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Abstract
In this paper, we present some sharp inequalities for the ratio of gamma functions.
The main tool is the multiple-correction method formulated in (Cao et al. in J. Number
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conjectures are proposed.
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1 Introduction
The problem of finding new and sharp inequalities for the ratio of gamma functions and,
in particular, for the Wallis ratio

W (n) :=
(n – )!!

(n)!!
=

�(n + 
 )√

π�(n + )
, n ∈ N = {, , . . .} (.)

has attracted the attention of many researchers (see, e.g., [–] and the references
therein). Here, � is the gamma function, and we employ the special double factorial func-
tion as follows:

(n)!! =  ·  ·  · · · (n) = n�(n + ),

(n – )!! =  ·  ·  · · · (n – ) = π–/n�

(
n +




)
.

See [], p..
Chen and Qi [] established the following inequalities:

√
π (n + 

π
– )

≤ W (n) <
√

π (n + 
 )

, n ∈N, (.)

where 
π

–  and 
 are best possible.
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For n ∈N, let

T(n) :=
 ·  · · · (n – )

 ·  · · · (n)
=

�(n + 
 )

�(n + )�( 
 )

, (.)

T(n) :=
 ·  · · · (n – )

 ·  · · · (n)
=

�(n + 
 )

�(n + )�( 
 )

. (.)

Very recently, Mortici et al. [] proved that for every integer n ≥ ,

β


√

n + 
 n

exp

(
–


n

)
< T(n) <

β


√

n + 
 n

exp

(
–


n +


n

)
(.)

and

τ


√

n + 


exp

(
–


n

)
< T(n) <

τ


√

n + 


exp

(
–


n +


n

)
, (.)

where

β =


�( 
 )

=
√


π

�

(



)
= . . . . and τ =


�( 

 )
= . . . . . (.)

From (.) and (.), we have the following asymptotic formulas:

T(n) =
β


√

n + 
 n

exp

(
–


n +


n

)(
 + O

(


n

))
,

T(n) =
τ


√

n + 


exp

(
–


n +


n

)(
 + O

(


n

))
.

Motivated by these works, the purpose of this paper is to present some sharp inequalities
for W (n), T(n) and T(n) by using the multiple-correction method developed in [, ].

Throughout the paper, the notation �x� denotes the largest integer not exceeding x. The
notation Pk(x) (or Qk(x)) denotes a polynomial of degree k in x, while the notation �(k; x)
means a polynomial of degree k in x with all coefficients non-negative, which may be dif-
ferent at each occurrence. Let (an)n≥ and (bn)n≥ be two sequences of real numbers with
an �=  for all n ∈N. The generalized continued fraction

τ = b +
a

b + a

b+
.. .

= b +
a

b+
a

b+
= · · · = b +

∞
K
n=

(
an

bn

)
(.)

is defined as the limit of the nth approximant

An

Bn
= b +

n
K
k=

(
ak

bk

)
(.)
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as n tends to infinity. The numerators An and denominators Bn of the approximants satisfy
the recurrence relations

An+ = bn+An+ + an+An, Bn+ = bn+Bn+ + an+Bn (.)

with initial values A = b, B = , A = bb + a and B = b. See [], p..

2 Inequalities for W(n)
In this section, in order to illustrate the idea of this paper, we consider the case of Wallis
ratio. We introduce some class of correction sequence (MCk(n))n≥ such that the relative
error sequence Ek(n) has the fastest possible rate of convergence, which is defined by the
relations

(n – )!!
(n)!!

=
√

π (n + 
 )

exp
(
MCk(n)

)
exp

(
Ek(n)

)
, k ∈N = N∪ {}. (.)

The tool for measuring the rate of convergence is a result given by Mortici in [], which
says that a sequence (xn)n≥ converging to zero is fastest possible when the difference (xn –
xn+)n≥ is fastest possible. More precisely, if there exists limn→∞ nκ (xn – xn+) = l, with
κ > , then limn→∞ nκ–xn = l

κ– . Mortici’s lemma has been effectively applied in many
papers such as [, , , , –]. If limn→∞ n�xn = l �=  with constant � > , we say
that the sequence (xn)n≥ is order n–� , and write the exponent of convergence � = �(xn).
Clearly if �(Ek(n)) = �k , we have the following asymptotic formula:

(n – )!!
(n)!!

=
√

π (n + 
 )

exp
(
MCk(n)

)(
 + O

(
n–�k

))
.

Let us briefly review the so-called multiple-correction method presented in our previous
papers [, ]. Actually, the multiple-correction method is a recursive algorithm, and one
of its advantages is that by repeating the correction process we always can accelerate the
convergence, i.e., the sequence (�(Ek(n)))k≥ is strictly increasing. The key step is to find a
suitable structure of MCk(n). We often choose the kth correction sequence MCk(n) to be a
finite generalized continued fraction (see [] or (.) below) or a simple rational function
(see [] or (.) and (.) below).

It follows from (.) that

Ek(n) = ln W (n) +



lnπ +



ln

(
n +




)
– MCk(n), (.)

Ek(n) – Ek(n + ) = – ln
n + 
n + 

–



ln
(n + ) + 



n + 


+ MCk(n + ) – MCk(n). (.)

Next, we illustrate how to determine all the related coefficients in MCk(n). The choice of
the initial-correction sequence MC(n) is crucial. Since

– ln
n + 
n + 

–



ln
(n + ) + 



n + 


= –


n + O
(


n

)
,
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in order to obtain the fastest possible sequence E(n) – E(n + ), we choose MC(n) =
– 


n+dn+d

. Substituting this expression into (.) and expanding E(n) – E(n + ) into a
power series in terms of n–, by making use of Mathematica software we have

E(n) – E(n + ) =


 – d


n +
– + d + d

 – d

n

–
(– + d + d

 + d
 – d – dd)

,n + O
(


n

)
.

The fastest sequence E(n) – E(n + ) is obtained by enforcing the first two coefficients of
this power series to be zero. In this case, we find

d =



, d =



, (.)

and hence

E(n) – E(n + ) = –


,n + O
(


n

)
. (.)

By Mortici’s lemma, it is not difficult to verify that �(E(n)) = .
Just as in our previous works [, ], we can continue the above correction process to

successively determine the correction sequence (MCk(n))n≥ until some k∗ you want. On
the one hand, to find the related coefficients avoiding huge computation, we often use
appropriate symbolic computations software. On the other hand, the exact expressions at
each occurrence also need a lot of space. Hence in this paper we omit many related details.
Interested readers may refer to our previous papers [, ]. Let

MCk(n) =
k
K
j=

(
κj

(n + 
 ) + λj

)
, k ∈N = N∪ {}, (.)

where

κ = –



, λ =




,

κ = –


,
, λ =

,
,

,

κ = –
,,
,,

, λ =
,,,,
,,,

,

κ = –
,,,,,,,
,,,,,,

,

λ =
,,,,,,,,,
,,,,,,,,,

.

By (.) and Mortici’s lemma, we can use Mathematica software to check that �(Ek(n)) =
k +  for  ≤ k ≤ . Thus,

(n – )!!
(n)!!

=
√

π (n + 
 )

exp
(
MCk(n)

)(
 + O

(
n–k–)). (.)
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Lastly, we remove the factor exp(Ek(n)) in (.) and further prove sharp double inequalities
for as small n as possible. Now we introduce another sequence MDk(n) defined by

MD(n) =
κ

(n + 
 )

,

MDk(n) =
κ

(n + 
 ) + λ+

· · · κk–

(n + 
 ) + λk–+

κk

(n + 
 )

for k ≥ 

(i.e., MDk(n) may be defined by taking the last coefficient λk =  in the definition of
MCk(n)), and improve inequalities (.) as follows.

Theorem  For n ∈N and k = , , , , we have

√
π (n + 

 )
exp

(
MDk(n)

) ≤ (n – )!!
(n)!!

<
√

π (n + 
 )

exp
(
MCk(n)

)
. (.)

Proof We only give the proof in the case of k = , other may be proved similarly. It suffices
to show that a(n) >  and b(n) < , where

a(n) = ln W (n) +



lnπ +



ln

(
n +




)
– MDk(n) (.)

and

b(n) = ln W (n) +



lnπ +



ln

(
n +




)
– MCk(n). (.)

As both a(n) and b(n) converge to zero, it suffices to prove that (a(n))n≥ is decreasing and
(b(n))n≥ is increasing. We set a(n + ) – a(n) = f (n) and b(n + ) – b(n) = g(n), where

f (x) = ln
x + 
x + 

+ ln
(x + ) + 



x + 


– MDk(x + ) + MDk(x)

and

g(x) = ln
x + 
x + 

+ ln
(x + ) + 



x + 


– MCk(x + ) + MCk(x).

By using Mathematica software, one may check

f ′(x) =
�(; x)(x – ) +  . . . 

�(; x)(�(; x)(x – ) +  . . . )�(; x) >  (x ≥ ) (.)

and

g ′(x) = –
�(; x)

( + x)( + x)( + x)( + x)�(; x)�(; x) < , (.)

where  . . .  and  . . .  denote two large positive constants. Thus, f (x)
is strictly increasing on [,∞) with f (∞) = , while g(x) is strictly decreasing on [,∞)
with g(∞) = . Hence f <  and g(x) >  for x ≥ . This finishes the proof of Theo-
rem . �
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3 Inequalities for T1(n) and T2(n)
In this section, we will use the method of Section  to improve (.) and (.), respectively.

Theorem  Let β be defined by (.). For n ∈N, we have

β


√

n + 
 n + 



exp

( 
,

n + bn + bn + bn

)

<
 ·  · · · (n – )

 ·  · · · (n)
<

β


√

n + 
 n + 



exp

( 
,

n + bn + bn + bn + b

)
, (.)

where

b =



, b =



, b =



, b = –

,
,

.

Remark  It should be stressed that two kinds of correction processes are applied in (.).
For comparison, we have

T(n) =
β


√

n + 
 n + 



(
 + O

(


n

))
,

T(n) =
β


√

n + 
 n + 



exp

( 
,

n + bn + bn + bn + b

)(
 + O

(


n

))
.

Remark  We note that

n +



n +



=

(
n +




)

+



,

n + bn + bn + bn + b =
(

n +



)

+



(
n +




)

–
,
,

.

Proof Since the proof of Theorem  is similar to that of Theorem , we only outline the
idea of the proof here. Inequalities (.) are equivalent to

u(n) = ln T(n) – lnβ +



ln

(
n +




n +




)
–

/,
n + bn + bn + bn

> , (.)

v(n) = ln T(n) – lnβ +



ln

(
n +




n +




)
–

/,
n + bn + bn + bn + b

< . (.)

As both u(n) and v(n) converge to zero, it suffices to prove that (u(n))n≥ is decreasing and
(v(n))n≥ is increasing. We write u(n + ) – u(n) = φ(n) and v(n + ) – v(n) = ϕ(n), where

φ(x) = ln
x + 
x + 

+



ln
(x + ) + 

 (x + ) + 


x + 
 x + 



–
/,

(x + ) + b(x + ) + b(x + ) + b(x + )
+

/,
x + bx + bx + bx

, (.)

ϕ(x) = ln
x + 
x + 

+



ln
(x + ) + 

 (x + ) + 


x + 
 x + 
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–
/,

(x + ) + b(x + ) + b(x + ) + b(x + ) + b

+
/,

x + bx + bx + bx + b
. (.)

By using Mathematica software again, we have for x ≥ ,

φ′(x) = –
(�(; x)(x – ) + ,,,,,,)

�(; x)(–, + ,x + ,x + ,x + ,x)�(; x) > , (.)

ϕ′(x) =
(�(; x)(x – ) + ,,,,)

x( + x)( + x)( + x + x)�(; x)
< . (.)

Thus, φ(x) is strictly increasing on [,∞) with φ(∞) = , while ϕ(x) is strictly decreasing
on [,∞) with ϕ(∞) = . Hence φ(x) <  and ϕ(x) >  for x ≥ . This completes the proof
of Theorem . �

Theorem  Let τ be defined by (.). For n ∈N, we have

τ


√

n + 


exp

(
–




n + 
 n

)
<

 ·  · · · (n – )
 ·  · · · (n)

<
τ


√

n + 


exp

(
–




(n + 
 ) + 



)
. (.)

Proof Similarly to the proof of Theorem , it suffices to show that for every integer n ≥ ,

r(n) = ln T(n) – ln τ +



ln

(
n +




)
+




n + 
 n

> , (.)

s(n) = ln T(n) – ln τ +



ln

(
n +




)
+




(n + 
 ) + 


< . (.)

We let r(n + ) – r(n) = η(n) and s(n + ) – s(n) = θ (n), where

η(x) = ln
x + 
x + 

+



ln
(x + ) + 



x + 


+




(x + ) + 
 (x + )

–




x + 
 x

, (.)

θ (x) = ln
x + 
x + 

+



ln
(x + ) + 



x + 


+




(x +  + 
 ) + 


–




(x + 
 ) + 


. (.)

By using Mathematica software, we deduce that for every x ≥ ,

η′(x) =
( + x + ,x + ,x + x)

x( + x)( + x)( + x)( + x)( + x) > , (.)

θ ′(x) = –
(, + ,x + ,x + ,x + ,x)

( + x)( + x)( + x)( + x)( + x + x)( + x + x) < . (.)

We observe that both r(n) and s(n) converge to zero. Thus, η(x) is strictly increasing on
[,∞) with η(∞) = , while θ (x) is strictly decreasing on [,∞) with θ (∞) = . Hence
η(x) <  and θ (x) >  for x ≥ . This completes the proof of Theorem . �

Remark  In the proof of Theorems  and , we only use the initial-correction to improve
(.) and (.). Certainly, we may further improve these inequalities by using multiple-
correction.
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4 Continued fraction inequalities
In this section, by changing the location of the correction sequence, we will employ the
method of Section  to find the better continued fraction approximation. To do that, we
introduce another correction sequence (MCk( 

 ; n))n≥ and the relative error sequence
Ek( 

 ; n) with the following form:

(n – )!!
(n)!!

=
√
π

√
n + 

 + MCk( 
 ; n)

exp

(
Ek

(



; n
))

. (.)

Hence

Ek

(



; n
)

– Ek

(



; n + 
)

= – ln
n + 
n + 

–



ln
(n + ) + 

 + MCk( 
 ; n + )

n + 
 + MCk( 

 ; n)
. (.)

Let

MCk

(



; n
)

:=
k
K
j=

(
κj

n + λj

)
, k ∈N = N∪ {}, (.)

where κ = 
 , κj = (j+)

 for j ≥ , and λj = 
 for j ≥ . By applying the multiple-correction

method described in Section , it is not difficult to check that if  ≤ k ≤ , then

lim
n→∞ nk+Ek

(



; n
)

= Ck

(



)
, (.)

here Ck( 
 ) is a computable constant depending only on k.

Now we will state the general inequalities and their rates of convergence as follows.

Theorem  For n ∈N and k ∈N∪ {}, we have

√
π

√
n + 

 + MCk( 
 ; n)

<
(n – )!!

(n)!!
<

√
π

√
n + 

 + MCk+( 
 ; n)

(.)

and

�

(
Ek

(



; n
))

≥ k + . (.)

Proof By taking x = n +  in Corollary  of Berndt [], p., we obtain the so-called Lord
Brouncker’s continued fraction formula

q(n) :=
(

�(n + 
 )

�(n + )

)

=


n +  + 

(n+)+ 

(n+)+ 

(n+)+
...

. (.)

After some simplification, we see that if k ≥ , its kth approximant qk(n) = Ak (n)
Bk (n) equals

(
√

n + 
 + MCk–( 

 ; n)

)

.
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As the partial coefficients of the continued fraction q(n) are positive, we deduce inequal-
ities (.) from (.) and (.) at once. Now, we are in a position to prove (.).

By the recurrence relations (.) we get

qk+(n) – qk(n) =
Ak+(n)
Bk+(n)

–
Ak(n)
Bk(n)

=
(–)k

∏k
j=(j – )

Bk(n)Bk+(n)
. (.)

It follows from (.) and (.) that

∣∣qk(n) – q(n)
∣∣ ≤ ∣∣qk+(n) – qk(n)

∣∣ =


∏k
j=(j – )

Bk(n)Bk+(n)
. (.)

Also see equation () in []. The above use of alternating series technique is originated
from Alf van der Poorten’s lectures in []. Hence

∣∣√qk(n) –
√

q(n)
∣∣ <

√
qk(n) +

√
q(n)


∏k

j=(j – )

Bk(n)Bk+(n)
,

i.e.,

∣∣∣∣ W (n)√
qk(n)

– 
∣∣∣∣ <

√
qk(n)(

√
qk(n) + W (n))


∏k

j=(j – )

Bk(n)Bk+(n)
. (.)

We observe that Bk(n) is a polynomial of degree k in n, and W (n),
√

qk(n) ∼ 

√

n . Now the
assertion (.) follows from (.), (.), (.) and limt→

et–
t = . �

Theorem  tells us that Lord Brouncker’s continued fraction formula also provides a
better approximation for W (n). It is a natural question whether there exists a similar con-
tinued fraction approximation formula for �(x+ 

 )
�(x+) or �(x+ 

 )
�(x+) . To the best knowledge of

authors, no one has even obtained such a kind of formulas, for example, see Berndt [],
Chapter . By the multiple-correction method and a large number of measurement data,
we propose the following conjectures.

Open problems (i) There exist two sequences (κj)j≥ and (λj)j≥ of positive numbers such
that

�(x + 
 )

�(x + )
=

∞
K
j=

(
κj

(x + 
 ) + λj

)
, x ≥ , (.)

where

κ = , (κ,κ,κ,κ, . . .) = –



(
,



 ,


 ,


 ,


 , . . .
)

, (.)

(λ,λ,λ,λ,λ, . . .) =




(
,



 · 
,

,
 · 

,
,
 · 

,
 ·  · 

 · 
, . . .

)
. (.)

(ii) We have

�(x + 
 )

�(x + )
=

∞
K
j=

(
νj

x + 


)
, x ≥ , (.)
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where ν = , ν = 
 , and for j ≥ ,

νj =



(j + � j–

 �)

� j–
 � + 

,

i.e. (ν,ν,ν, . . .) =




(



,




,




,




,




,




,




,




,




,




, . . .

)
. (.)

Remark  It seems difficult to prove the above conjectures. However, by the same method
as the proof of Theorem , we can prove many sharp inequalities, e.g., for n ∈ N and  ≤
k ≤ , we have

τ


√

n + 
 + Kk+

j= ( νj
n+ 


)

< T(n) <
τ


√

n + 
 + Kk

j=( νj
n+ 


)
. (.)
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