
Yang et al. Journal of Inequalities and Applications  (2015) 2015:157 
DOI 10.1186/s13660-015-0674-8

R E S E A R C H Open Access

Necessary and sufficient conditions for
functions involving the psi function to be
completely monotonic
Zhen-Hang Yang, Yu-Ming Chu* and Xiao-Hui Zhang

*Correspondence:
chuyuming2005@126.com
School of Mathematics and
Computation Science, Hunan City
University, Yiyang, 413000, China

Abstract
We present the necessary and sufficient conditions such that the functions involving
R(x) =ψ (x + 1/2) – ln x with a parameter are completely monotonic on (0,∞), find
three new sequences which are fast convergence toward the Euler-Mascheroni
constant, and give a positive answer to the conjecture proposed by Chen (J. Math.
Inequal. 3(1):79-91, 2009), where ψ is the digamma function.
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1 Introduction
A real-valued function f is said to be completely monotonic on the interval I if f has deriva-
tives of all orders on I and satisfies

(–)nf (n)(x) ≥  (.)

for all x ∈ I and n = , , , . . . . f is said to be strictly completely monotonic on I if inequality
(.) is strict.

It is well known that f is completely monotonic on (,∞) if and only if

f (x) =
∫ ∞


e–xt dμ(t),

where μ is a nonnegative measure on [,∞) such that the integral is convergent for all
x >  (see [], p.).

Let x > , then the classical Euler gamma function � and psi (digamma) function ψ are,
respectively, defined by

�(x) =
∫ ∞


tx–e–t dt, ψ(x) =

�′(x)
�(x)

. (.)

The derivatives ψ ′,ψ ′′,ψ ′′′, . . . are known as polygamma functions. Recently, the gamma
and polygamma functions have attracted the attention of many researchers since they play
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important roles in many branches, such as mathematical physics, probability, statistics,
and engineering.

Let Hn =
∑n

k=

k be the harmonic number and Dn = Hn – ln n. Then the well-known

Euler-Mascheroni constant γ = . . . . can be expressed as γ = Hn – ψ(n + ) or
γ = limn→∞ Dn, and the double inequality


(n + )

< Dn – γ <


n

holds for all n ∈ N (see [, ]). Therefore, the convergence rate of Dn is very slowly. Re-
cently, many results involving the quicker convergence toward the Euler-Mascheroni con-
stant can be found in the literature [–].

In , DeTemple [] introduced the DeTemple sequence

Rn =
n∑

k=


k

– ln

(
n +




)
(.)

and found that it satisfies the double inequalities


(n + ) < Rn – γ <


n (.)

and





(n + ) < Rn – γ –


n <





n (.)

for all n ∈N.
Villarino ([], Theorem .) proved that the double inequality


(n + /) + /

< Rn – γ <


(n + /) + /( – ln  + ln  – γ ) – 
(.)

holds for all n ∈ N with the best possible constants / and /( – ln  + ln  – γ ) –  =
. . . . .

In [], Chen proved that the double inequality




(n + λ)– < Rn – γ <




(
n +




)–

(.)

holds for all n ∈N with the best possible constants

λ =



√

( – γ – ln  + ln )
–  = . . . .

and /.
Mortici ([], Theorem .) presented the bounds for Rn – γ as follows:




(
n +




+


n

)–

< Rn – γ <




(
n +




)–

. (.)
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In [–], the authors established the inequality

γ + ln

(
n +




)
<

n∑
k=


k

≤ γ + ln
(
n + e–γ – 

)
,

which is equivalent to

 < Rn – γ ≤ ln
n + e–γ – 

n + /
.

Karatsuba [] proved that the sequence

H(n) = (Rn – γ )n =
(

ψ(n + ) – ln

(
n +




))
n (.)

is strictly increasing with respect to all n ∈N.
In [], the authors pointed out that ( + /n)H(n) is a strictly decreasing and convex

sequence by use of computer experiments. Chen ([], Theorem ) proved that both H(n)
and ((n+/)/n)H(n) are strictly increasing and concave sequences, while ((n+)/n)H(n)
is a strictly decreasing and convex sequence, and conjectured that:

(i) The two functions H(x) = [ψ(x + ) – ln(x + /)]x and [(x + /)/x]H(x) are
so-called Bernstein functions on (,∞). That is,

H(x) > , (–)n[H(x)
](n+) > ,

(
(x + /)/x

)H(x) > , (–)n[((x + /)/x
)H(x)

](n+) > 

for x >  and n ∈N.
(ii) The function ((x + )/x)H(x) is strictly completely monotonic on (,∞).
It is not difficult to verify that

–H ′′(+)
=  ln  – γ = –. . . . < ,

–H ′′(/) = γ +  ln  +



∞∑
n=


n – π +




= . . . . > .

Therefore, the function H(x) is not a Bernstein function on (,∞).
The main purpose of this paper is to give a positive answer to the conjecture (ii) and

present several necessary and sufficient conditions such that the functions involving

R(x) = ψ(x + /) – ln x (.)

with a parameter are strictly completely monotone on (,∞).

2 Lemmas
In order to prove our results we need several lemmas, which we present in this section.

Lemma  Let R(x) be defined by (.) and Q(t) be defined on (,∞) by

Q(t) =

t

–


 sinh t


. (.)
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Then the following identities are valid:

R(x) =
∫ ∞


e–xtQ(t) dt, (.)

xR(x) =
∫ ∞


e–xtQ′(t) dt, (.)

xR(x) =



+

∫ ∞


e–xtQ′′(t) dt, (.)

xR(x) =



x +

∫ ∞


e–xtQ′′′(t) dt, (.)

xR(x) =



x –




+
∫ ∞


e–xtQ()(t) dt. (.)

Proof Making use of the integral representations [], p.

ψ(x) =
∫ ∞



(
e–t

t
–

e–xt

 – e–t

)
dt and ln x =

∫ ∞



e–t – e–xt

t
dt,

we get

R(x) = ψ

(
x +




)
– ln x =

∫ ∞



(
e–xt

t
–

e–(x+/)t

 – e–t

)
dt

=
∫ ∞


e–xt

(

t

–


 sinh t


)
dt =

∫ ∞


e–xtQ(t) dt.

Integration by parts leads to

xR(x) = x
∫ ∞


e–xtQ(t) dt = –

∫ ∞


Q(t) de–xt

= –e–xtQ(t)|∞ +
∫ ∞


e–xtQ′(t) dt =

∫ ∞


e–xtQ′(t) dt,

where the last equality holds due to limt→∞(e–xtQ(t)) = limt→(e–xtQ(t)) = .
Integration by parts again together with

lim
t→∞

(
e–xtQ′(t)

)
=  and lim

t→

(
e–xtQ′(t)

)
= –




leads to

xR(x) = x
∫ ∞


e–xtQ′(t) dt = –e–xtQ′(t)|∞ +

∫ ∞


e–xtQ′′(t) dt

=



+

∫ ∞


e–xtQ′′(t) dt.

Similarly, we have

xR(x) =



x + x

∫ ∞


e–xtQ′′(t) dt =




x – e–xtQ′′(t)|∞ +
∫ ∞


e–xtQ′′′(t) dt

=



x +

∫ ∞


e–xtQ′′′(t) dt
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due to limt→∞(e–xtQ′′(t)) = limt→(e–xtQ′′(t)) = , and

xR(x) =



x + x

∫ ∞


e–xtQ′′′(t) dt =




x – e–xtQ′′′(t)|∞ +
∫ ∞


e–xtQ()(t) dt

=



x –




+
∫ ∞


e–xtQ()(t) dt

due to

lim
t→∞

(
e–xtQ′′′(t)

)
=  and lim

t→

(
e–xtQ′′′(t)

)
= –




. �

Lemma  ([], Lemma ) Let P(t) be a power series which is convergent on (,∞) defined
by

P(t) =
∞∑

i=m+

aiti –
m∑

i=

aiti,

where ai ≥  and aj ≥  for i ≥ m +  and  ≤ j ≤ m – , am > , and
∑∞

i=m+ ai > . Then
there exists t ∈ (,∞) such that P(t) = , P(t) <  for t ∈ (, t) and P(t) >  for t ∈ (t,∞).

Lemma  Let Q(t) be defined by (.). Then Q′(t) ≥ cQ(t) for t > , where

c = min
t>

(
Q′(t)
Q(t)

)
= –. . . . . (.)

Proof Simple computations lead to

Q′(t)
Q(t)

=



cosh t


sinh t


– 
t


t – 

 sinh t


=
t cosh t

 –  sinh t


t sinh t
 – t sinh t


,

(
Q′(t)
Q(t)

)′
=


t(t –  sinh t

 ) sinh t


(
–t sinh t


+ t cosh t


+ t sinh t



– t sinh t


+  sinh t


+ t cosh
t


sinh t


– t cosh t


sinh
t


)

:=
p( t

 )
t(t –  sinh t

 ) sinh t


,

where

p(t) = 
(
t cosh t + t sinh t – t sinh t + sinh t – t sinh t

+ t cosh t sinh t – t cosh t sinh t
)
.

Using the ‘product into sum’ formulas and Taylor expansion we get




p(t) = cosh t + t cosh t – t sinh t – t sinh t –  cosh t

– t cosh t – t sinh t + t sinh t + t + 
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=
∞∑

n=

ntn

(n)!
+ 

∞∑
n=

n–tn

(n – )!
– 

∞∑
n=

n–tn

(n – )!
– 

∞∑
n=

n–tn

(n – )!

– 
∞∑

n=

ntn

(n)!
– 

∞∑
n=

tn

(n – )!
– 

∞∑
n=

tn

(n – )!
+ 

∞∑
n=

tn

(n – )!
+ t + 

:=
∞∑

n=

un

(n)!
tn,

where

un = n – n
(
n – n + 

)
n– – n+ – n

(
n – n + 

)
.

It is not difficult to verify that u = , un <  for  ≤ n ≤  and u = ,,,, >
. Note that

un+ – un = 
(
n – n + n – 

)
n– +  × n

+ ,n – ,n + n +  > 

for n ≥ . Therefore, un ≥  for n ≥ .
From Lemma  we clearly see that there exists t ∈ (,∞) such that Q′(t)/Q(t) is

strictly decreasing on (, t) and strictly increasing on (t,∞). Therefore, Lemma  fol-
lows from the piecewise monotonicity of Q′/Q and the numerical computations results
t = . . . . and Q′(t)/Q(t) = –. . . . . �

Lemma  The inequalities

sinh t
t

> 
 cosh t + 
cosh t + 

, (.)

sinh t
t

> 
 cosh t +  cosh t + 

 cosh t +  cosh t + 
, (.)

sinh t
t

< 
 cosh t +  cosh t + 

, cosh t + , cosh t + 
cosh t (.)

hold for t > .

Proof Inequality (.) can be found in [], Theorem .
To prove (.), it suffices to show that for t > ,

p(t) :=
 cosh t +  cosh t + 

 cosh t +  cosh t + 
sinh t – t > .

Simple computations lead to

p′
(t) =

 cosh t +  cosh t + 
 cosh t +  cosh t + 

cosh t – 
 cosh t +  cosh t + 
( cosh t +  cosh t + )

sinh t – 

=
(cosh t – )

( cosh t +  cosh t + )
> ,

which implies that p(t) > p() = .
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Similarly, inequality (.) is equivalent to

p(t) :=
, cosh t + , cosh t + 

( cosh t +  cosh t + ) cosh t
sinh t – t < .

Differentiating p(t) yields

p′
(t) =

, cosh t + , cosh t + 
( cosh t +  cosh t + ) cosh t

cosh t

+
(
sinh t

) d
dx

(
,x + ,x + 
(x + x + )x

)
– 

= –
(,x + )(x – )

x(x + x + ) < ,

where x = cosh t > . Therefore, p(t) < p() = . �

Lemma  Let Q(t) be defined by (.). Then the inequality

q(t) := Q′′(t) +



Q(t) > 

holds for all t > .

Proof Simple computations lead to

Q′′(t) =


 sinh t


–



cosh t


sinh t


+

t , (.)

q(t) = –



t cosh t

 – t sinh t
 – t sinh t

 –  sinh t


t sinh t


.

Making use of inequality (.) we get

(
 sinh t

)
q(t) = 

(
sinh t

t

)

+ 
(
sinh t

) sinh t
t

+  sinh t –  cosh t

> 
(


 cosh t + 
cosh t + 

)

+ 
(
cosh t – 

)(


 cosh t + 
cosh t + 

)

+ 
(
cosh t – 

)
–  cosh t

= 
(
cosh t +  cosh t + 

) (cosh t – )

(cosh t + ) > . �

Lemma  Let Q(t) be defined by (.). Then

q(t) := Q()(t) –



Q(t) < 

for all t > .
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Proof Simple computations lead to

Q()(t) =



cosh 
 t

sinh 
 t

–



cosh 
 t

sinh 
 t

–


 sinh 
 t

+

t , (.)

q(t) = –




× t cosh t
 + t sinh t

 + t sinh t
 – , sinh t

 – t cosh t
 sinh t



t sinh t


,

–
(
 sinh t

)
q(t) = –

(
sinh t

t

)

+ 
(
sinh t

) sinh t
t

+  cosh t –  cosh t sinh t +  sinh t.

Let

U(y) = –y + 
(
sinh t

)
y +  cosh t –  cosh t sinh t +  sinh t.

Then it suffices to prove that U((sinh t)/t) >  for t > .
It follows from U ′(y) =  sinh t – ,y that U is strictly increasing with respect to y

on (, √/, sinh t] and strictly decreasing with respect to y on [ √/, sinh t,∞).
We divide the proof into two cases.

Case : t ∈ ( √,/,∞). Then inequality (.) leads to

 < 
 cosh t + 
cosh t + 

<
sinh t

t
< 

√


,
sinh t,

that is,


 cosh t + 
cosh t + 

,
sinh t

t
∈ (

, √/, sinh t
)
,

and so

U
(

sinh t
t

)
> U

(


 cosh t + 
cosh t + 

)

=
(
 cosh t –  cosh t sinh t +  sinh t

)

+ 
(
sinh t

) × 
 cosh t + 
cosh t + 

– 
(


 cosh t + 
cosh t + 

)

.

Let cosh t = x, then sinh t = x – , and

U
(

sinh t
t

)
>

(x – )

(x + ) U(x),

where

U(x) = x + ,x + ,x + ,,x

+ ,,x + ,,x – ,,.



Yang et al. Journal of Inequalities and Applications  (2015) 2015:157 Page 9 of 17

It is not difficult to verify that U(x) > U() = ,, > , which implies that
U((sinh t)/t) >  for t ∈ ( √,/,∞).

Case : t ∈ (, √,/]. Then it follows from (.) and the piecewise monotonicity
of U that

∞ > 
 cosh t +  cosh t + 

, cosh t + , cosh t + 
cosh t >

sinh t
t

> 

√


,
sinh t,

U
(

sinh t
t

)
> U

(


 cosh t +  cosh t + 
, cosh t + , cosh t + 

cosh t
)

.

Let cosh t = x, then

U
(

sinh t
t

)
> U

(


x + x + 
,x + ,x + 

x
)

=
(x – )

(,x + ,x + ) U(x),

where

U(x) = ,,,,,x + ,,,,,x

+ ,,,,,,x + ,,,,,,x

+ ,,,,,,x + ,,,,,,x

+ ,,,,,,x + ,,,,,x

+ ,,,,,x + ,,,x

+ ,,x + , > . �

Lemma  Let Q(t) be defined by (.). Then

q(t) := Q()(t) +
,
,

Q′′(t) +
,
,,

Q(t) > 

for all t > .

Proof It follows from (.), (.), and (.) that

q(t) =


,,t sinh t


(
–,,t cosh t


+ ,,t cosh t


sinh t



– ,t sinh t


+ ,t sinh t


+ ,,t sinh t


+ ,, sinh t


)
,

(
,, sinh t

)
q(t)

= –
(
,, cosh t + , sinh t – ,, cosh t sinh t

)

+ ,
(
sinh t

) sinh t
t

+ ,
(
sinh t

)( sinh t
t

)

+ ,,
(

sinh t
t

)

.
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Let cosh t = x > , then (.) leads to

(
,, sinh t

)
q(t) > –

(
,,x + ,

(
x – 

) – ,,x(x – 
))

+ ,
(
x – 

)
(


x + x + 

x + x + 

)

+ ,
(
x – 

)(


x + x + 
x + x + 

)

+ ,,
(


x + x + 

x + x + 

)

=
(x – )

(x + x + ) q(x) > ,

where the last inequality holds due to

q(x) = ,,x + ,,,x + ,,,x

+ ,,,,x + ,,,,x

+ ,,,,,x + ,,,,,x

+ ,,,,,x + ,,,,,x

+ ,,,,,. �

3 Main results
Theorem  Let R(x) be defined on (,∞) by (.). Then the function

ha(x) = (x + a)R(x)

is strictly completely monotonic on (,∞) if a ≥ a =
√

c
 + / – c = . . . . , where

c = –. . . . is given by (.).

Proof It follows from (.)-(.) that

ha(x) = (x + a)R(x) = xR(x) + axR(x) + aR(x)

=



+

∫ ∞


e–xtQ′′(t) dt + a

∫ ∞


e–xtQ′(t) dt + a

∫ ∞


e–xtQ(t) dt

=



+

∫ ∞


e–xt(Q′′(t) + aQ′(t) + aQ(t)

)
dt

� 


+
∫ ∞


e–xtQ(t)δa(t) dt.

We clearly see that Q(t) >  for t >  and Lemmas  and  imply that

δa(t) =
Q′′(t)
Q(t)

+ a
Q′(t)
Q(t)

+ a ≥ a + ac –




=
(

a + c +
√

c
 +




)(
a + c –

√
c

 +




)
≥ 

if a ≥
√

c
 + / – c. �
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Taking a = / and replacing x by (x + /) in Theorem , we have the following.

Corollary  The function ((x + )/x)H(x) is strictly completely monotonic on (–/,∞).

Remark  Corollary  gives a positive answer to the conjecture (ii) posed by Chen in [].

Theorem  Let R(x) be defined on (,∞) by (.). Then the function

x 	→ Fa(x) = 
(
x + a

)
R(x) – 

is strictly completely monotonic on (,∞) if and only if a ≥ a = /.

Proof The necessity follows from

lim
x→∞

Fa(x)
x– = lim

x→∞
(x + a)(ψ(x + /) – ln x) – 

x– = a –



≥ .

It follows from (.) and (.) that

Fa(x) = 
(
x + a

)
R(x) –  = xR(x) + aR(x) – 

= 
(




+
∫ ∞


e–xtQ′′(t) dt

)
+ a

∫ ∞


e–xtQ(t) dt – 

= 
∫ ∞


e–xt(Q′′(t) + aQ(t)

)
dt.

From Lemma  we clearly see that

Q′′(t) + aQ(t) ≥ Q′′(t) +



Q(t) > 

for t >  if a ≥ /. �

Note that

F/

(
n +




)
= 

(
(n + /) + /

)
Rn – ,

F/(/) =



–




ln



–



γ = . . . . , F/(∞) = .

Therefore, we have the following.

Corollary  Let Rn be defined by (.). Then the double inequality


((n + /) + /)

< Rn – γ <
 + λ

((n + /) + /)
(.)

holds for n ∈N with the best possible constants λ = F/(/) = . . . . .

Theorem  Let R(x) be defined on (,∞) by (.). Then the function

x 	→ fa(x) = –
(
x + a

)
R(x) + x –




is strictly completely monotonic on (,∞) if and only if a ≤ a = –/.
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Proof The necessity can be deduced by

lim
x→∞

fa(x)
x– = lim

x→∞
–(x + a)(ψ(x + /) – ln x) + x – 


x– = –a –




≥ .

It follows from (.), (.), and (.) that

fa(x) = –xR(x) – aR(x) + x –




= –
(




x –



+

∫ ∞


e–xtQ()(t) dt

)
– a

∫ ∞


e–xtQ(t) dt + x –




= 
∫ ∞


e–xt(–Q()(t) – aQ(t)

)
dt.

From Lemma  we clearly see that

–Q()(t) – aQ(t) ≥ –Q()(t) +



Q(t) > 

if a ≤ a = –/. �

Making use of the monotonicity of fa and the facts that

fa

(



)
=




γ +



ln




–
,


= . . . . , fa (∞) = 

we have the following.

Corollary  Let Rn be defined by (.). Then the double inequality




(n + 
 ) – 

 – λ

(n + 
 ) – 


< Rn – γ <




(n + 
 ) – 



(n + 
 ) – 


(.)

holds for n ∈N with the best possible constant λ = fa (/) = . . . . .

Remark  The upper bound for Rn – γ given in (.) is better than that given in (.).
Indeed, simple computations show that




(n + 
 ) – 



(n + 
 ) – 


–

(


n +





n

)

= –
,n + ,n + ,n + ,n + n – 

n(n + n + n + n – )
< 

for all n ∈N.

Theorem  Let R(x) be defined on (,∞) by (.). Then the function

x 	→ Ga(x) = 
(

x + ax +



a –




)
R(x) –

(
x –




+ a
)

(.)

is strictly completely monotonic on (,∞) if and only if a ≥ a = ,/,.
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Proof The necessity can be derived from

lim
x→∞

Ga(x)
x– = lim

x→∞
(x + ax + 

 a – 
 )(ψ(x + /) – ln x) – (x – 

 + a)
x–

=
,

,

(
a –

,
,

)
≥ .

It follows from (.), (.), and (.) that

Ga(x) = xR(x) + axR(x) + 
(




a –




)
R(x) –

(
x –




+ a
)

= 
(




x –



+

∫ ∞


e–xtQ()(t) dt

)
+ a

(



+

∫ ∞


e–xtQ′′(t) dt

)

+ 
(




a –




)∫ ∞


e–xtQ(t) dt –

(
x –




+ a
)

= 
∫ ∞


e–xt

(
Q()(t) + aQ′′(t) +

(



a –




)
Q(t)

)
dt

� 
∫ ∞


e–xtga(t) dt.

From Lemmas  and  we clearly see that

ga(t) = Q()(t) –



Q(t) + a

(
Q′′(t) +




Q(t)
)

≥ Q()(t) –



Q(t) +

,
,

(
Q′′(t) +




Q(t)
)

= Q()(t) +
,
,

Q′′(t) +
,
,,

Q(t) > 

if a ≥ a = ,/,. �

The monotonicity of Ga and the facts that

Ga

(



)
=

,,
,

–
,,

,
ln




–
,,

,
γ = . . . . ,

Ga (∞) = 

lead to the following.

Corollary  Let Rn be defined by (.). Then the double inequality




(n + 
 ) + ,

,

(n + 
 ) + ,

, (n + 
 ) + ,

,,

< Rn – γ <



(n + 

 ) + ,
, + λ

(n + 
 ) + ,

, (n + 
 ) + ,

,,
(.)

holds for all n ∈N with the best possible constant λ = Ga (/) = . . . . .
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4 Remarks
Remark  The function Ga defined by (.) can be rewritten as

Ga(x) = a × f/(x) – F–/(x) = f/(x) ×
(

a –
F–/(x)

f/(x)

)
. (.)

Theorem  leads to the conclusion that

F–/(x)
f/(x)

≤ lim
x→∞

F–/(x)
f/(x)

= lim
x→∞

–(x – 
 )R(x) + x – 



(x + 
 )R(x) – 

≤ ,
,

. (.)

Moreover, we can prove that

F–/(x)
f/(x)

≥ lim
x→+

F–/(x)
f/(x)

= lim
x→+

–(x – 
 )R(x) + x – 



(x + 
 )R(x) – 

≥ 


. (.)

It suffices to prove the function

x 	→ V (x) = ψ(x + /) – ln x –



x + ,

,

x(x + 
 )

is increasing on (,∞). Differentiation gives

V ′(x) = ψ ′(x + /) –

x

+
,,x + ,,x + ,

x(x + ) .

From ψ ′(x + ) – ψ ′(x) = –/x we get

V ′(x + ) – V ′(x)

= –


(x + /) –


x + 
+

,,(x + ) + ,,(x + ) + ,
(x + )((x + ) + )

+

x

–
,,x + ,,x + ,

x(x + )

= –
V(x)

x(x + )(x + )(x + )(x + x + ) ,

where

V(x) = ,,,,x + ,,,,x

+ ,,,,x + ,,,,x

+ ,,,,x + ,,,,x

+ ,,,,x + ,,,,x

+ ,,,,x + ,,,,x

+ ,,,,x + ,,,x

+ ,,, > 
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for x > . Therefore,

V ′(x) > V ′(x + ) > V ′(x + ) > · · · > lim
n→∞ V ′(x + n) = 

for all x > .
In addition, (.) implies that the necessary condition such that the function –Ga is com-

pletely monotone on (,∞) is

a ≤ lim
x→+

F–/(x)
f/(x)

= lim
x→+

–(x – 
 )R(x) + x – 



(x + 
 )R(x) – 

=



.

Motivated by inequalities (.) and (.) we propose two conjectures.

Conjecture  Let R(x) be defined on (,∞) by (.). Then we conjecture that
(i) the function

x 	→ –(x – 
 )R(x) + x – 



(x + 
 )R(x) – 

is increasing on (,∞);
(ii) the function –Ga is completely monotone on (,∞) if and only if a ≤ /.

Remark  The monotonicity of the function V proved in Remark  and the facts that

V
(




)
=

,
,

– ln



– γ = –. . . . , V (∞) = 

lead to the conclusion that the double inequality




(n + 
 ) + ,

,

(n + 
 )((n + 

 ) + 
 )

+ λ < Rn – γ <



(n + 

 ) + ,
,

(n + 
 )((n + 

 ) + 
 )

(.)

holds with the best possible constant λ = –. . . . .
The upper bound for Rn – γ in (.) is better than that in (.) because of




(n + 
 ) + ,

,

(n + 
 )((n + 

 ) + 
 )

–



(n + 

 ) – 


(n + 
 ) – 



= –
,

(n + )(n + n + )(n + n + n + n – )
< .

Remark  Let

wn =
n∑

k=


k

– ln(n + /) –



(n + 

 ) – 


(n + 
 ) – 


,

yn =
n∑

k=


k

– ln(n + /) –



(n + 

 ) + ,
,

(n + 
 ) + ,

, (n + 
 ) + ,

,,
,

zn =
n∑

k=


k

– ln(n + /) –



(n + 

 ) + ,
,

(n + 
 )((n + 

 ) + 
 )

.
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Then Theorems  and  together with Remark  lead to

wn < zn < γ < yn,

and simple computations show that

lim
n→∞ n(wn – γ ) = –


,

,

lim
n→∞ n(yn – γ ) =

,,
,,,

,

lim
n→∞ n(zn – γ ) = –

,
,,

.

Lastly, inspired by Theorems -, we propose an open problem as follows.

Problem  We wonder what the sequences {ak} and {bk} are such that the function

x 	→ R(x)
n+∑
k=

akxk –
n∑

k=

bkxk

is completely monotone on (,∞) and

lim
x→∞

R(x)
∑n+

k= akxk –
∑n

k= bkxk

x–n– = c 
= ,±∞.
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13. Sîntămărian, A: Some inequalities regarding a generalization of Euler’s constant. JIPAM. J. Inequal. Pure Appl. Math.

9(2), Article 46 (2008)
14. Villarino, MB: Ramanujan’s harmonic number expansion into negative powers of triangular number. JIPAM. J. Inequal.

Pure Appl. Math. 9(3), Article 89 (2008)
15. Chen, C-P: Inequalities and monotonicity properties for some special functions. J. Math. Inequal. 3(1), 79-91 (2009)
16. Chen, C-P: The best bounds in Vernescu’s inequalities for the Euler’s constant. RGMIA Res. Rep. Collect. 12(3), Article

ID 11 (2009). http://ajmaa.org/RGMIA/v12n3.php

http://ajmaa.org/RGMIA/v12n3.php


Yang et al. Journal of Inequalities and Applications  (2015) 2015:157 Page 17 of 17

17. Chen, C-P: Monotonicity properties of functions related to the psi function. Appl. Math. Comput. 217(7), 2905-2911
(2010)

18. Chen, C-P: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 23, 161-164 (2010)
19. Mortici, C: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59(8),

2610-2614 (2010)
20. Mortici, C: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215(9),

3443-3448 (2010)
21. Mortici, C: Fast convergences towards Euler-Mascheroni constant. Comput. Appl. Math. 29(3), 479-491 (2010)
22. Guo, B-N, Qi, F: Sharp bounds for harmonic numbers. Appl. Math. Comput. 218(3), 991-995 (2011)
23. Chen, C-P: Sharpness of Negoi’s inequality for the Euler-Mascheroni constant. Bull. Math. Anal. Appl. 3(1), 134-141

(2011)
24. Mortici, C: A new Stirling series as continued fraction. Numer. Algorithms 56(1), 17-26 (2011)
25. Chen, C-P, Mortici, C: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 64(4),

391-398 (2012)
26. Gavrea, I, Ivan, M: A solution to an open problem on the Euler-Mascheroni constant. Appl. Math. Comput. 224, 54-57

(2013)
27. Lu, D: Some new convergent sequences and inequalities of Euler’s constant. J. Math. Anal. Appl. 419(1), 541-552

(2014)
28. Mortici, C: New bounds for a convergence by DeTemple. J. Sci. Arts 13(2), 239-242 (2010)
29. Batir, N: Inequalities for the gamma function. Arch. Math. 91(6), 554-563 (2008)
30. Qi, F, Guo, B-N: Sharp inequalities for the psi function and harmonic numbers (2009). arXiv:0902.2524 [math. CA]
31. Guo, B-N, Qi, F: Sharp inequalities for the psi function and harmonic numbers. Analysis 34(2), 201-208 (2014)
32. Karatsuba, EA: On the computation of the Euler constant γ . Numer. Algorithms 24(1-2), 83-97 (2000)
33. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Topics in special functions. In: Papers on Analysis. Rep. Univ.

Jyväskylä Dep. Math. Stat., vol. 83, pp. 5-26. Univ. Jyväskylä, Jyväskylä (2001)
34. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.

U.S. Government Printing Office, Washington (1964)
35. Yang, Z-H, Chu, Y-M, Tao, X-J: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal.

2014, Article ID 702718 (2014)
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