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Abstract
In this paper we give a monotonic refinement of the probabilistic version of
Levinson’s inequality based on the monotonic refinement of Jensen’s inequality
obtained by Cho et al. (Panam. Math. J. 12:43-50, 2002).
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1 Introduction
Levinson’s inequality and its converse are summarized in the following result taken from
Bullen [].

Theorem . (a) If f : [a, b] → R is -convex and pi, xi, yi, i = , , . . . , n, are such that pi > ,
∑n

i= pi = , a ≤ xi, yi ≤ b,

max(x, . . . , xn) ≤ min(y, . . . , yn) ()

and

x + y = x + y = · · · = xn + yn = c ()

for some c ∈ [a, b], then

n∑

i=

pif (xi) – f (x) ≤
n∑

i=

pif (yi) – f (y), ()

where x =
∑n

i= pixi and y =
∑n

i= piyi denote the weighted arithmetic means.
(b) If for a continuous function f inequality () holds for all n, all c ∈ [a, b], all n distinct

points xi, yi ∈ [a, b] satisfying () and () and all weights pi >  such that
∑n

i= pi = , then f
is -convex.

Levinson [] originally proved the inequality for functions f : (, c) → R such that
f ′′′ ≥ . Popoviciu [] showed that the assumption of nonnegativity of the third deriva-
tive can be weakened to -convexity of f . Bullen [] gave another proof of the inequality
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(rescaled to a general interval [a, b]) as well as its converse given in part (b) of Theorem ..
Pečarić and Raşa [] extended the inequality by using the method of index set functions;
in the process they weakened assumption () and obtained a monotonic refinement of the
inequality.

The above version of the inequality assumes that the sequences xi’s and yi ’s are sym-
metrically distributed around the point c. Mercer [] made a significant improvement by
replacing this condition of symmetric distribution with the weaker one that the variances
of the two sequences are equal.

Theorem . If f : [a, b] → R satisfies f ′′′ ≥  and pi, xi, yi, i = , , . . . , n, are such that
pi > ,

∑n
i= pi = , a ≤ xi, yi ≤ b, () holds and

n∑

i=

pi(xi – x) =
n∑

i=

pi(yi – y),

then () holds.

Witkowski [] extended Mercer’s result to -convex functions and a more general prob-
abilistic setting. Baloch et al. [] showed that inequality () holds for a larger class of func-
tions they introduced and called -convex functions at a point.

Definition . Let I be an interval in R and c ∈ I . A function f : I → R is said to be -
convex at point c if there exists a constant A such that the function F(s) = f (s) – A

 s is
concave on I ∩ (–∞, c] and convex on I ∩ [c,∞).

Baloch et al. [] also proved the converse of the inequality, i.e., -convex functions at
a point are the largest class of functions for which Levinson’s inequality holds under the
equal variances assumption. Probabilistic version of Levinson’s inequality and its converse
are summarized in the following result taken from Pečarić et al. [].

Theorem . (a) Let f : [a, b] → R be -convex at point c and X : � → [a, c] and Y : � →
[c, b] be two random variables such that Var(X) = Var(Y ). Then

E
(
f (X)

)
– f

(
E(X)

) ≤ E
(
f (Y )

)
– f

(
E(Y )

)
. ()

(b) Let f : [a, b] →R be continuous and c ∈ (a, b) fixed. Suppose that inequality () holds
for all discrete random variables X and Y taking two values x, x ∈ [a, c] and y, y ∈ [c, b],
respectively, each with probability 

 and such that Var(X) = Var(Y ) (i.e. |x – x| = |y – y|).
Then f is -convex at c.

Remark . Results in [] were stated for f defined on an arbitrary interval I . In that case,
the finiteness of Var(X) = Var(Y ), E[f (X)] and E[f (Y )] needs to be assumed. For simplicity,
in this paper we will work with the closed interval [a, b] since in this case the function f
and all random variables are bounded and the aforementioned finiteness assumptions are
satisfied.

If X and Y are discrete random variables taking values xi and yi, respectively, with prob-
abilities pi, then Theorem .(a) gives Theorem .. In [] it was proven that a function
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defined on an interval is -convex if and only if it is -convex at every point of the inter-
val. Therefore, the converse stated in Theorem .(b) strengthens the converse stated in
Theorem .(b).

Theorem . shows that -convex functions at a point are characterized by Levinson’s
inequality in a similar way that convex functions are characterized by Jensen’s inequality.
Cho et al. [] constructed two mappings connected to Jensen’s inequality and proved their
monotonicity and convexity properties. Throughout the rest of the paper � denotes a
measurable space with a finite measure μ, and we assume all mappings to be measurable.
Further, E[·] and Var(·) denote the expectation and variance operators with respect to the
probability measure 

μ(�)μ, i.e., for z : � →R,

E[z] =


μ(�)

∫

�

z(s) dμ(s),

Var[z] =


μ(�)

∫

�

(
z(s) – E[z]

) dμ(s) = E
[
z] – E

[z].

The following is a result from [].

Theorem . Let f : [a, b] → R be convex, x : � → [a, b] and H , V : [, ] → R the map-
pings

H(t) =


μ(�)

∫

�

f
(
tx(s) + ( – t)E[x]

)
dμ(s)

and

V (t) =


μ(�)

∫

�

∫

�

f
(
tx(s) + ( – t)x(u)

)
dμ(s) dμ(u).

Then:
(a) the mappings H and V are convex on [, ],
(b) the mapping H is nondecreasing on [, ], while the mapping V is nonincreasing on

[, 
 ] and nondecreasing on [ 

 , ],
(c) the following equalities hold:

inf
t∈[,]

H(t) = H() = f
(
E[x]

)
,

sup
t∈[,]

H(t) = H() = E
[
f (x)

]
,

inf
t∈[,]

V (t) = V
(




)

=


μ(�)

∫

�

∫

�

f
(

x(s) + x(u)


)

dμ(s) dμ(u),

sup
t∈[,]

V (t) = V () = V () = E
[
f (x)

]
,

(d) the following inequality holds for all t ∈ [, ]:

V (t) ≥ max
{

H(t), H( – t)
}

.
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Remark . Theorem . was proven in [] for the case when � is an interval in R and μ

is a measure with density, i.e., dμ(s) = p(s) ds. But, from the proofs given there, it is obvious
that the statements hold under the more general setting given here.

If we denote x(t)(s) = tx(s) + ( – t)E[x], then H(t) = E[f (x(t))]. As t ranges from  to , the
function (i.e., random variable) x(t) ranges from the constant E[x] to the function x itself.
In the process the expectation E[f (x(t))] increases by the monotonicity property from The-
orem .(b). Therefore, for  ≤ s ≤ t ≤ , the following monotonic refinement of Jensen’s
inequality holds:

f
(
E[x]

)
= H() ≤ E

[
f (x(s))

] ≤ E
[
f (x(t))

] ≤ H() = E
[
f (x)

]
.

Furthermore, if x′ and x′′ are two independent identically distributed ‘copies’ of x on the
product space �×�, then V (t) = E[f (x̃(t))], where x̃(t) = tx′ + ( – t)x′′, and Theorem .(d)
can be interpreted as E[f (x(t))] ≤ E[f (x̃(t))].

In this paper we will construct the corresponding two mappings in connection with
Levinson’s inequality and show their monotonicity and convexity properties.

2 Main results
The following is our main result.

Theorem . Let f : [a, b] → R be -convex at point c, x : � → [a, c] and y : � → [c, b]
such that Var(x) = Var(y) and H , V : [, ] → R the mappings

H(t) =


μ(�)

∫

�

[
f
(
ty(s) + ( – t)E[y]

)
– f

(
tx(s) + ( – t)E[x]

)]
dμ(s)

and

V (t) =


μ(�)

∫

�

∫

�

[
f
(
ty(s) + ( – t)y(u)

)
– f

(
tx(s) + ( – t)x(u)

)]
dμ(s) dμ(u).

Then:
(a) the mappings H and V are convex on [, ],
(b) the mapping H is nondecreasing on [, ], while the mapping V is nonincreasing on

[, 
 ] and nondecreasing on [ 

 , ],
(c) the following equalities hold:

inf
t∈[,]

H(t) = H() = f
(
E[y]

)
– f

(
E[x]

)
,

sup
t∈[,]

H(t) = H() = E
[
f (y)

]
– E

[
f (x)

]
,

inf
t∈[,]

V (t) = V
(




)

=


μ(�)

∫

�

∫

�

[

f
(

y(s) + y(u)


)

– f
(

x(s) + x(u)


)]

dμ(s) dμ(u),

sup
t∈[,]

V (t) = V () = V () = E
[
f (y)

]
– E

[
f (x)

]
,



Jakšetić et al. Journal of Inequalities and Applications  (2015) 2015:162 Page 5 of 7

(d) the following inequality holds for all t ∈ [, ]:

V (t) ≥ max
{

H(t), H( – t)
}

.

Proof Let the constant A be as in Definition ., i.e., such that the function F(s) = f (s) – A
 s

is concave on [a, c] and convex on [c, b].
Since the function y takes values in [c, b], so does the function y(t) = ty + ( – t)E[y] for

every t ∈ [, ]. Furthermore, since the function F is convex on [c, b], by Theorem . the
mapping

H(t) =


μ(�)

∫

�

F
(
ty(s) + ( – t)E[y]

)
dμ(s)

is convex and nondecreasing on [, ]. We have

H(t) =


μ(�)

∫

�

f
(
ty(s) + ( – t)E[y]

)
dμ(s)

–
A

μ(�)

∫

�

(
ty(s) + ( – t)E[y]

) dμ(s)

= E
[
f (y(t))

]
–

A


t
E

[
y] – At( – t)E[y]E[y] –

A


( – t)
E

[y]

= E
[
f (y(t))

]
–

A


t(
E

[
y] – E

[y]
)

–
A

E

[y]

= E
[
f (y(t))

]
–

A


t Var(y) –
A

E

[y].

Similarly, the function x(t) = tx + ( – t)E[x] takes values in [a, c] for every t ∈ [, ] and –F
is convex on [a, c], so by Theorem . the mapping

H(t) = –


μ(�)

∫

�

F
(
tx(s) + ( – t)E[x]

)
dμ(s)

is convex and nondecreasing on [, ], and we have

H(t) = –


μ(�)

∫

�

f
(
tx(s) + ( – t)E[x]

)
dμ(s)

+
A

μ(�)

∫

�

(
tx(s) + ( – t)E[x]

) dμ(s)

= –E
[
f (x(t))

]
+

A


t Var(x) +
A

E

[x].

Let us also denote the (constant) mapping H(t) = A
 (E[y] – E

[x]). All three of the map-
pings Hi, i = , , , are convex and nondecreasing and, therefore, so is their sum. Since
Var(x) = Var(y), we have H = H + H + H, and this proves the convexity and monotonicity
properties of H from parts (a) and (b), while the first two equalities in (c) follow by simple
calculation.

As for the mapping V , first of all, it is easy to see that V (t) = V ( – t) for all t ∈ [, ], that
is, V is symmetric with respect to t = 

 . Next, since y takes values in [c, b] and F is convex
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on that interval, by Theorem . the mapping

V(t) =


μ(�)

∫

�

∫

�

F
(
ty(s) + ( – t)y(u)

)
dμ(s) dμ(u)

is convex on [, ] and nondecreasing on [ 
 , ]. We have

V(t) =


μ(�)

∫

�

∫

�

f
(
ty(s) + ( – t)y(u)

)
dμ(s) dμ(u)

–
A

μ(�)

∫

�

∫

�

(
ty(s) + ( – t)y(u)

) dμ(s) dμ(u) dμ(u)

=


μ(�)

∫

�

∫

�

f
(
ty(s) + ( – t)y(u)

)
dμ(s) dμ(u)

–
A


t
E

[
y] – At( – t)E[y]E[y] –

A


( – t)
E

[
y]

=


μ(�)

∫

�

∫

�

f
(
ty(s) + ( – t)y(u)

)
dμ(s) dμ(u)

+ At( – t)
(
E

[
y] – E

[y]
)

–
A

E

[
y]

=


μ(�)

∫

�

∫

�

f
(
ty(s) + ( – t)y(u)

)
dμ(s) dμ(u)

+ At( – t) Var(y) –
A

E

[
y].

Similarly, since x takes values in [a, c] and –F is convex on that interval, by Theorem .
the mapping

V(t) = –


μ(�)

∫

�

∫

�

F
(
tx(s) + ( – t)x(u)

)
dμ(s) dμ(u)

is convex on [, ] and nondecreasing on [ 
 , ] and we have

V(t) = –


μ(�)

∫

�

∫

�

f
(
tx(s) + ( – t)x(u)

)
dμ(s) dμ(u)

– At( – t) Var(x) +
A

E

[
x].

Let us also denote the (constant) mapping V(t) = A
 (E[y] – E[x]). All three of the map-

pings Vi, i = , , , are convex and nondecreasing on [ 
 , ] and, therefore, so is their sum.

Since Var(x) = Var(y), we have V = V +V +V. Furthermore, since V is symmetric around
t = 

 , it follows that it is nonincreasing on [, 
 ], its minimum is attained at t = 

 and its
maximum is attained at t =  and t = . This proves the convexity and monotonicity prop-
erties of V .

Finally, as for part (d), since V is symmetric around t = 
 and H is nondecreasing, it is

enough to prove that V (t) ≥ H(t) for t ∈ [ 
 , ]. This inequality holds since V(t) ≥ H(t)

and V(t) ≥ H(t) by Theorem .(d) and V(t) = H(t) since Var(x) = Var(y) and this fin-
ishes the proof. �
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A monotonic refinement of Levinson’s inequality () based on Theorem . is the fol-
lowing: if x(t) and y(t) for t ∈ [, ] are as in the proof of Theorem ., then H(t) = E[f (y(t))]–
E[f (x(t))] and for  ≤ s ≤ t ≤  it holds

f
(
E[y]

)
– f

(
E[x]

)
= H() ≤ E

[
f (y(s))

]
– E

[
f (x(s))

]

≤ E
[
f (y(t))

]
– E

[
f (x(t))

] ≤ H() = E
[
f (y)

]
– E

[
f (x)

]
.

Remark . The convexity and monotonicity property of the mapping H in the case when
x and y are two discrete random variables taking values xi and yi, respectively, with prob-
abilities pi, i = , . . . , n, was proven in [].

Remark . The assumption of equal variances in Theorem . can be weakened. If we
denote B = A(Var(y) – Var(x)), then the assumption Var(x) = Var(y) can be relaxed to B ≥ .
Indeed, what we have shown in the proof of Theorem . is that

H =
∑

i=

Hi and V =
∑

i=

Vi,

where H(t) = 
 Bt and V(t) = Bt(t – ). For B ≥  the mapping H is convex and nonde-

creasing, while the mapping V is convex, symmetric around t = 
 and nondecreasing on

[ 
 , ]. Therefore, the convexity and monotonicity properties of H and V are preserved.
Furthermore, V(t) – H(t) = 

 B, so from V(t) ≥ H(t), V(t) ≥ H(t) and V(t) + V(t) –
H(t) – H(t) = 

 B( – t) ≥  it follows that V (t) ≥ H(t), i.e., part (d) also holds.
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