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Abstract
We prove that the double inequalities Hα (a,b) < X(a,b) < Hβ (a,b) and
Hλ(a,b) < U(a,b) < Hμ(a,b) hold for all a,b > 0 with a �= b if and only if α ≤ 1/2,
β ≥ log3/(1 + log2) = 0.6488 · · · , λ ≤ 2 log3/(2 logπ – log2) = 1.3764 · · · , and μ ≥ 2,
where Hp(a,b), X(a,b), and U(a,b) are, respectively, the pth power-type Heronian
mean, Sándor mean, and Yang mean of a and b.

MSC: 26E60

Keywords: power-type Heronian mean; Sándor mean; Yang mean

1 Introduction
For p ∈R, the pth power-type Heronian mean Hp(a, b) of two positive real numbers a and
b is defined by

Hp(a, b) =
[

ap + (ab)p/ + bp



]/p

(p �= ), H(a, b) =
√

ab. (.)

It is well known that Hp(a, b) is continuous and strictly increasing with respect to p ∈R

for fixed a, b >  with a �= b.
Let G(a, b) =

√
ab, L(a, b) = (a – b)/(log a – log b), P(a, b) = (a – b)/[ arcsin((a – b)/(a +

b))], I(a, b) = (aa/bb)/(a–b)/e, A(a, b) = (a + b)/, T(a, b) = (a – b)/[ arctan((a – b)/(a + b))],
Q(a, b) =

√
(a + b)/ and Mr(a, b) = [(ar + br)/]/r (r �= ), and M(a, b) =

√
ab be, re-

spectively, the geometric, logarithmic, first Seiffert, identric, arithmetic, second Seiffert,
quadratic, and rth power means of two distinct positive real numbers a and b. Then it is
well known that the inequalities

G(a, b) = M(a, b) < L(a, b) < P(a, b) < I(a, b)

< A(a, b) = M(a, b) < T(a, b) < Q(a, b) = M(a, b)

hold for all a, b >  with a �= b.
Let a, b > . Then the Sándor mean X(a, b) [] and Yang mean U(a, b) [] are given by

X(a, b) = A(a, b)e
G(a,b)
P(a,b) – (.)
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and

U(a, b) =
a – b√

 arctan( a–b√
ab

)
(a �= b), U(a, a) = a, (.)

respectively.
The Yang mean U(a, b) is the special case of the Seiffert type mean TM,p(a, b) = (a –

b)/[p arctan((a – b)/(pM(a, b)))] defined by Toader in [], where M(a, b) is a bivariate mean
and p is a positive real number. Indeed, U(a, b) = TG,

√
(a, b). Recently, the power-type

Heronian, Sándor, and Yang means have been the subject of intensive research.
For all a, b >  with a �= b, Yang [] and Sándor [] proved that the double inequality

M/(a, b) < H(a, b) < I(a, b)

holds, and the inequality H(a, b) < M/(a, b) can be found in the literature [].
Jia and Cao [] proved that the inequalities

L(a, b) < Hp(a, b) < Mq(a, b),

A(a, b) = M(a, b) < Hlog / log (a, b) (.)

hold for all a, b >  with a �= b if p ≥ / and q ≥ p/. Inequality (.) can also be found in
the literature [], p. and [].

In [], the authors proved that the double inequality

Hp(a, b) < T(a, b) < Hq(a, b)

holds for all a, b >  with a �= b if and only if p ≤ log /(logπ – log ) and q ≥ /.
Sándor [] presented the inequalities

X(a, b) <
P(a, b)
A(a, b)

,
A(a, b)G(a, b)

P(a, b)
< X(a, b) <

A(a, b)P(a, b)
P(a, b) – G(a, b)

,

X(a, b) >
A(a, b)L(a, b)

P(a, b)
e

G(a,b)
L(a,b) –, X(a, b) >

A(a, b)[P(a, b) + G(a, b)]
P(a, b) – G(a, b)

,

A(a, b)G(a, b)
P(a, b)L(a, b)

e
L(a,b)
A(a,b) – < X(a, b) < A(a, b)

[

e

+
(

 –

e

)
G(a, b)
P(a, b)

]
,

A(a, b) + G(a, b) – P(a, b) < X(a, b) < A–/(a, b)
[

A(a, b) + G(a, b)


]/

,

P/(logπ–log )(a, b)A–/(logπ–log )(a, b) < X(a, b) < P–(a, b)
[

A(a, b) + G(a, b)


]

for all a, b >  with a �= b.
Yang et al. [] proved that the double inequality

Mp(a, b) < X(a, b) < Mq(a, b)

holds for all a, b >  with a �= b if and only if p ≤ / and q ≥ log /( + log ).
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In [], Yang established the inequalities

P(a, b) < U(a, b) < T(a, b),
G(a, b)T(a, b)

A(a, b)
< U(a, b) <

P(a, b)Q(a, b)
A(a, b)

,

Q/(a, b)
[

G(a, b) + Q(a, b)


]/

< U(a, b) < Q/(a, b)
[

G(a, b) + Q(a, b)


]/

,

G(a, b) + Q(a, b)


< U(a, b) <
[




(
G(a, b) + Q(a, b)



)/

+



Q/(a, b)
]

for all a, b >  with a �= b.
In [, ], the authors proved that the double inequalities

[



(
G(a, b) + Q(a, b)



)p

+



Qp(a, b)
]/p

< U(a, b) <
[




(
G(a, b) + Q(a, b)



)q

+



Qq(a, b)
]/q

,

–λ(G(a, b) + Q(a, b))λQ(a, b) + G(a, b)Qλ(a, b)
–λ(G(a, b) + Q(a, b))λ + Qλ(a, b)

< U(a, b) <
–μ(G(a, b) + Q(a, b))μQ(a, b) + G(a, b)Qμ(a, b)

–μ(G(a, b) + Q(a, b))μ + Qμ(a, b)
,

Mα(a, b) < U(a, b) < Mβ (a, b)

hold for all a, b >  with a �= b if and only if p ≤ p, q ≥ /, λ ≥ /, μ ≤ p, α ≤
 log /( logπ – log ), and β ≥ /, where p = . · · · is the unique solution of the
equation p log(/π ) – log( + –p) + log  =  on the interval (/,∞), and p = log(π –
)/ log  = . · · · .

The main purpose of this paper is to present the best possible parameter α, β , λ, and
μ such that the double inequalities Hα(a, b) < X(a, b) < Hβ (a, b) and Hλ(a, b) < U(a, b) <
Hμ(a, b) hold for all a, b >  with a �= b.

2 Lemmas
In order to prove our main results we need two lemmas, which we present in this section.

Lemma . Let p ∈ (, ) and

f (x) = (p – )xp+ + (p – )xp+ + (p – )xp+ + xp + xp – xp

+ xp– + ( – p)xp– + ( – p)xp– + ( – p)xp– – x – . (.)

Then the following statements are true:
() if p = /, then f (x) <  for all x > ;
() if p = log /( + log ) = . · · · , then there exists λ ∈ (,∞) such that f (x) >  for

x ∈ (,λ) and f (x) <  for x ∈ (λ,∞).

Proof For part (), if p = /, then (.) becomes

f (x) = –
(x – )(

√
x – )

x/

(
x + x/ + x + x/ + x + 

√
x + 

)
. (.)
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Therefore, part () follows from (.).
For part (), let p = log /( + log ), f(x) = f ′(x)/x, f(x) = x–pf ′

 (x), f(x) = f ′
(x)/(px),

and f(x) = f ′
(x)/(x). Then elaborated computations lead to

f () = , lim
x→+∞ f (x) = –∞, (.)

f(x) = (p – )(p + )xp + (p + )(p – )xp + (p – )(p + )xp

+ pxp– + pxp– – pxp– + (p – )xp– + ( – p)(p – )xp–

+ (p – )( – p)xp– + ( – p)(p – )xp– – ,

f() = (p – ) > , lim
x→+∞ f(x) = –∞, (.)

f(x) = p(p – )(p + )xp+ + p(p + )(p – )xp+ + p(p – )xp+

+ p(p – )xp+ + (p – )(p – )xp + ( – p)(p – )(p – )xp

+ ( – p)(p – )(p – )xp + p(p – )(p + )x

– p(p – )x + ( – p)(p – )(p – ),

f() = (p – ) > , lim
x→+∞ f(x) = –∞, (.)

f(x) = (p – )(p + )(p + )xp+ + (p + )(p + )(p – )xp+

+ (p – )(p + )xp + (p + )(p – )xp + (p – )(p – )xp–

+ ( – p)(p – )(p – )xp– + (p – )(p – )( – p)xp–

+ (p – )(p + )x – (p – ),

f() = 
(
p – p – 

)
> , lim

x→+∞ f(x) = –∞, (.)

f(x) = (p – )(p + )(p + )(p + )xp + (p + )(p + )(p + )(p – )xp

+ p(p – )(p + )xp– + p(p + )(p – )xp–

+ (p – )(p – )(p – )xp–

+ (p – )( – p)(p – )(p – )xp– + (p – )(p – )( – p)xp–

+ (p – )(p + ). (.)

It follows from (.) and p = log /( + log ) = . · · · together with p + p –
p –  = –. · · · <  that

f(x) < (p – )(p + )(p + )(p + ) + (p + )(p + )(p + )(p – )

+ p(p – )(p + ) + p(p + )(p – )xp– + (p – )(p – )(p – )

+ (p – )( – p)(p – )(p – )xp– + (p – )(p – )( – p)xp–

+ (p – )(p + )

= p(p + )(p – )xp– + (p – )( – p)(p – )(p – )xp–

+ (p – )(p – )( – p)xp– +
(
p + p – p – 

)
<  (.)

for x ∈ (,∞).
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Inequality (.) implies that f(x) is strictly decreasing on [,∞). Then (.) leads to the
conclusion that there exists λ ∈ (,∞) such that f(x) is strictly increasing on [,λ] and
strictly decreasing on [λ,∞).

It follows from the piecewise monotonicity of f and (.) that there exists λ ∈ (λ,∞)
such that f(x) is strictly increasing on [,λ] and strictly decreasing on [λ,∞).

From (.) and the piecewise monotonicity of f we clearly see that there exists λ ∈
(λ,∞) such that f (x) is strictly increasing on [,λ] and strictly decreasing on [λ,∞).

Therefore, part () follows from (.) and the piecewise monotonicity of f . �

Lemma . Let p ∈ (, ] and

g(x) = xp+ – xp+ + xp + xp– + (p – )xp+ – xp+ – xp+

+ xp + ( – p)xp– + (p – )xp+ – xp+ + xp + ( – p)xp–

+ (p – )xp+ – xp+ + xp+ + xp + ( – p)xp– – 
(
x + x – x + 

)
. (.)

Then the following statements are true:
() if p = , then g(x) >  for all x > ;
() if p =  log /( logπ – log ) = . · · · , then there exists μ ∈ (,∞) such that

g(x) <  for x ∈ (,μ) and g(x) >  for x ∈ (μ,∞).

Proof For part (), if p = , then (.) becomes

g(x) = 
(
x – 

). (.)

Therefore, part () follows from (.).
For part (), let p =  log /( logπ – log ), g(x) = g ′(x)/x, g(x) = g ′

(x)/x, g(x) = g ′
(x)/x,

and g(x) = x–pg ′
(x). Then elaborated computations lead to

g() = , lim
x→∞ g(x) = +∞, (.)

g(x) = (p + )xp+ – (p + )xp + pxp– + (p – )xp– + (p – )(p + )xp+

– (p + )xp+ – (p + )xp + pxp– + ( – p)(p – )xp–

+ (p – )(p + )xp+

– (p + )xp+ + pxp– – ( – p)xp– + (p – )(p + )xp+

– (p + )xp+ + (p + )xp + pxp– + ( – p)(p – )xp– – x – x + ,

g() = –( – p) < , lim
x→∞ g(x) = +∞, (.)

g(x) = (p + )(p + )xp – p(p + )xp– + p(p – )xp–

+ (p – )(p – )xp–

+ (p – )(p + )(p + )xp+ – (p + )(p + )xp – p(p + )xp–

+ p(p – )xp– + ( – p)(p – )(p – )xp–

+ (p – )(p + )(p + )xp+ – (p + )(p + )xp + p(p – )xp–
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– ( – p)(p – )xp– + (p – )(p + )(p + )xp+ – (p + )(p + )xp

+ p(p + )xp– + p(p – )xp– + ( – p)(p – )(p – )xp– – x – ,

g() = –
(
 + p – p) < , lim

x→∞ g(x) = +∞, (.)

g(x) = p(p + )(p + )xp– – p
(
p – 

)
xp– + p(p – )(p – )xp–

+ (p – )(p – )(p – )xp– + (p – )(p + )(p + )(p + )xp

– p(p + )(p + )xp– – p
(
p – 

)
xp– + p(p – )(p – )xp–

+ ( – p)(p – )(p – )(p – )xp–

+ 
(
p – 

)
(p + )(p + )xp – p(p + )(p + )xp– + p(p – )(p – )xp–

– ( – p)(p – )(p – )xp– + (p – )(p + )(p + )(p + )xp

– p(p + )(p + )xp– + p
(
p – 

)
xp– + p(p – )(p – )xp–

+ ( – p)(p – )(p – )(p – )xp– – ,

g() = 
(
p – p + p – 

)
< , lim

x→∞ g(x) = +∞, (.)

g(x) = p(p + )
(
p – 

)
xp+ – p

(
p – 

)
(p – )xp+

+ p(p – )(p – )(p – )xp+ + (p – )(p – )(p – )(p – )xp

+ p(p – )(p + )(p + )(p + )xp+ – p
(
p – 

)
(p + )xp+

– p
(
p – 

)
(p – )xp+ + p(p – )(p – )(p – )xp+

+ ( – p)(p – )(p – )(p – )(p – )xp + p
(
p – 

)
(p + )(p + )xp+

– p
(
p – 

)
(p + )xp+ + p(p – )(p – )(p – )xp+

– ( – p)(p – )(p – )(p – )xp

+ p(p – )(p + )(p + )(p + )x – p
(
p – 

)
(p + )x + p

(
p – 

)
(p – )x

+ p(p – )(p – )(p – )x + ( – p)(p – )(p – )(p – )(p – )

=: axp+ + axp+ + axp+ + axp + axp+ + axp+ + axp+ + axp+

+ axp + axp+ + axp+ + axp+ + axp + ax + ax

+ ax + ax + a, (.)

∑
n=

an = p
(
p + p – p + p – 

)
> , (.)

a + a = p
(
p – p + p – 

)
> , (.)

∑
n=

an = –p + p – p + p – p +  > , (.)

a + a = 
(
–p + p – p + p – p + 

)
> . (.)
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Note that

p +  > p +  > p +  > p +  > p +  >  > p +  > p + 

> p +  >  > p +  > p >  > p +  > p >  > p > . (.)

It follows from (.)-(.) that

g(x) >

( ∑
n=

an

)
xp+ + (a + a)xp+ +

( ∑
n=

an

)
xp + (a + a)xp >  (.)

for x ∈ (,∞).
Therefore, part () follows easily from (.)-(.) and (.). �

3 Main results
Theorem . The double inequality

Hα(a, b) < X(a, b) < Hβ (a, b)

holds for all a, b >  with a �= b if and only if α ≤ / and β ≥ log /( + log ) = . · · · .

Proof Since X(a, b) and Hp(a, b) are symmetric and homogeneous of degree one, we as-
sume that a > b. Let x =

√
a/b ∈ (,∞) and p ∈R. Then (.) and (.) lead to

log
[
X(a, b)

]
– log

[
Hp(a, b)

]

= log

(
x + 



)
+

x
x – 

arcsin

(
x – 
x + 

)
–


p

log

(
xp + xp + 



)
–  := F(x). (.)

Simple computations lead to

F() = , (.)

lim
x→+∞ F(x) =


p

log  – log  – , (.)

F ′(x) =
( + x)
(x – ) F(x), (.)

where

F(x) =
(x – )(xp + xp+ + xp + x)

x( + x)(xp + xp + )
– arcsin

(
 – x

 + x

)
,

F() = , lim
x→+∞ F(x) = +∞, (.)

F ′
(x) = –

x – 
(x + )(xp + xp + ) f (x), (.)

where f (x) is defined as in Lemma ..
If p = /, then from Lemma .(), (.), (.), and (.)-(.) we clearly see that

X(a, b) > H/(a, b)

for all a, b >  with a �= b.
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If p = log /( + log ), then (.) becomes

lim
x→+∞ F(x) = . (.)

It follows from Lemma .() and (.) that there exists λ ∈ (,∞) such that F(x) is
strictly decreasing on [,λ] and strictly increasing on [λ,∞).

Equations (.) and (.) together with the piecewise monotonicity of F lead to the
conclusion that there exists λ∗ ∈ (,∞) such that F(x) is strictly decreasing on [,λ∗] and
strictly increasing on [λ∗,∞).

Therefore,

X(a, b) < Hlog /(+log )(a, b)

for all a, b >  with a �= b follows from (.), (.), (.), and the piecewise monotonicity
of F .

Next, we prove that α = / and β = log /(+ log ) are the best possible parameters such
that the double inequality Hα(a, b) < X(a, b) < Hβ (a, b) holds for all a, b >  with a �= b.

If p < log /( + log ), then (.) leads to

lim
x→+∞ F(x) > . (.)

Equation (.) and inequality (.) imply that there exists large enough T = T(p) > 
such that X(a, b) > Hp(a, b) for all a, b >  with a/b ∈ (T,∞) if p < log /( + log ).

Let p > /, x > , and x → . Then elaborated computations lead to

Hp(,  + x) – X(,  + x)

=
[

 + ( + x)p/ + ( + x)p



]/p

–
(

 +
x


)
e


√

+x arcsin( x
+x )

x –

=
p – 


x + o

(
x). (.)

Equation (.) implies that there exists small enough δ = δ(p) >  such that X(,  + x) <
Hp(,  + x) for x ∈ (, δ) if p > /. �

Theorem . The double inequality

Hλ(a, b) < U(a, b) < Hμ(a, b)

holds for all a, b >  with a �= b if and only if λ ≤  log /( logπ – log ) = . · · · and
μ ≥ .

Proof Since U(a, b) and Hp(a, b) are symmetric and homogeneous of degree one, we as-
sume that a > b. Let x =

√
a/b ∈ (,∞) and p ∈R. Then (.) and (.) lead to

log
[
U(a, b)

]
– log

[
Hp(a, b)

]

= log

[
x – √

 arctan( x–√
x )

]
–


p

log

(
xp + xp + 



)
:= G(x). (.)



Zhou et al. Journal of Inequalities and Applications  (2015) 2015:159 Page 9 of 10

Simple computations lead to

G() = , (.)

lim
x→+∞ G(x) =


p

log  +



log  – logπ , (.)

G′(x) =
xp + xp+ + xp + x

x(x – )(xp + xp + ) arctan( x–√
x )

G(x), (.)

where

G(x) = arctan

(
x – √

x

)
–

√
x(x – )(xp + xp + )

(x + )(xp + xp+ + xp + x)
,

G() = , lim
x→+∞ G(x) = –∞, (.)

G′
(x) = –

√
x(x – )

(x + )(xp + xp+ + xp + x) g(x), (.)

where g(x) is defined as in Lemma ..
If p =  log /( logπ – log ), then (.) and Lemma .() lead to the conclusion that

there exists μ ∈ (,∞) such that G(x) is strictly increasing on [,μ] and strictly decreasing
on [μ,∞).

It follows from (.) and (.) together with the piecewise monotonicity of G that
there exists μ∗ ∈ (,∞) such that G(x) is strictly increasing on [,μ∗] and strictly decreas-
ing on [μ∗,∞).

Note that (.) becomes

lim
x→+∞ G(x) = . (.)

Therefore,

U(a, b) > H log /( logπ–log )(a, b)

for all a, b >  with a �= b follows from (.), (.), and (.) together with the piecewise
monotonicity of G.

If p = , then

U(a, b) < H(a, b)

for all a, b >  with a �= b follows easily from (.), (.), and (.)-(.) together with
Lemma .().

Next, we prove that λ =  log /( logπ – log ) and μ =  are the best possible parameters
such that the double inequality

Hλ(a, b) < U(a, b) < Hμ(a, b)

holds for all a, b >  with a �= b.
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If p >  log /( logπ – log ), then (.) leads to

lim
x→+∞ G(x) < . (.)

Equation (.) and inequality (.) imply that there exists large enough T = T(p) > 
such that U(a, b) < Hp(a, b) for all a, b >  with a/b ∈ (T,∞).

Let p < , x > , and x → . Then elaborated computations lead to

U(,  + x) – Hp(,  + x)

=
x√

 arctan( x√
(+x) )

–
[

 + ( + x)p/ + ( + x)p



]/p

=
 – p


x + o

(
x). (.)

Inequality (.) implies that there exists small enough δ = δ(p) >  such that U(,  +
x) > Hp(,  + x) for x ∈ (, δ). �
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