=

wif (xi) –


b – a

m∑

i=

wi

[ n–∑

k=


k!(k + )!

[
f (k+)(a)

× [
(yi – a)k+ – (xi – a)k+] – f (k+)(b)

[
(yi – b)k+ – (xi – b)k+]]

]∣∣∣
∣∣

≤ 
(n – )!

∥
∥f (n)∥∥

p

∥
∥∥
∥∥

m∑

i=

wi
(
Tn(yi, ·) – Tn(xi, ·)

)
∥
∥∥
∥∥

q

. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and the best possible
for p = .

Proof Let us denote

λ(s) =


(n – )!

m∑

i=

wi
[
Tn(yi, s) – Tn(xi, s)

]
.

Now, by using identity (.) and applying Hölder’s inequality we obtain

∣∣
∣∣
∣

m∑

i=

wif (yi) –
m∑

i=

wif (xi) –


b – a

m∑

i=

wi

[ n–∑

k=


k!(k + )!

[
f (k+)(a)

× [
(yi – a)k+ – (xi – a)k+] – f (k+)(b)

[
(yi – b)k+ – (xi – b)k+]]

]∣∣
∣∣
∣

=
∣
∣∣
∣

∫ b

a
λ(s)f (n)(s) ds

∣
∣∣
∣ ≤ ∥∥f (n)∥∥

p‖λ‖q. (.)

For the proof of the sharpness of the constant (
∫ b

a |λ(s)|q ds)/q, let us find a function f for
which the equality in (.) is obtained.



Aljinović et al. Journal of Inequalities and Applications  (2015) 2015:196 Page 13 of 22

For  < p < ∞ take f to be such that

f (n)(s) = sgnλ(s) · ∣∣λ(s)
∣
∣/(p–).

For p = ∞, take f such that

f (n)(s) = sgnλ(s).

Finally, for p = , we prove that

∣∣
∣∣

∫ b

a
λ(s)f (n)(s) ds

∣∣
∣∣ ≤ max

s∈[a,b]

∣
∣λ(s)

∣
∣
∫ b

a
f (n)(s) ds (.)

is the best possible inequality.
Function Tn(x, ·) for n =  has jump of – at point x. But for n ≥  it is continuous, and

thus λ(s) is continuous. Suppose that |λ(s)| attains its maximum at s ∈ [a, b]. First we
consider the case λ(s) > . For ε small enough we define fε(s) by

fε(s) =

⎧
⎪⎪⎨

⎪⎪⎩

, a ≤ s ≤ s,


εn! (s – s)n, s ≤ s ≤ s + ε,

n! (s – s)n–, s + ε ≤ s ≤ b.

(.)

So, we have

∣
∣∣∣

∫ b

a
λ(s)f (n)

ε (s) ds
∣
∣∣∣ =

∣
∣∣∣

∫ s+ε

s

λ(s)

ε

ds
∣
∣∣∣ =


ε

∫ s+ε

s

λ(s) ds.

Now from inequality (.) we have


ε

∫ s+ε

s

λ(s) ds ≤ λ(s)

ε

∫ s+ε

s

ds = λ(s).

Since

lim
ε→


ε

∫ s+ε

s

λ(s) ds = λ(s)

the statement follows.
In the case λ(s) < , we define fε(s) by

fε(s) =

⎧
⎪⎪⎨

⎪⎪⎩


n! (s – s – ε)n–, a ≤ s ≤ s,

– 
εn! (s – s – ε)n, s ≤ s ≤ s + ε,

, s + ε ≤ s ≤ b,

(.)

and the rest of the proof is the same as above. �

The integral case of the above theorem can be given as follows.
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Theorem  Let all the assumptions of Theorem  hold. Furthermore, let (p, q) be a pair
of conjugate exponents, that is,  ≤ p, q ≤ ∞, 

p + 
q = . Let f (n) ∈ Lp[a, b] for some n ∈ N.

Then we have
∣∣
∣∣∣

∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

–


b – a

[ n–∑

k=


k!(k + )!

∫ β

α

w(t)
[
f (k+)(a)

[(
y(t) – a

)k+ –
(
x(t) – a

)k+]

– f (k+)(b)
[(

y(t) – b
)k+ –

(
x(t) – b

)k+]]dt

]∣∣
∣∣
∣

≤ 
(n – )!

∥∥f (n)∥∥
p

∥
∥∥
∥

∫ β

α

w(t)
(
Tn

(
y(t), s

)
– Tn

(
x(t), s

))
dt

∥
∥∥
∥

q
. (.)

The constant on the right-hand side of (.) is sharp for  < p ≤ ∞ and the best possible
for p = .

For our next two sections, we give here some constructions as follows. Under the as-
sumptions of Theorem  using (.) and Theorem  using (.) we define the following
functionals, respectively:

�(f ) =
m∑

i=

wif (yi) –
m∑

i=

wif (xi) –


b – a

m∑

i=

wi

[ n–∑

k=


k!(k + )!

[
f (k+)(a)

× [
(yi – a)k+ – (xi – a)k+] – f (k+)(b)

[
(yi – b)k+ – (xi – b)k+]]

]

, (A)

�(f ) =
∫ β

α

w(t)f
(
y(t)

)
dt –

∫ β

α

w(t)f
(
x(t)

)
dt

–


b – a

[ n–∑

k=


k!(k + )!

∫ β

α

w(t)
[
f (k+)(a)

[(
y(t) – a

)k+ –
(
x(t) – a

)k+]

– f (k+)(b)
[(

y(t) – b
)k+ –

(
x(t) – b

)k+]]dt

]

. (A)

4 Mean value theorems
Now we give mean value theorems for �k , k ∈ {, }. Here f(x) = xn

n! .

Theorem  Let f ∈ Cn[a, b] and let �k : Cn[a, b] → R for k ∈ {, } be linear functionals
as defined in (A) and (A), respectively. Then there exists ξk ∈ [a, b] for k ∈ {, } such that

�k(f ) = f (n)(ξk)�k(f), k ∈ {, }. (.)

Proof Since f (n) is continuous on [a, b], so L ≤ f (n)(x) ≤ M for x ∈ [a, b] where L =
minx∈[a,b] f (n)(x) and M = maxx∈[a,b] f (n)(x).

Therefore the function

F(x) = M
xn

n!
– f (x) = Mf(x) – f (x)
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gives us

F (n)(x) = M – f (n)(x) ≥ 

i.e. F is n-convex function. Hence �k(F) ≥  and we conclude that for k ∈ {, }

�k(f ) ≤ M�k(f).

Similarly, for k ∈ {, } we have

L�k(f) ≤ �k(f ).

Combining the two inequalities we get

L�k(f) ≤ �k(f ) ≤ M�k(f),

which gives us (.). �

Theorem  Let f , g ∈ Cn[a, b] and let �k : Cn[a, b] → R for k ∈ {, } be the linear func-
tionals as defined in (A) and (A), respectively. Then there exists ξk ∈ [a, b] for k ∈ {, }
such that

�k(f )
�k(g)

=
f (n)(ξk)
g(n)(ξk)

assuming that both denominators are non-zero.

Proof Fix k ∈ {, }. Let h ∈ Cn[a, b] be defined as

h = �k(g)f – �k(f )g.

Using Theorem  there exists ξk such that

 = �k(h) = h(n)(ξk)�k(f)

or

[
�k(g)f (n)(ξk) – �k(f )g(n)(ξk)

]
�k(f) = ,

which gives us the required result. �

Remark  If the inverse of f (n)

g(n) exists, then from the above mean value theorems we can
give the generalized means,

ξk =
(

f (n)

g(n)

)–(
�k(f )
�k(g)

)
, k ∈ {, }. (.)

5 Log-convexity and n-exponential convexity
5.1 Logarithmically convex functions
A number of important inequalities arise from the logarithmic convexity of some func-
tions as one can see in [].
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Now, we recall some definitions. The following definition was originally given by Jensen
in  []. Here I is an interval in R.

Definition  A function f : I →R+ is called log-convex in the J-sense if the inequality

f 
(

x + x



)
≤ f (x)f (x)

holds for each x, x ∈ I .

Definition  ([], p.) A function f : I →R+ is called log-convex if the inequality

f
(
λx + ( – λ)x

) ≤ [
f (x)

]λ[f (x)
](–λ)

holds for each x, x ∈ I and λ ∈ [, ].

Remark  A function log-convex in the J-sense is log-convex if it is continuous as well.

5.2 n-Exponentially convex functions
Bernstein [] and Widder [] independently introduced an important sub-class of con-
vex functions, which is called the class of exponentially convex functions on a given open
interval, and studied some properties of this newly defined class. Pečarić and Perić in []
introduced the notion of n-exponentially convex functions, which is in fact a generaliza-
tion of the concept of exponentially convex functions. In the present subsection, we discus
the same notion of n-exponential convexity by describing related definitions and some im-
portant results with some remarks from [].

Definition  A function f : I →R is n-exponentially convex in the J-sense if the inequality

n∑

i,j=

uiujf
(

ti + tj



)
≥ 

holds for each ti ∈ I and ui ∈R, i ∈ {, . . . , n}.

Definition  A function f : I →R is n-exponentially convex if it is n-exponentially convex
in the J-sense and continuous on I .

Remark  We can see from the definition that -exponentially convex functions in the
J-sense are in fact nonnegative functions. Also, n-exponentially convex functions in the
J-sense are k-exponentially convex in the J-sense for every k ∈N such that k ≤ n.

Definition  A function f : I → R is exponentially convex in the J-sense, if it is n-
exponentially convex in the J-sense for each n ∈N.

Remark  A function f : I →R is exponentially convex if it is n-exponentially convex in
the J-sense and continuous on I .
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Proposition  If function f : I →R is n-exponentially convex in the J-sense, then the ma-
trix

[
f
(

ti + tj



)]m

i,j=

is positive-semidefinite. Particularly

det

[
f
(

ti + tj



)]m

i,j=
≥ 

for each m ∈N, m ≤ n and ti ∈ I for i ∈ {, . . . , m}.

Corollary  If function f : I →R is exponentially convex, then the matrix

[
f
(

ti + tj



)]m

i,j=

is positive-semidefinite. Particularly

det

[
f
(

ti + tj



)]m

i,j=
≥ 

for each m ∈N and ti ∈ I for i ∈ {, . . . , m}.

Corollary  If the function f : I →R+ is exponentially convex, then f is log-convex.

Remark  A function f : I →R+ is log-convex in J-sense if and only if the inequality

u
 f (t) + uuf

(
t + t



)
+ u

f (t) ≥ 

holds for each t, t ∈ I and u, u ∈ R. It follows that a positive function is log-convex in the
J-sense if and only if it is -exponentially convex in the J-sense. Also, using basic convexity
theory it follows that a positive function is log-convex if and only if it is -exponentially
convex.

Here, we get our results concerning the n-exponential convexity and exponential con-
vexity for our functionals �k , k ∈ {, }, as defined in (A) and (A). Throughout the sec-
tion I is an interval in R.

Theorem  Let D = {ft : t ∈ I} be a class of functions such that the function t �→
[z, z, . . . , zn; ft] is n-exponentially convex in the J-sense on I for any n +  mutually dis-
tinct points z, z, . . . , zn ∈ [a, b]. Let �k be the linear functionals for k ∈ {, } as defined in
(A) and (A). Then the following statements are valid:

(a) The function t �→ �k(ft) is n-exponentially convex function in the J-sense on I .
(b) If the function t �→ �k(ft) is continuous on I , then the function t �→ �k(ft) is

n-exponentially convex on I .



Aljinović et al. Journal of Inequalities and Applications  (2015) 2015:196 Page 18 of 22

Proof (a) Fix k ∈ {, }. Let us define the function ω for ti ∈ I , ui ∈R, i ∈ {, . . . , n} as follows:

ω =
n∑

i,j=

uiujf ti+tj


.

Since the function t �→ [z, z, . . . , zn; ft] is n-exponentially convex in the J-sense,

[z, z, . . . , zn;ω] =
n∑

i,j=

uiuj[z, z, . . . , zn; f ti+tj


] ≥ ,

which implies that ω is n-convex function on I and therefore �k(ω) ≥ . Hence

n∑

i,j=

uiuj�k(f ti+tj


) ≥ .

We conclude that the function t �→ �k(ft) is an n-exponentially convex function on I in
the J-sense.

(b) This part easily follows from the definition of the n-exponentially convex function.
�

As a consequence of the above theorem we give the following corollaries.

Corollary  Let D = {ft : t ∈ I} be a class of functions such that the function t �→
[z, z, . . . , zn; ft] is exponentially convex in the J-sense on I for any n +  mutually distinct
points z, z, . . . , zn ∈ [a, b]. Let �k be the linear functionals for k ∈ {, } as defined in (A)
and (A). Then the following statements are valid:

(a) The function t �→ �k(ft) is exponentially convex in the J-sense on I .
(b) If the function t �→ �k(ft) is continuous on I, then the function t �→ �k(ft) is

exponentially convex on I .
(c) The matrix [�k(f ti+tj


)]m

i,j= is positive-semidefinite. Particularly,

det
[
�k(f ti+tj


)
]m

i,j= ≥ 

for each m ∈N and ti ∈ I where i ∈ {, . . . , m}.

Proof The proof follows directly from Theorem  by using the definition of exponential
convexity and Corollary . �

Corollary  Let D = {ft : t ∈ I} be a class of functions such that the function t �→
[z, z, . . . , zn; ft] is -exponentially convex in the J-sense on I for any n +  mutually dis-
tinct points z, z, . . . , zn ∈ [a, b]. Let �k be the linear functionals for k ∈ {, } as defined in
(A) and (A). Then the following statements are valid:

(a) If the function t �→ �k(ft) is continuous on I , then it is -exponentially convex on I . If
the function t �→ �k(ft) is additionally positive, then it is also log-convex on I .
Moreover, the following Lyapunov inequality holds for r < s < t, r, s, t ∈ I :

[
�k(fs)

]t–r ≤ [
�k(fr)

]t–s[
�k(ft)

]s–r . (.)
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(b) If the function t �→ �k(ft) is positive and differentiable on I , then for every s, t, u, v ∈ I
such that s ≤ u and t ≤ v, we have

μs,t(�k , D) ≤ μu,v(�k , D), (.)

where μs,t is defined as

μs,t(�k , D) =

⎧
⎨

⎩

( �k (fs)
�k (ft ) ) 

s–t , s �= t,

exp(
d
ds �k (fs)
�k (fs) ), s = t,

(.)

for fs, ft ∈ D.

Proof
(a) It follows directly from Theorem  and Remark . As the function t �→ �k(ft) is

log-convex, i.e., ln�k(ft) is convex, by using Proposition , we have

ln
[
�k(fs)

]t–r ≤ ln
[
�k(fr)

]t–s + ln
[
�k(ft)

]s–r , k ∈ {, },

which gives us (.).
(b) From Proposition , for the convex function f , the inequality

f (s) – f (t)
s – t

≤ f (u) – f (v)
u – v

(.)

holds ∀s, t, u, v ∈ I ⊂R such that s ≤ u, t ≤ v, s �= t, u �= v.
Since by (c), �(ft) is log-convex, setting f (t) = ln�(ft) in (.) we have

ln�k(fs) – ln�k(ft)
s – t

≤ ln�k(fu) – ln�k(fv)
u – v

(.)

for s ≤ u, t ≤ v, s �= t, u �= v, which is equivalent to (.). The cases for s = t and/or
u = v are easily treated from (.) by taking the respective limits. �

Remark  The results from Theorem  and Corollaries  and  still hold when any two
(all) points z, z, . . . , zn ∈ [a, b] coincide for a family of differentiable (n times differen-
tiable) functions ft such that the function t �→ [z, z, . . . , zn; ft] is n-exponentially convex,
exponentially convex, and -exponentially convex in the J-sense, respectively.

Now, we give two important remarks and one useful corollary from [], which we will
use in some examples in the next section.

Remark  To μs,t(�k ,�) defined with (.) we will refer as a mean if

a ≤ μs,t(�k ,�) ≤ b

for s, t ∈ I and k ∈ {, } where � = {ft : t ∈ I} is a family of functions and [a, b] ⊂ Dom(ft).

Theorem  gives us the following corollary.
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Corollary  Let a, b ∈R and �k be linear functionals for k ∈ {, }. Let � = {ft : t ∈ I} be a
family of functions in C[a, b]. If

a ≤
( dfs

dx

dft
dx

) 
s–t

(ξ ) ≤ b,

for ξ ∈ [a, b], s, t ∈ I , then μs,t(�k ,�) is a mean for k ∈ {, }.

Remark  In some examples, we will get a mean of this type:

( dfs
dx

dft
dx

) 
s–t

(ξ ) = ξ , ξ ∈ [a, b], s �= t.

6 Examples with applications
In this section, we use various classes of functions � = {ft : t ∈ I} for any open interval
I ⊂ R to construct different examples of exponentially convex functions and applications
to Stolarsky-type means. Let us consider some examples.

Example  Let � = {ψt : R → [,∞) : t ∈R} be a family of functions defined by

ψt(x) =

⎧
⎨

⎩

etx

tn , t �= ,
xn

n! , t = .

Since dn

dxn ψt(x) = etx > , the function ψt(x) is n-convex on R for every t ∈ R and t →
dn

dxn ψt(x) is exponentially convex by definition. Using analogous arguing to the proof of
Theorems , we see that t �→ [z, z, . . . , zn;ψt] is exponentially convex (and so exponen-
tially convex in the J-sense). Using Corollary  we conclude that t �→ �k(ψt), k ∈ {, } are
exponentially convex in the J-sense. It is easy to see that these mappings are continuous,
so they are exponentially convex.

Assume that t �→ �k(ψt) >  for k ∈ {, }. By introducing convex functions ψt in (.),
we obtain the following means: for k ∈ {, }

Ms,t(�k ,�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


s–t ln( �k (ψs)

�k (ψt ) ), s �= t,
�k (id·ψs)
�k (ψs) – n

s , s = t �= ,
�k (id·ψ)

(n+)�k (ψ) , s = t = ,

where id stands for the identity function on R. Here Ms,t(�k ,�) = ln(μs,t(�k ,�)), k ∈
{, } are in fact means.

Remark  We observe here that (
dnψs
dxn

dnψt
dxn

) 
s–t (ln ξ ) = ξ is a mean for ξ ∈ [a, b] where

a, b ∈R+.

Example  Let � = {ϕt : (,∞) →R : t ∈R} be a family of functions defined as

ϕt(x) =

⎧
⎨

⎩

(x)t

t(t–)···(t–n+) , t /∈ {, . . . , n – },
(x)j ln(x)

(–)n––j j!(n––j)! , t = j ∈ {, . . . , n – }.
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Since ϕt(x) is n-convex function for x ∈ (,∞) and t �→ d

dx ϕt(x) is exponentially convex,
by the same arguments as given in the previous example we conclude that �k(ϕt), k ∈ {, }
are exponentially convex.

We assume that �k(ϕt) >  for k ∈ {, }. For this family of convex functions we obtain
the following means: for k ∈ {, }

Ms,t(�k ,�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( �k (ϕs)
�k (ϕt ) ) 

s–t , s �= t,

exp((–)n–(n – )! �k (ϕϕs)
�k (ϕs) +

∑n–
k=


k–t ), s = t /∈ {, . . . , n – },

exp((–)n–(n – )! �k (ϕϕs)
�k (ϕs) +

∑n–
k=,k �=t


k–t ), s = t ∈ {, . . . , n – }.

Here Ms,t(�k ,�) = μs,t(�k ,�), k ∈ {, }, are in fact means.

Remark  Further, in this choice of family �, we have

( dnϕs
dxn

dnϕt
dxn

) 
s–t

(ξ ) = ξ , ξ ∈ [a, b], s �= t, where a, b ∈ (,∞).

So, using Remark  we have the important conclusion that μs,t(�k ,�) is in fact a mean
for k ∈ {, }.

Example  Let � = {θt : (,∞) → (,∞) : t ∈ (,∞)} be a family of functions defined by

θt(x) =
e–x

√
t

tn/ .

Since t �→ dn

dxn θt(x) = e–x
√

t is exponentially convex for x > , being the Laplace transform
of a nonnegative function [], by the same argument as given in Example  we conclude
that �k(θt), k ∈ {, } are exponentially convex.

We assume that �k(θt) >  for k ∈ {, }. For this family of functions we have the follow-
ing possible cases of μs,t(�k ,�): for k ∈ {, }

Ms,t(�k ,�) =

⎧
⎨

⎩

( �k (θs)
�k (θt ) ) 

s–t , s �= t,

exp(– �k (id·θs)

√

s�k (θs) – n
s ), s = t.

By (.), Ms,t(�k ,�) = –(
√

s +
√

t) lnμs,t(�k ,�), k ∈ {, }, defines a class of means.

Example  Let � = {φt : (,∞) → (,∞) : t ∈ (,∞)} be a family of functions defined by

φt(x) =

⎧
⎨

⎩

t–x

(ln t)n , t �= ,
xn

n , t = .

Since dn

dxn φt(x) = t–x = e–x ln t >  for x > , by the same argument as given in Example  we
conclude that t �→ �k(φt), k ∈ {, }, are exponentially convex.
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We assume that �k(φt) >  for k ∈ {, }. For this family of functions we have the follow-
ing possible cases of μs,t(�k ,�): for k ∈ {, }

Ms,t(�k ,�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( �k (φs)
�k (φt ) ) 

s–t , s �= t,

exp(– �k (id·φs)
s�k (φs) – n

s ln s ), s = t �= ,

exp(– 
(n+)

�k (id·φ)
�k (φ) ), s = t = .

By (.), Ms,t(�k ,�) = –L(s, t) lnμs,t , (�k ,�), k ∈ {, }, defines a class of means, where
L(s, t) is the logarithmic mean defined as

L(s, t) =

⎧
⎨

⎩

s–t
ln s–ln t , s �= t,

s, s = t.
(.)

Remark  Monotonicity of μs,t(�k ,�j) follows from (.) for k ∈ {, }, j ∈ {, , , }.
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7. Pečarić, JE: On some inequalities for functions with nondecreasing increments. J. Math. Anal. Appl. 98(1), 188-197

(1984)
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