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Abstract
In this paper, we suggest and analyze an iterative method for finding a common
solution of variational inequalities, a generalized mixed equilibrium problem, and a
hierarchical fixed point problem in the setting of a real Hilbert space. Under suitable
conditions, we prove the strong convergence theorem. Several special cases are also
discussed. The results presented in this paper extend and improve some well-known
results in the literature.
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1 Introduction
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖.
Let C be a nonempty, closed, and convex subset of H . Let F : C × C → R be a bifunction,
D : C → H be a nonlinear mapping, and ϕ : C → R be a function. Recently, Peng and
Yao [] considered the generalized mixed equilibrium problem (GMEP) which involves
finding x ∈ C such that

F(x, y) + ϕ(y) – ϕ(x) + 〈Dx, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of (.) is denoted by GMEP(F ,ϕ, D). The GMEP is very general in
the sense that it includes, as special cases, optimization problems, variational inequalities,
minimax problems, and Nash equilibrium problems; see, for example, [–]. For instance,
we refer to [] for a general system generalized equilibrium problems.

If D = , then the generalized mixed equilibrium problem (GMEP) (.) becomes the
following mixed equilibrium problem (MEP): Find x ∈ C such that

F(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C. (.)

Problem (.) was studied by Ceng and Yao []. The set of solutions of (.) is denoted by
MEP(F ,ϕ).
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If ϕ = , then the generalized mixed equilibrium problem (GMEP) (.) becomes the
following generalized equilibrium problem (GEP): Find x ∈ C such that

F(x, y) + 〈Dx, y – x〉 ≥ , ∀y ∈ C. (.)

Problem (.) was studied by Takahashi and Takahashi []. The set of solutions of (.) is
denoted by GEP(F , D).

If ϕ =  and D = , then the generalized mixed equilibrium problem (GMEP) (.) be-
comes the following equilibrium problem (EP): Find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by EP(F). Numerous problems in physics, optimization,
and economics reduce to finding a solution of (.); see [, ].

Let A : C → H , and let F(x, y) = 〈Ax, y – x〉, ∀x, y ∈ C. Then x ∈ EP(F) if and only if
〈Ax, y – x〉 ≥ , ∀y ∈ C, which is a classical variational inequality problem (VIP): Find a
vector u ∈ C such that

〈v – u, Au〉, ∀v ∈ C. (.)

The solution set of (.) is denoted by VI(C, A). It is easy to observe that

u∗ ∈ VI(C, A) ⇐⇒ u∗ = PC
[
u∗ – ρAu∗], where ρ > .

We now have a variety of techniques to suggest and analyze various iterative algorithms for
solving variational inequalities and related optimization problems; see [–]. The fixed
point theory has played an important role in the development of various algorithms for
solving variational inequalities. Using the projection operator technique, one usually es-
tablishes an equivalence between variational inequalities and fixed point problems. We
introduce the following definitions, which are useful in the following analysis.

Definition . The mapping T : C → H is said to be
(a) monotone if

〈Tx – Ty, x – y〉 ≥ , ∀x, y ∈ C;

(b) strongly monotone if there exists α >  such that

〈Tx – Ty, x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C;

(c) α-inverse strongly monotone if there exists α >  such that

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖, ∀x, y ∈ C;

(d) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;
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(e) k-Lipschitz continuous if there exists a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C;

(f ) a contraction on C if there exists a constant  ≤ k ≤  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C.

It is easy to observe that every α-inverse strongly monotone T is monotone and Lipschitz
continuous. It is well known that every nonexpansive operator T : H → H satisfies, for all
(x, y) ∈ H × H , the inequality

〈
(x – Tx) – (y – Ty), Ty – Tx

〉≤ 

∥∥(Tx – x) – (Ty – y)

∥∥, (.)

and therefore, we get, for all (x, y) ∈ H × Fix(T),

〈x – Tx, y – Tx〉 ≤ 

‖Tx – x‖. (.)

The fixed point problem for the mapping T is to find x ∈ C such that

Tx = x. (.)

We denote by F(T) the set of solutions of (.). It is well known that F(T) is closed and
convex, and PF (T) is well defined.

Recently, many researchers studied various iterative algorithms for finding an element
of VI(C, A) ∩ F(S). Takahashi and Toyoda [] introduced the following iterative scheme:

xn+ = αnxn + ( – αn)SPC(I – λnB)xn, ∀n ≥ . (.)

They proved that the sequence {xn} converges weakly to a point q ∈ VI(C, B) ∩ F(S). Yao
and Yao [] introduced the following scheme:

⎧
⎪⎨

⎪⎩

x = u ∈ C,
yn = PC(I – λnA)xn,
xn+ = αnu + βnxn + γnSPC(I – λnA)yn,

(.)

and obtain some convergence theorems. Later, Chang et al. [] introduced the following
iterative scheme:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
xn+ = αnf (xn) + βnxn + γnWnkn,
kn = PC(I – λnB)yn,
yn = PC(I – λnB)un,

(.)
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and obtained some convergence theorems. In , Zhou et al. [] introduced the fol-
lowing iterative scheme:

⎧
⎪⎨

⎪⎩

F(yn,η) + 〈Dyn,η – yn〉 + 
rn

〈η – yn, yn – xn〉 ≥ , ∀η ∈ C,
ρn =

∑r
m= ηm

n PC(I – μmBm)yn,
xn+ = αnγ f (xn) + βnxn + (( – βn)I – αnA)Wnρn,

(.)

where A is a strongly positive bounded linear operator, f is a contraction on H , and Wn is
the W -mapping of C into itself which is generated by a family of nonexpansive mappings
Sn, Sn–, . . . , S, and a sequence of positive numbers in [, ], λn,λn–, . . . ,λ, then they ob-
tained some strong convergence theorems.

On the other hand, let S : C → H be a nonexpansive mapping. The following problem
is called a hierarchical fixed point problem (in short, HFPP): Find x ∈ F(T) such that

〈x – Sx, y – x〉 ≥ , ∀y ∈ F(T). (.)

It is well known that the hierarchical fixed point problem (.) links with some mono-
tone variational inequalities and convex programming problems; see []. Various meth-
ods have been proposed to solve the hierarchical fixed point problem; see [–]. In ,
Yao et al. [] introduced the following strong convergence iterative algorithm to solve
problem (.):

{
yn = βnSxn + ( – βn)xn,
xn+ = PC[αnf (xn) + ( – αn)Tyn], ∀n ≥ ,

(.)

where f : C → H is a contraction mapping and {αn}, {βn} are two sequences in (, ). Under
certain restrictions on the parameters, Yao et al. proved that the sequence {xn} generated
by (.) converges strongly to z ∈ F(T), which is the unique solution of the following
variational inequality:

〈
(I – f )z, y – z

〉≥ , ∀y ∈ F(T). (.)

In , Ceng et al. [] investigated the following iterative method:

xn+ = PC
[
αnρU(xn) + (I – αnμF)T(yn)

]
, ∀n ≥ , (.)

where U is a Lipschitzian mapping, and F is a Lipschitzian and strongly monotone map-
ping. They proved that under some assumptions as regards approximations on the oper-
ators and parameters, the sequence generated by (.) converges strongly to the unique
solution of the variational inequality

〈
ρU(z) – μF(z), x – z

〉≤ , ∀x ∈ F(T).

Very recently, Ceng et al. [] introduced and analyzed hybrid implicit and explicit vis-
cosity iterative algorithms for solving a general system of variational inequalities with a
hierarchical fixed point problem constraint for a countable family of nonexpansive map-
ping in a real Banach space, which can be viewed as an extension and improvement of the
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recent results in the literature. In , Bnouhachem et al. [] introduced the following
iterative method:

⎧
⎪⎨

⎪⎩

F(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;
yn = βnSxn + ( – βn)un;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)T(yn)], ∀n ≥ ,

(.)

where U and F are the same as above. They proved that under some assumptions as re-
gards approximations on the operators and parameters, the sequence {xn} generated by
(.) converges strongly to the unique solution of the variational inequality

〈
ρU(z) – μF(z), x – z

〉≤ , ∀x ∈ F(T) ∩ EP(F).

In the same year, Bnouhachem and Chen [] introduced the following iterative method:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, y) + 〈Dxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;
zn = PC[un – λnAun];
yn = βnSxn + ( – βn)zn;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)T(yn)], ∀n ≥ ,

(.)

where U and F are the same as above. They proved that under some assumptions as re-
gards approximations on the operators and parameters, the sequence {xn} generated by
(.) converges strongly to the unique solution of variational inequality

〈
ρU(z) – μF(z), x – z

〉≤ , ∀x ∈ VI(C, A) ∩ GMEP(F ,ϕ, D) ∩ F(T).

In this paper, motivated by the work of Zhou et al. [], Bnouhachem et al. [, ] and
others, we give an iterative method for finding the approximate element of the common
set of solutions of GMEP (.), VIP (.) and HFPP (.) in real Hilbert space. We establish
a strong convergence theorem for the sequence generated by the proposed method. The
proposed method is quite general and flexible and includes several well-known methods
for solving variational inequality problems, mixed equilibrium problems, and hierarchical
fixed point problems; see, e.g., [, , –] and the references therein.

2 Preliminaries
In this section, we list some fundamental lemmas that are useful in the consequent anal-
ysis. The first lemma provides some basic properties of the projection onto C.

Lemma . Let PC denote the projection of H onto C. Then we have the following inequal-
ities:

〈
z – PC[z], PC[z] – v

〉≥ , ∀z ∈ H , v ∈ C; (.)
〈
u – v, PC[u] – PC[v]

〉≥ ∥
∥PC[u] – PC[v]

∥
∥, ∀u, v ∈ H ; (.)

∥
∥PC[u] – PC[v]

∥
∥≤ ‖u – v‖, ∀u, v ∈ H ; (.)

∥
∥u – PC[z]

∥
∥ ≤ ‖z – u‖ –

∥
∥z – PC[z]

∥
∥, ∀z ∈ H , u ∈ C. (.)
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Assumption . [] Let F : C × C → R be a bifunction and ϕ : C → R be a function satis-
fying the following assumptions:

(A) F(x, x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y, x) ≤ , ∀x, y ∈ C;
(A) for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y) ≤ F(x, y);
(A) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous;
(B) for each x ∈ H and r > , there exists a bounded sunset K of C and yx ∈ C ∩ dom(ϕ)

such that

F(z, yx) + ϕ(yx) – ϕ(z) +

r
〈yx – z, z – x〉 ≤ , ∀z ∈ C \ K ;

(B) C is a bounded set.

Lemma . [] Let C be a nonempty, closed, and convex subset of H . Let F : C × C → R
satisfy (A)-(A), and let ϕ : C → R be a proper lower semicontinuous and convex function.
Assume that either (B) or (B) holds. For r >  and ∀x ∈ H , define a mapping Tr : H → C
as follows:

Tr(x) =
{

z ∈ C : F(z, y) + ϕ(y) + ϕ(z) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
(i) Tr is nonempty and single-valued;

(ii) Tr is firmly nonexpansive, i.e.,

∥∥Tr(x) – Tr(y)
∥∥ ≤ 〈

Tr(x) – Tr(y), x – y
〉
, ∀x, y ∈ H ;

(iii) F(Tr(I – rD)) = GMEP(F ,ϕ, D);
(iv) GMEP(F ,ϕ, D) is closed and convex.

Lemma . [] (Demiclosedness principle) Let T : C → C be a nonexpansive mapping
with Fix(T) �= ∅. If {xn} is a sequence in C that converges weakly to x and if {(I – T)xn}
converges strongly to y, then (I – T)x = y; in particular, if y = , then x ∈ Fix(T).

Lemma . [] Let U : C → H be a τ -Lipschitzian mapping, and let F : C → H be a κ-
Lipschitzian and η-strongly monotone mapping, then for  ≤ ρτ < μη, μF –ρU is μη –ρτ -
strongly monotone, i.e.,

〈
(μF – ρU)x – (μF – ρU)y, x – y

〉≥ (μη – ρτ )‖x – y‖, ∀x, y ∈ C.

Lemma . [] Suppose that λ ∈ (, ) and μ > . Let F : C → H be a κ-Lipschitzian and
η-strongly monotone operator. In association with a nonexpansive mapping T : C → C,
define the mapping Tλ : C → H by

Tλx = Tx – λμFT(x), ∀x ∈ C.
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Then Tλ is a contraction provided μ < η

κ , that is,

∥
∥Tλx – Tλy

∥
∥≤ ( – λν)‖x – y‖, ∀x, y ∈ C,

where ν =  –
√

 – μ(η – μκ).

Lemma . [] Let {sn} be a sequence of non-negative real numbers satisfying

sn+ ≤ ( – ωn)sn + ωnδn + γn, ∀n ≥ ,

where {ωn}, {δn}, and {γn} satisfying the following conditions:
(i) {ωn} ⊂ [, ] and

∑∞
n= ωn = ∞,

(ii) lim supn→∞ δn ≤  or
∑∞

n= ωn|δn| < ∞,
(iii) γn ≥  (n ≥ ),

∑∞
n= γn < ∞.

Then limn→∞ sn = .

Lemma . [] Let C be a closed convex subset of a real Hilbert H . Let {Tm :  ≤ m ≤ r}
be a sequence of nonexpansive mappings on C. Suppose that

⋂r
m= F(Tm) is nonempty. Let

{λm} be a sequence of positive numbers with
∑r

m= λm = . Then a mapping S on C defined
by

Sx =
r∑

m=

λmTmx

for all x ∈ C is well defined, nonexpansive, and F(S) =
⋂r

m= F(Tm) holds.

3 Main result
In this section, we suggest and analyze our method for finding common solutions of the
generalized mixed equilibrium problem (.), the variational problem (.), and the hier-
archical fixed point problem (.).

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let Bm : C → H
be a lm-inverse strongly monotone mapping for each  ≤ m ≤ r, where r is some positive
integer. Let D : C → H be a θ -inverse strongly monotone mapping. Let F : C × C → R
satisfy (A)-(A), and let ϕ : C → R be a proper lower semicontinuous and convex func-
tion. Let S, T : C → C be nonexpansive mappings and such that F = F(T) ∩ VI(C, Bm) ∩
GMEP(F ,ϕ, D) �= ∅. Let F : C → H be a κ-Lipschitzian mapping and η-strongly monotone,
and let U : C → H be a τ -Lipschitzian mapping.

Algorithm . For an arbitrary given x ∈ C, let the iterative sequences {un}, {vn}, {xn},
and {yn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, y) + 〈Dxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;
vn = δnun + ( – δn)

∑r
m= ηm

n PC(I – μmBm)un;
yn = βnSxn + ( – βn)vn;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)T(yn)], ∀n ≥ ,
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where μm ∈ (, lm), {rn} ⊂ (, θ ). Suppose that the parameters satisfy  < μ < η

κ ,  ≤
ρτ < υ , where υ =  –

√
 – μ(η – μκ). Also {αn}, {βn}, {γn}, and {δn} are sequences in

(, ) satisfying the following conditions:
(a) limn→∞ αn = , and

∑∞
n= αn = ∞;

(b) limn→∞(βn/αn) = ;
(c) limn→∞ γn = , and γn + αn < ;
(d)

∑∞
n= |αn – αn–| < ∞,

∑∞
n= |βn – βn–| < ∞,

∑∞
n= |γn – γn–| < ∞, and

∑∞
n= |δn – δn–| < ∞;

(e) lim infn→∞ rn > , and
∑∞

n= |rn – rn–| < ∞;
(f ) limn→∞ ηm

n = ηm ∈ (, ) for each m, where  ≤ m ≤ r;
(g)

∑r
m= ηm

n = , ∀n ≥ .

Remark . Our method can be reviewed as an extension and improvement for some
well-known results, for example, the following:

(i) The (self-)contraction mapping f : H → H in [], Theorem  is extended to the
case of a Lipschitzian (possibly nonself-)mapping U : C → H on a nonempty,
closed, and convex subset C of H .

(ii) The strongly positive linear bounded operator A in [], Theorem  is extended to
the case of the κ-Lipschitzian mapping and η-strongly monotone (possibly
nonself-)mapping F : C → H .

(iii) The contractive coefficient h ∈ (, ) in [], Theorem  is extended to the case
where the Lipschitzian constant τ lies in [,∞).

(iv) The equilibrium problem in [], Theorem  is extended to the case of the
generalized mixed equilibrium problem.

(v) If D = ϕ = , Bm =  for each m, and δn = , then the proposed method is an
extension and improvement of a method studied in [].

(vi) If δn = , m = , then we obtain an extension and improvement of a method in [].
(vii) If ρ = μ = , βn = δn = , ϕ = , U = f a contraction mapping, F = A a strongly

positive linear bounded operator, and T = Wn, where Wn is the W -mapping of C
into itself which is generated by a family of nonexpansive mappings Sn, Sn–, . . . , S,
and a sequence of positive numbers in [, ] λn,λn–, . . . ,λ, then the proposed
method is an extension and improvement of a method studied in [].

This shows that Algorithm . is quite general and unifying.

Lemma . Let x∗ ∈ F = F(T) ∩ VI(C, Bm) ∩ GMEP(F ,ϕ, D). Then {xn}, {un}, {vn}, and
{yn} are bounded.

Proof First, we show that the mapping I – rnD is nonexpansive. For any x, y ∈ C,

∥
∥(I – rnD)x – (I – rnD)y

∥
∥ =

∥
∥(x – y) – rn(Dx – Dy)

∥
∥

= ‖x – y‖ – rn〈x – y, Dx – Dy〉 + r
n‖Dx – Dy‖

≤ ‖x – y‖ – rn(θ – rn)‖Dx – Dy‖

≤ ‖x – y‖.



Hu and Ceng Journal of Inequalities and Applications  (2015) 2015:155 Page 9 of 29

Similarly, we can show that the mapping I –μmBm is nonexpansive for each  ≤ m ≤ r. For
each  ≤ m ≤ r, put

wm
n = PC(I – μmBm)un and zn =

r∑

m=

(
ηm

n wm
n
)
.

Then Algorithm . can be rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, y) + 〈Dxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;
vn = δnun + ( – δn)zn;
yn = βnSxn + ( – βn)vn;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)T(yn)], ∀n ≥ .

(.)

Fixing x ∈ F , we have

∥∥wm
n – x∗∥∥ =

∥∥PC(I – μmBm)un – PC(I – μmBm)x∗∥∥

≤ ∥∥un – x∗∥∥,  ≤ ∀m ≤ r.

It follows that

∥
∥zn – x∗∥∥ =

∥
∥∥∥
∥

r∑

m=

(
ηm

n wm
n
)

– x∗
∥
∥∥∥
∥

≤
r∑

m=

ηm
n
∥
∥wm

n – x∗∥∥

≤ ∥∥un – x∗∥∥.

It follows from Lemma . that un = Trn (xn – rnDxn) and x∗ = Trn (x∗ – rnDx∗), we have

∥∥un – x∗∥∥ =
∥∥Trn (xn – rnDxn) – Trn

(
x∗ – rnDx∗)∥∥

≤ ∥
∥(xn – rnDxn) –

(
x∗ – rnDx∗)∥∥

≤ ∥
∥xn – x∗∥∥ – rn(θ – rn)

∥
∥Dxn – Dx∗∥∥

≤ ∥
∥xn – x∗∥∥.

From (.) and the above inequalities, we have

∥∥vn – x∗∥∥ ≤ δn‖un – x∗∥∥+( – δn)
∥∥zn – x∗‖

≤ δn
∥∥un – x∗∥∥ + ( – δn)

∥∥un – x∗∥∥

≤ ∥∥un – x∗∥∥

≤ ∥∥xn – x∗∥∥ – rn(θ – rn)
∥∥Dxn – Dx∗∥∥

≤ ∥
∥xn – x∗∥∥.

Then we have

∥∥zn – x∗∥∥ ≤ ∥∥un – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – rn(θ – rn)
∥∥Dxn – Dx∗∥∥ ≤ ∥∥xn – x∗∥∥,

∥∥vn – x∗∥∥ ≤ ∥∥un – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – rn(θ – rn)
∥∥Dxn – Dx∗∥∥ ≤ ∥∥xn – x∗∥∥.

(.)
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We define Vn = αnρU(xn)+γnxn +((–γn)I –αnμF)T(yn). Next, we prove that the sequence
{xn} is bounded, and without loss of generality, we can assume that βn ≤ αn for all n ≥ .
From (.), we have

∥∥xn+ – x∗∥∥

=
∥∥PC[Vn] – PC

[
x∗]∥∥

≤ ∥∥αnρU(xn) + γnxn +
(
( – γn)I – αnμF

)
T(yn) – x∗∥∥

=
∥
∥αn

(
ρU(xn) – μF

(
x∗)) + γn

(
xn – x∗) +

(
( – γn)I – αnμF

)
T(yn)

–
(
( – γn)I – αnμF

)
T
(
x∗)∥∥

≤ αn
∥
∥ρU(xn) – μF

(
x∗)∥∥ + γn

∥
∥xn – x∗∥∥

+ ( – γn)
∥∥
∥∥

(
I –

αnμ

 – γn
F
)

T(yn) –
(

I –
αnμ

 – γn
F
)

T
(
x∗)
∥∥
∥∥

= αn
∥
∥ρU(xn) – ρU

(
x∗) + (ρU – μF)x∗∥∥ + γn

∥
∥xn – x∗∥∥

+ ( – γn)
∥
∥∥
∥

(
I –

αnμ

 – γn
F
)

T(yn) –
(

I –
αnμ

 – γn
F
)

T
(
x∗)
∥
∥∥
∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU – μF)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn)
(

 –
αnυ

 – γn

)∥
∥yn – x∗∥∥

≤ αnρτ
∥
∥xn – x∗∥∥ + αn

∥
∥(ρU – μF)x∗∥∥ + γn

∥
∥xn – x∗∥∥

+ ( – γn – αnυ)
∥
∥βnSxn + ( – βn)vn – x∗∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU – μF)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn – αnυ)
(
βn
∥∥Sxn – Sx∗∥∥ + βn

∥∥Sx∗ – x∗∥∥ + ( – βn)
∥∥vn – x∗∥∥)

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU – μF)x∗∥∥ + γn
∥∥xn – x∗∥∥

+ ( – γn – αnυ)
(
βn
∥
∥Sxn – Sx∗∥∥ + βn

∥
∥Sx∗ – x∗∥∥ + ( – βn)

∥
∥xn – x∗∥∥)

≤ αnρτ
∥
∥xn – x∗∥∥ + αn

∥
∥(ρU – μF)x∗∥∥ + γn

∥
∥xn – x∗∥∥

+ ( – γn – αnυ)
(
βn
∥
∥xn – x∗∥∥ + βn

∥
∥Sx∗ – x∗∥∥ + ( – βn)

∥
∥xn – x∗∥∥)

≤ (
 – αn(υ – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρU – μF)x∗∥∥

+ ( – γn – αnυ)βn
∥∥Sx∗ – x∗∥∥

≤ (
 – αn(υ – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρU – μF)x∗∥∥ + βn

∥∥Sx∗ – x∗∥∥

≤ (
 – αn(υ – ρτ )

)∥∥xn – x∗∥∥ + αn
(∥∥(ρU – μF)x∗∥∥ +

∥
∥Sx∗ – x∗∥∥)

≤ (
 – αn(υ – ρτ )

)∥∥xn – x∗∥∥ +
αn(υ – ρτ )

υ – ρτ

(∥∥(ρU – μF)x∗∥∥ +
∥
∥Sx∗ – x∗∥∥)

≤ max

{∥∥xn – x∗∥∥,


υ – ρτ

(∥∥(ρU – μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)

}
,
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where the third inequality follows from Lemma .. By induction on n, we obtain ‖xn –
x‖ ≤ max{‖x – x∗‖, 

υ–ρτ
(‖(ρU – μF)x∗‖ + ‖Sx∗ – x∗‖)} for n ≥  and x ∈ C. Hence {xn}

is bounded, and, consequently, we deduce that {un}, {vn}, and {yn} are bounded. �

Lemma . Let x∗ ∈ F = F(T) ∩ VI(C, Bm) ∩ GMEP(F ,ϕ, D) and {xn} be generated by
Algorithm .. Then we have:

(a) limn→∞ ‖xn+ – xn‖ = ,
(b) the weak w-limit set ww(xn) ⊂ F(T) (ww(xn) = {x : xni ⇀ x}).

Proof Note that

∥
∥wm

n – wm
n–
∥
∥ =

∥
∥PC(I – μmBm)un – PC(I – μmBm)un–

∥
∥

≤ ‖un – un–‖,  ≤ ∀m ≤ r. (.)

On the other hand, we have

vn – vn– = δn(un – un–) + ( – δn)(zn – zn–) + (δn – δn–)(un– – zn–).

It follows from (.) that

‖vn – vn–‖
≤ δn‖un – un–‖ + ( – δn)‖zn – zn–‖ + |δn – δn–|‖un– – zn–‖

≤ δn‖un – un–‖ + ( – δn)

∥
∥∥∥
∥

r∑

m=

(
ηm

n wm
n
)

–
r∑

m=

(
ηm

n–wm
n–
)
∥
∥∥∥
∥

+ |δn – δn–|‖un– – zn–‖

≤ ( – δn)

∥∥
∥∥∥

r∑

m=

(
ηm

n wm
n
)

–
r∑

m=

(
ηm

n wm
n–
)

+
r∑

m=

(
ηm

n wm
n–
)

–
r∑

m=

(
ηm

n–wm
n–
)
∥∥
∥∥∥

+ δn‖un – un–‖ + |δn – δn–|‖un– – zn–‖

≤ ‖un – un–‖ + M ·
r∑

m=

∣
∣ηm

n – ηm
n–
∣
∣ + |δn – δn–|‖un– – zn–‖, (.)

where M = max{sup{‖PC(I – μmBm)un‖ : n ≥ } :  ≤ m ≤ r}. Next we estimate that

‖yn – yn–‖
≤ ∥
∥βnSxn + ( – βn)vn – βn–Sxn– – ( – βn–)vn–

∥
∥

=
∥
∥βn(Sxn – Sxn–) + ( – βn)(vn – vn–) + (βn – βn–)(Sxn– – vn–)

∥
∥

≤ βn‖xn – xn–‖ + ( – βn)‖vn – vn–‖ + |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)
.

It follows from (.) and the above inequality that

‖yn – yn–‖ ≤ βn‖xn – xn–‖ + ( – βn)

{

‖un – un–‖ + M ·
r∑

m=

∣∣ηm
n – ηm

n–
∣∣

+ |δn – δn–|‖un– – zn–‖
}

+ |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)
. (.)
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On the other hand, un = Trn (xn – rnDxn) and un– = Trn– (xn– – rn–Dxn–), we have

F(un, y) + ϕ(y) – ϕ(un) + 〈Dxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C, (.)

and

F(un–, y) + ϕ(y) – ϕ(un–) + 〈Dxn–, y – un–〉 +


rn–
〈y – un–, un– – xn–〉 ≥ ,

∀y ∈ C, (.)

Taking y = un– in (.) and y = un in (.), we get

F(un, un–) + ϕ(un–) – ϕ(un) + 〈Dxn, un– – un〉 +

rn

〈un– – un, un – xn〉 ≥  (.)

and

F(un–, un) + ϕ(un) – ϕ(un–) + 〈Dxn–, un – un–〉

+


rn–
〈un – un–, un– – xn–〉 ≥ . (.)

Adding (.) and (.) and using the monotonicity of F , we have

〈Dxn– – Dxn, un – un–〉 +
〈
un – un–,

un– – xn–

rn–
–

un – xn

rn

〉
≥ ,

which implies that

 ≤
〈
un – un–, rn(Dxn– – Dxn) +

rn

rn–
(un– – xn–) – (un – xn)

〉

=
〈
un– – un, un – un– +

(
 –

rn

rn–

)
un–

+ (xn– – rnDxn–) – (xn – rnDxn) – xn– +
rn

rn–
xn–

〉

=
〈
un– – un,

(
 –

rn

rn–

)
un– + (xn– – rnDxn–) – (xn – rnDxn) – xn– +

rn

rn–
xn–

〉

– ‖un – un–‖

=
〈
un– – un,

(
 –

rn

rn–

)
(un– – xn–) + (xn– – rnDxn–) – (xn – rnDxn)

〉

– ‖un – un–‖

≤ ‖un – un–‖
{∣∣
∣∣ –

rn

rn–

∣∣
∣∣‖un– – xn–‖ +

∥
∥(xn– – rnDxn–) – (xn – rnDxn)

∥
∥
}

– ‖un – un–‖

= ‖un – un–‖
{∣∣
∣∣ –

rn

rn–

∣∣
∣∣‖un– – xn–‖ + ‖xn– – xn‖

}
– ‖un – un–‖,
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and then

‖un – un–‖ ≤
∣∣
∣∣ –

rn

rn–

∣∣
∣∣‖un– – xn–‖ + ‖xn– – xn‖.

Without loss of generality, let us assume that there exists a real number μ such that rn >
μ >  for all positive integers n. Then we get

‖un– – un‖ ≤ ‖xn– – xn‖ +

μ

|rn– – rn|‖un– – xn–‖. (.)

It follows from (.) and (.) that

‖yn – yn–‖

≤ βn‖xn – xn–‖ + ( – βn)

{

‖xn – xn–‖ +

μ

|rn – rn–|‖un– – xn–‖

+ M ·
r∑

m=

∣∣ηm
n – ηm

n–
∣∣ + |δn – δn–|‖un– – zn–‖

}

+ |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)

= ‖xn – xn–‖ + ( – βn)

{

μ

|rn – rn–|‖un– – xn–‖ + M ·
r∑

m=

∣
∣ηm

n – ηm
n–
∣
∣

+ |δn – δn–|‖un– – zn–‖
}

+ |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)

≤ ‖xn – xn–‖ +

μ

|rn – rn–|‖un– – xn–‖ + M ·
r∑

m=

∣
∣ηm

n – ηm
n–
∣
∣

+ |δn – δn–|‖un– – zn–‖ + |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)
. (.)

Next, we estimate

‖xn+ – xn‖
=
∥
∥PC[Vn] – PC[Vn–]

∥
∥

≤
∥∥∥
∥αnρ

(
U(xn) – U(xn–)

)
+ (αn – αn–)ρU(xn–)

+ γn(xn – xn–) + (γn – γn–)xn–

+ ( – γn)
[(

I –
αnμ

 – γn
F
)

T(yn) –
(

I –
αnμ

 – γn
F
)

T(yn–)
]

+
(
( – γn)I – αnμF

)
T(yn–) –

(
( – γn–)I – αn–μF

)
T(yn–)

∥
∥∥
∥

≤ αnρτ‖xn – xn–‖ + γn‖xn – xn–‖ + ( – γn)
(

 –
αnυ

 – γn

)
‖yn – yn–‖

+ |γn – γn–|
(‖xn–‖ +

∥∥T(yn–)
∥∥)

+ |αn – αn–|
(
ρ
∥
∥U(xn–)

∥
∥ +

∥
∥μF

(
T(yn–)

)∥∥), (.)
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which the second inequality follows from Lemma .. From (.) and (.), we have

‖xn+ – xn‖
≤ αnρτ‖xn – xn–‖ + γn‖xn – xn–‖ + ( – γn – αnυ)

×
{

‖xn – xn–‖ +

μ

|rn – rn–|‖un– – xn–‖ + M ·
r∑

m=

∣∣ηm
n – ηm

n–
∣∣

+ |δn – δn–|‖un– – zn–‖ + |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)
}

+ |γn – γn–|
(‖xn–‖ +

∥
∥T(yn–)

∥
∥) + |αn – αn–|

(
ρ
∥
∥U(xn–)

∥
∥ +

∥
∥μF

(
T(yn–)

)∥∥)

≤ (
 – (υ – ρτ )

)‖xn – xn–‖ +

μ

|rn – rn–|‖un– – xn–‖ + M ·
r∑

m=

∣
∣ηm

n – ηm
n–
∣
∣

+ |δn – δn–|‖un– – zn–‖ + |βn – βn–|
(‖Sxn–‖ + ‖vn–‖

)

+ |γn – γn–|
(‖xn–‖ +

∥∥T(yn–)
∥∥)

+ |αn – αn–|
(
ρ
∥
∥U(xn–)

∥
∥ +

∥
∥μF

(
T(yn–)

)∥∥)

≤ (
 – (υ – ρτ )

)‖xn – xn–‖ + M ·
r∑

m=

∣
∣ηm

n – ηm
n–
∣
∣ + M

(

μ

|rn – rn–|

+ |δn – δn–| + |βn – βn–| + |γn – γn–| + |αn – αn–|
)

, (.)

where

M = max
{

sup
n≥

‖un– – xn–‖, sup
n≥

‖un– – zn–‖, sup
n≥

(‖Sxn–‖ + ‖vn–‖
)
,

sup
n≥

(‖xn–‖ +
∥
∥T(yn–)

∥
∥),
(
ρ
∥
∥U(xn–)

∥
∥ +

∥
∥μF

(
T(yn–)

)∥∥)
}

.

It follows by condition (a)-(e) of Algorithm . and Lemma . that

lim
n→∞‖xn+ – xn‖ = .

Next, we show that limn→∞ ‖un – xn‖ = . Since x∗ ∈ F = F(T) ∩ VI(C, Bm) ∩ GMEP(F ,
ϕ, D), by using (.) and (.), we obtain

∥
∥xn+ – x∗∥∥ =

〈
PC[Vn] – x∗, xn+ – x∗〉

=
〈
PC[Vn] – Vn, PC[Vn] – x∗〉 +

〈
Vn – x∗, xn+ – x∗〉

≤ 〈
αn
(
ρU(xn) – μF

(
x∗)) + γn

(
xn – x∗) +

(
( – γn)I – αnμF

)
T(yn)

–
(
( – γn)I – αnμF

)
T
(
x∗), xn+ – x∗〉

=
〈
αnρ

(
U(xn) – U

(
x∗)), xn+ – x∗〉 + αn

〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
〈
γn
(
xn – x∗), xn+ – x∗〉

+ ( – γn)
〈(

I –
αnμ

 – γn
F
)

T(yn) –
(

I –
αnμ

 – γn
F
)

T
(
x∗), xn+ – x∗

〉
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≤ (αnρτ + γn)
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn

〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+ ( – γn – αnυ)
∥∥yn – x∗∥∥∥∥xn+ – x∗∥∥

≤ γn + αnρτ


(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


(∥∥yn – x∗∥∥ +

∥
∥xn+ – x∗∥∥)

≤  – αn(υ – ρτ )


∥∥xn+ – x∗∥∥ +
γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


(
βn
∥∥Sxn – x∗∥∥ + ( – βn)

∥∥vn – x∗∥∥)

≤  – αn(υ – ρτ )


∥
∥xn+ – x∗∥∥ +

γn + αnρτ


∥
∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉 +

( – γn – αnυ)βn


∥
∥Sxn – x∗∥∥

+
( – γn – αnυ)( – βn)



× {∥∥xn – x∗∥∥ – rn(θ – rn)
∥∥Dxn – Dx∗∥∥}, (.)

which implies that

∥
∥xn+ – x∗∥∥ ≤ γn + αnρτ

 + αn(υ – ρτ )
∥
∥xn – x∗∥∥

+
αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥

+
( – γn – αnυ)( – βn)

 + αn(υ – ρτ )
{∥∥xn – x∗∥∥ – rn(θ – rn)

∥∥Dxn – Dx∗∥∥}

≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
∥
∥xn – x∗∥∥ +

( – γn – αnυ)βn

 + αn(υ – ρτ )
∥
∥Sxn – x∗∥∥

–
( – γn – αnυ)( – βn)

 + αn(υ – ρτ )
{

rn(θ – rn)
∥
∥Dxn – Dx∗∥∥}.

Then from the above inequality, we get

( – γn – αnυ)( – βn)
 + αn(υ – ρτ )

{
rn(θ – rn)

∥∥Dxn – Dx∗∥∥}

≤ γn + αnρτ

 + αn(υ – ρτ )
∥
∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+ βn
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥
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≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+ βn
∥
∥Sxn – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥
∥xn+ – x∗∥∥)‖xn+ – xn‖.

Since {rn} ⊂ (, θ ), limn→∞ ‖xn+ – xn‖ = , γn → , αn → , and βn → , we obtain
limn→∞ ‖Dxn – Dx∗‖ = .

Since Trn is firmly nonexpansive, we have

∥
∥un – x∗∥∥ =

∥
∥Trn (xn – rnDxn) – Trn

(
x∗ – rnDx∗)∥∥

≤ 〈
un – x∗, (xn – rnDxn) –

(
x∗ – rnDx∗)〉

=


{∥∥un – x∗∥∥ +

∥∥(xn – rnDxn) –
(
x∗ – rnDx∗)∥∥

–
∥∥un – x∗ –

[
(xn – rnDxn) –

(
x∗ – rnDx∗)]∥∥}.

Hence, we get

∥
∥un – x∗∥∥ ≤ ∥

∥(xn – rnDxn) –
(
x∗ – rnDx∗)∥∥ –

∥
∥un – xn + rn

(
Dxn – Dx∗)∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥un – xn + rn

(
Dxn – Dx∗)∥∥

≤ ∥∥xn – x∗∥∥ – ‖un – xn‖ + rn‖un – xn‖
∥∥Dxn – Dx∗∥∥.

From (.), (.), and the above inequality, we have

∥
∥xn+ – x∗∥∥ ≤  – αn(υ – ρτ )


∥
∥xn+ – x∗∥∥ +

γn + αnρτ


∥
∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


(
βn
∥∥Sxn – x∗∥∥ + ( – βn)

∥∥vn – x∗∥∥)

≤  – αn(υ – ρτ )


∥∥xn+ – x∗∥∥ +
γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


(
βn
∥
∥Sxn – x∗∥∥ + ( – βn)

∥
∥un – x∗∥∥)

≤  – αn(υ – ρτ )


∥∥xn+ – x∗∥∥ +
γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


{
βn
∥∥Sxn – x∗∥∥ + ( – βn)

(∥∥xn – x∗∥∥ – ‖un – xn‖

+ rn‖un – xn‖
∥
∥Dxn – Dx∗∥∥)},

which implies

∥
∥xn+ – x∗∥∥ ≤ γn + αnρτ

 + αn(υ – ρτ )
∥
∥xn – x∗∥∥

+
αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉
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+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥

+
( – γn – αnυ)( – βn)

 + αn(υ – ρτ )
{∥∥xn – x∗∥∥ – ‖un – xn‖

+ rn‖un – xn‖
∥∥Dxn – Dx∗∥∥}

≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥
∥Sxn – x∗∥∥

+
∥
∥xn – x∗∥∥ +

( – γn – αnυ)( – βn)
 + αn(υ – ρτ )

× {
–‖un – xn‖ + rn‖un – xn‖

∥∥Dxn – Dx∗∥∥}.

Hence

( – γn – αnυ)( – βn)
 + αn(υ – ρτ )

‖un – xn‖

≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥
∥Sxn – x∗∥∥

+
( – γn – αnυ)( – βn)rn

 + αn(υ – ρτ )
‖un – xn‖

∥
∥Dxn – Dx∗∥∥ +

∥
∥xn – x∗∥∥ –

∥
∥xn+ – x∗∥∥

≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥

+
( – γn – αnυ)( – βn)rn

 + αn(υ – ρτ )
‖un – xn‖

∥∥Dxn – Dx∗∥∥

+
(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)(‖xn+ – xn‖
)
.

Since limn→∞ ‖xn+ – xn‖ = , γn → , αn → , βn → , and limn→∞ ‖Dxn – Dx∗‖ = , we
obtain

lim
n→∞‖un – xn‖ = . (.)

Consider
∥
∥wm

n – x∗∥∥ =
∥
∥PC(I – μmBm)un – PC(I – μmBm)x∗∥∥

≤ ∥
∥(un – x∗) – μm

(
Bmun – Bmx∗)∥∥

=
∥
∥un – x∗∥∥ + μ

m
∥
∥Bmun – Bmx∗∥∥ – μm

〈
un – x∗, Bmun – Bmx∗〉

≤ ∥
∥un – x∗∥∥ + μ

m
∥
∥Bmun – Bmx∗∥∥ – μmlm

∥
∥Bmun – Bmx∗∥∥

≤ ∥∥un – x∗∥∥ – μm(lm – μm)
∥∥Bmun – Bmx∗∥∥,  ≤ ∀m ≤ r.
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It follows that

∥
∥zn – x∗∥∥ =

∥
∥∥∥
∥

r∑

m=

(
ηm

n wm
n
)

– x∗
∥
∥∥∥
∥



≤
r∑

m=

ηm
n
∥
∥wm

n – x∗∥∥

≤ ∥
∥un – x∗∥∥ –

r∑

m=

ηm
n μm(lm – μm)

∥
∥Bmun – Bmx∗∥∥.

Then we have

∥
∥vn – x∗∥∥ =

∥
∥δn

(
un – x∗) + ( – δn)

(
zn – x∗)∥∥

≤ δn
∥∥un – x∗∥∥ + ( – δn)

∥∥zn – x∗∥∥

=
∥∥un – x∗∥∥ – ( – δn)

r∑

m=

ηm
n μm(lm – μm)

∥∥Bmun – Bmx∗∥∥

≤ ∥
∥xn – x∗∥∥ – ( – δn)

r∑

m=

ηm
n μm(lm – μm)

∥
∥Bmun – Bmx∗∥∥.

From (.) and the above inequality, we have

∥
∥xn+ – x∗∥∥ ≤  – αn(υ – ρτ )


∥
∥xn+ – x∗∥∥ +

γn + αnρτ


∥
∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


(
βn
∥∥Sxn – x∗∥∥ + ( – βn)

∥∥vn – x∗∥∥)

≤  – αn(υ – ρτ )


∥∥xn+ – x∗∥∥ +
γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)



{

βn
∥∥Sxn – x∗∥∥ + ( – βn)

(
∥∥xn – x∗∥∥

– ( – δn)
r∑

m=

ηm
n μm(lm – μm)

∥
∥Bmun – Bmx∗∥∥

)}

,

which implies

∥
∥xn+ – x∗∥∥ ≤ γn + αnρτ

 + αn(υ – ρτ )
∥
∥xn – x∗∥∥

+
αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥

–
( – γn – αnυ)( – βn)( – δn)

 + αn(υ – ρτ )

r∑

m=

ηm
n μm(lm – μm)

∥∥Bmun – Bmx∗∥∥.
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Then from the above inequality, we have

( – γn – αnυ)( – βn)( – δn)
 + αn(υ – ρτ )

r∑

m=

ηm
n μm(lm – μm)

∥∥Bmun – Bmx∗∥∥

≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+ βn
∥
∥Sxn – x∗∥∥ +

∥
∥xn – x∗∥∥ –

∥
∥xn+ – x∗∥∥

≤ γn + αnρτ

 + αn(υ – ρτ )
∥
∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+ βn
∥∥Sxn – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)(‖xn+ – xn‖

)
.

Since μn ∈ (, lm), limn→∞ ‖xn+ – xn‖ = , γn → , αn → , and βn → , we obtain

lim
n→∞

∥
∥Bmun – Bmx∗∥∥ = ,  ≤ ∀m ≤ r.

On the other hand, we have

∥
∥wm

n – x∗∥∥

=
∥
∥PC(I – μmBm)un – PC(I – μmBm)x∗∥∥

≤ 〈
(I – μmBm)un – (I – μmBm)x∗, wm

n – x∗〉

=


{∥∥(I – μmBm)un – (I – μmBm)x∗∥∥ +

∥
∥wm

n – x∗∥∥

–
∥
∥(I – μmBm)un – (I – μmBm)x∗ –

(
wm

n – x∗)∥∥}

≤ 

{∥∥un – x∗∥∥ +

∥
∥wm

n – x∗∥∥ –
∥
∥un – wm

n – μm
(
Bmun – Bmx∗)∥∥}

=


{∥∥un – x∗∥∥ +

∥
∥wm

n – x∗∥∥ –
∥
∥un – wm

n
∥
∥

+ μm
〈
Bmun – Bmx∗, un – wm

n
〉
– μ

m
∥
∥Bmun – Bmx∗∥∥},  ≤ ∀m ≤ r.

It follows that

∥∥wm
n – x∗∥∥ ≤ ∥∥un – x∗∥∥ –

∥∥un – wm
n
∥∥ + Qm∥∥Bmun – Bmx∗∥∥,  ≤ ∀m ≤ r, (.)

where Qm is an approximate constant such that

Qm = max
{

μm
∥∥un – wm

n
∥∥ : ∀n ≥ 

}
,  ≤ ∀m ≤ r.

On the other hand, we have

‖zn – un‖ ≤
r∑

m=

(
ηm

n
∥∥wm

n – un
∥∥),
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which combined with (.) gives

∥∥zn – x∗∥∥ ≤
r∑

m=

(
ηm

n
∥∥wm

n – x∗∥∥)

≤ ∥∥un – x∗∥∥ – ‖zn – un‖ +
r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥).

Hence we have

∥∥vn – x∗∥∥ ≤ δn
∥∥un – x∗∥∥ + ( – δn)

∥∥zn – x∗∥∥

≤ ∥∥un – x∗∥∥ – ‖zn – un‖ +
r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥)

≤ ∥
∥xn – x∗∥∥ – ‖zn – un‖ +

r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥).

In view of (.) and the above inequality, we have

∥
∥xn+ – x∗∥∥

≤  – αn(υ – ρτ )


∥
∥xn+ – x∗∥∥ +

γn + αnρτ


∥
∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
 – γn – αnυ


(
βn
∥∥Sxn – x∗∥∥ + ( – βn)

∥∥vn – x∗∥∥)

≤  – αn(υ – ρτ )


∥∥xn+ – x∗∥∥ +
γn + αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉 +

 – γn – αnυ



{

βn
∥
∥Sxn – x∗∥∥

+ ( – βn)

(
∥
∥xn – x∗∥∥ – ‖zn – un‖ +

r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥)

)}

, (.)

which implies that

∥
∥xn+ – x∗∥∥

≤ γn + αnρτ

 + αn(υ – ρτ )
∥
∥xn – x∗∥∥

+
αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥

+
( – γn – αnυ)( – βn)

 + αn(υ – ρτ )

{
∥
∥xn – x∗∥∥ – ‖zn – un‖ +

r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥)

}

.
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Hence

( – γn – αnυ)( – βn)
 + αn(υ – ρτ )

‖zn – un‖

≤ γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

+
r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥)

=
γn + αnρτ

 + αn(υ – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(υ – ρτ )
〈
ρU

(
x∗) – μF

(
x∗), xn+ – x∗〉

+
( – γn – αnυ)βn

 + αn(υ – ρτ )
∥∥Sxn – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)(‖xn+ – xn‖

)

+
r∑

m=

(
Qm∥∥Bmun – Bmx∗∥∥).

Since limn→∞ ‖xn+ – xn‖ = , γn → , αn → , βn → , and limn→∞ ‖Bmun – Bmx∗‖ = ,
we get

lim
n→∞‖zn – un‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖zn – xn‖ = . (.)

From Algorithm ., we have

‖vn – xn‖ ≤ δn‖un – xn‖ + ( – δn)‖zn – xn‖,

which implies

lim
n→∞‖xn – vn‖ = , (.)
∥
∥xn – T(yn)

∥
∥≤ ‖xn – xn+‖ +

∥
∥xn+ – T(yn)

∥
∥

= ‖xn – xn+‖ +
∥
∥PC[Vn] – PC

[
T(yn)

]∥∥

≤ ‖xn – xn+‖ +
∥
∥αn

(
ρU(xn) – μF

(
T(yn)

))
+ γn

(
xn – T(yn)

)∥∥

≤ ‖xn – xn+‖ + αn
∥
∥ρU(xn) – μF

(
T(yn)

)∥∥ + γn
∥
∥xn – T(yn)

∥
∥,

and therefore

∥∥xn – T(yn)
∥∥≤ 

 – γn
‖xn – xn+‖ +

αn

 – γn

∥∥ρU(xn) – μF
(
T(yn)

)∥∥.

Since limn→∞ ‖xn+ – xn‖ = , αn → , we obtain

lim
n→∞

∥∥xn – T(yn)
∥∥ = .
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Since T(xn) ∈ C, we have

∥∥xn – T(xn)
∥∥ ≤ ‖xn – xn+‖ +

∥∥xn+ – T(xn)
∥∥

= ‖xn – xn+‖ +
∥∥PC[Vn] – PC

[
T(xn)

]∥∥

≤ ‖xn – xn+‖ +
∥
∥αn

(
ρU(xn) – μF

(
T(yn)

))

+ γn
(
xn – T(yn)

)
+ T(yn) – T(xn)

∥
∥

≤ ‖xn – xn+‖ + αn
∥∥ρU(xn) – μF

(
T(yn)

)∥∥ + γn
∥∥xn – T(yn)

∥∥ + ‖yn – xn‖
≤ ‖xn – xn+‖ + αn

∥∥ρU(xn) – μF
(
T(yn)

)∥∥ + γn
∥∥xn – T(yn)

∥∥

+
∥
∥βnSxn + ( – βn)vn – xn

∥
∥

≤ ‖xn – xn+‖ + αn
∥∥ρU(xn) – μF

(
T(yn)

)∥∥ + γn
∥∥xn – T(yn)

∥∥

+ βn‖Sxn – xn‖ + ( – βn)‖vn – xn‖.

Since limn→∞ ‖xn+ – xn‖ = , γn → , αn → , βn → , limn→∞ ‖xn – T(yn)‖ = ,
‖ρU(xn) – μF(T(yn))‖, and ‖Sxn – xn‖ are bounded and limn→∞ ‖xn – vn‖ = , we obtain

lim
n→∞

∥∥xn – T(xn)
∥∥ = .

Since {xn} is bounded, without loss of generality we can assume that xn ⇀ x∗ ∈ C. It follows
from Lemma . that x∗ ∈ F(T). Therefore ωω(xn) ⊂ F(T). �

Theorem . The sequence {xn} generated by Algorithm . converges strongly to z, which
is the unique solution of the variational inequality

〈
ρU(z) – μF(z), x – z

〉≤ , ∀x ∈ F = F(T) ∩ VI(C, Bm) ∩ GMEP(F ,ϕ, D). (.)

Proof Since {xn} is bounded, xn ⇀ w, and from Lemma ., we have w ∈ F(T). Next, we
show that w ∈ GMEP(F ,ϕ, D). Since un = Trn (xn – rnDxn), we have

F(un, y) + ϕ(y) – ϕ(un) + 〈Dxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C.

It follows from the monotonicity of F that

ϕ(y) – ϕ(un) + 〈Dxn, y – un〉 +

rn

〈y – un, un – xn〉 ≥ F(y, un), ∀y ∈ C,

and

ϕ(y) – ϕ(unk ) + 〈Dxnk , y – unk 〉 +
〈
y – unk ,

unk – xnk

rnk

〉
≥ F(y, unk ), ∀y ∈ C. (.)

Since limn→∞ ‖un –xn‖ =  and xn ⇀ w, it is easy to observe that unk → w. For any  < t ≤ 
and y ∈ C, let yt = ty + ( – t)w, and we have yt ∈ C. Then from (.), we obtain
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〈Dyt , yt – unk 〉 ≥ ϕ(unk ) – ϕ(yt) + 〈Dyt , yt – unk 〉

– 〈Dxnk , yt – unk 〉 –
〈
yt – unk ,

unk – xnk

rnk

〉
+ F(yt , unk )

= ϕ(unk ) – ϕ(yt) + 〈Dyt – Dunk , yt – unk 〉 + 〈Dunk – Dxnk , yt – unk 〉

–
〈
yt – unk ,

unk – xnk

rnk

〉
+ F(yt , unk ). (.)

Since D is Lipschitz continuous and limn→∞ ‖un – xn‖ = , we obtain limn→∞ ‖Dunk –
Dxnk ‖ = . From the monotonicity of D, the weakly lower semicontinuity of ϕ, and
unk → w, it follows from (.) that

〈Dyt , yt – w〉 ≥ ϕ(w) – ϕ(yt) + F(yt , w). (.)

Hence, from assumptions (A)-(A) and (.), we have

 = F(yt , yt) + ϕ(yt) – ϕ(yt) ≤ tF(yt , y) + ( – t)F(yt , w) + tϕ(y) + ( – t)ϕ(w) – ϕ(yt)

= t
[
F(yt , y) + ϕ(y) – ϕ(yt)

]
+ ( – t)

[
F(yt , w) + ϕ(w) – ϕ(yt)

]

≤ t
[
F(yt , y) + ϕ(y) – ϕ(yt)

]
+ ( – t)t〈Dyt , y – w〉, (.)

which implies that F(yt , y) + ϕ(y) – ϕ(yt) + ( – t)〈Dyt , y – w〉 ≥ . Letting t → +, we have

F(w, y) + ϕ(y) – ϕ(w) + 〈Dw, y – w〉 ≥ , ∀y ∈ C,

which implies that w ∈ GMEP(F ,ϕ, D). Furthermore, we show that w ∈ VI(C, Bm). Define
a mapping J : C → C by

Jx =
r∑

m=

ηmPC(I – μmBm)x, ∀x ∈ C,

where ηm = limn→∞ ηm
n . From Lemma ., we see that J is nonexpansive such that

F(J) =
r⋂

m=

F
(
PC(I – μmBm)

)
=

r⋂

m=

VI(C, Bm).

Note that

‖un – Jun‖ ≤ ‖un – zn‖ + ‖zn – Jun‖

≤ ‖un – zn‖ +

∥
∥∥
∥∥

r∑

m=

ηm
n PC(I – μmBm)un –

r∑

m=

ηmPC(I – μmBm)un

∥
∥∥
∥∥

≤ ‖un – zn‖ + M ·
r∑

m=

∣∣ηm
n – ηm∣∣.

In view of restriction (f ), we find from (.) that

lim
n→∞‖un – Jun‖ = .
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It follows from Lemma . that w ∈ F(J) =
⋂r

m= VI(C, Bm). Thus, we have w ∈ F = F(T)∩
VI(C, Bm) ∩ GMEP(F ,ϕ, D).

Observe that the constants satisfy  < ρτ < ν and

κ ≥ η ⇔ κ ≥ η

⇔  – μη + μκ ≥  – μη + μη

⇔
√

 – μ
(
η – μκ

)≥  – μη

⇔ μη ≥  –
√

 – μ
(
η – μκ

)

⇔ μη ≥ ν,

therefore, from Lemma ., the operator μF – ρU is μη – ρτ -strongly monotone, and
we get the uniqueness of the solution of the variation inequality (.) and denote it by
z ∈ F = F(T) ∩ VI(C, Bm) ∩ GMEP(F ,ϕ, D).

Next, we claim that lim supn→∞〈ρU(z) – μF(z), xn – z〉 ≤ . Since {xn} is bounded, there
exists a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
ρU(z) – μF(z), xn – z

〉
= lim sup

n→∞

〈
ρU(z) – μF(z), xnk – z

〉

=
〈
ρU(z) – μF(z), w – z

〉≤ .

Next, we show that xn → z. We have

‖xn+ – z‖

=
〈
PC[Vn] – z, xn+ – z

〉

=
〈
PC[Vn] – Vn, PC[Vn] – z

〉
+ 〈Vn – z, xn+ – z〉

≤
〈
αn
(
ρU(xn) – μF(z)

)
+ γn(xn – z)

+ ( – γn)
[(

I –
αnμ

 – γn
F
)

T(yn) –
(

I –
αnμ

 – γn
F
)

T(z)
]

, xn+ – z
〉

=
〈
αnρ

(
U(xn) – U(z)

)
, xn+ – z

〉
+ αn

〈
ρU(z) – μF(z), xn+ – z

〉

+ γn〈xn – z, xn+ – z〉

+ ( – γn)
〈(

I –
αnμ

 – γn
F
)

T(yn) –
(

I –
αnμ

 – γn
F
)

T(z), xn+ – z
〉

≤ (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) – μF(z), xn+ – z

〉

+ ( – γn – αnν)‖yn – z‖‖xn+ – z‖
≤ (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn

〈
ρU(z) – μF(z), xn+ – z

〉

+ ( – γn – αnν)
{
βn‖Sxn – Sz‖ + βn‖Sz – z‖ + ( – βn)‖vn – z‖}

× ‖xn+ – z‖
≤ (γn + αnρτ )‖xn – z‖‖xn+ – z‖ + αn

〈
ρU(z) – μF(z), xn+ – z

〉
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+ ( – γn – αnν)
{
βn‖xn – z‖ + βn‖Sz – z‖ + ( – βn)‖xn – z‖}‖xn+ – z‖

=
(
 – αn(ν – ρτ )

)‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) – μF(z), xn+ – z

〉

+ ( – γn – αnν)βn‖Sz – z‖‖xn+ – z‖

≤  – αn(ν – ρτ )


(‖xn – z‖ + ‖xn+ – z‖) + αn
〈
ρU(z) – μF(z), xn+ – z

〉

+ ( – γn – αnν)βn‖Sz – z‖‖xn+ – z‖,

which implies that

‖xn+ – z‖

≤  – αn(ν – ρτ )
 + αn(ν – ρτ )

‖xn – z‖ +
αn

 + αn(ν – ρτ )
〈
ρU(z) – μF(z), xn+ – z

〉

+
( – γn – αnν)βn

 + αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

≤ (
 – αn(ν – ρτ )

)‖xn – z‖ +
αn(ν – ρτ )

 + αn(ν – ρτ )

×
{


ν – ρτ

〈
ρU(z) – μF(z), xn+ – z

〉
+

( – γn – αnν)βn

αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

}
.

It follows from Lemma . that xn → z. This completes the proof. �

4 Applications
In this section, we obtain the following results by using a special case of the proposed
method for example.

Putting D = ϕ = , Bm =  for each m, and δn =  in Algorithm ., we obtain the fol-
lowing result, which can be viewed as an extension and improvement of the method of
Bnouhachem et al. [] for finding the approximate element of the common set of solu-
tions of equilibrium problem and a hierarchical fixed point problem.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let F : C × C → R be a bifunction that satisfy condition (A)-(A), and let S, T : C → C
be nonexpansive mappings such that F(T) ∩ EP(F) �= ∅. Let F : C → C be a κ-Lipschitzian
mapping and η-strongly monotone, and let U : C → C be a τ -Lipschitzian mapping. For
an arbitrarily given x ∈ C, let the iterative sequences {un}, {xn}, and {yn} be generated by

⎧
⎪⎨

⎪⎩

F(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;
yn = βnSxn + ( – βn)un;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)T(yn)], ∀n ≥ .

Suppose that the parameters satisfy  < μ < η

κ ,  ≤ ρτ < υ , where υ = –
√

 – μ(η – μκ).
Also {γn}, {αn}, {βn}, and {rn} are sequences in (, ) satisfying the following conditions:

(a) limn→∞ γn = , γn + αn < ;
(b) limn→∞ αn = , and

∑∞
n= αn = ∞;

(c) limn→∞(βn/αn) = ;
(d)

∑∞
n= |αn – αn–| < ∞,

∑∞
n= |γn – γn–| < ∞, and

∑∞
n= |βn – βn–| < ∞;

(e) lim infn→∞ rn > , and
∑∞

n= |rn – rn–| < ∞.
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Then the sequence {xn} converges strongly to z, which is the unique solution of the varia-
tional inequality:

〈
ρU(z) – μF(z), x – z

〉≤ , ∀x ∈ F(T) ∩ EP(F).

Putting δn = , m =  in Algorithm ., we obtain the following result which can be
viewed as an extension and improvement of the method of Bnouhachem and Chen []
for finding the approximate element of the common set of solutions of variational inequal-
ities, a generalized mixed equilibrium problem, and a hierarchical fixed point problem.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
D, A : C → H be θ ,α-inverse strongly monotone mapping, respectively. Let F : C × C → R
satisfy (A)-(A), and let ϕ : C → R be a proper lower semicontinuous and convex function.
Let S, T : C → C be nonexpansive mappings such that F(T) ∩ VI(C, A) ∩ GMEP(F ,ϕ, D) �=
∅. Let F : C → C be a κ-Lipschitzian mapping and be η-strongly monotone, and let U : C →
C be a τ -Lipschitzian mapping. For an arbitrarily given x ∈ C, let the iterative sequences
{un}, {xn}, {yn}, and {zn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un, y) + 〈Dxn, y – un〉 + ϕ(y) – ϕ(un) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C;
zn = PC[un – λnAun];
yn = βnSxn + ( – βn)zn;
xn+ = PC[αnρU(xn) + γnxn + (( – γn)I – αnμF)T(yn)], ∀n ≥ ,

where λn ∈ (, α), {rn} ⊂ (, θ ). Suppose that the parameters satisfy  < μ < η

κ ,  ≤ ρτ <
υ , where υ = –

√
 – μ(η – μκ). Also {αn}, {βn}, and {γn} are sequences in (, ) satisfying

the following conditions:
(a) limn→∞ γn = , γn + αn < ;
(b) limn→∞ αn = , and

∑∞
n= αn = ∞;

(c) limn→∞(βn/αn) = ;
(d)

∑∞
n= |αn – αn–| < ∞,

∑∞
n= |γn – γn–| < ∞, and

∑∞
n= |βn – βn–| < ∞;

(e) lim infn→∞ rn > , and
∑∞

n= |rn – rn–| < ∞;
(f ) lim infn→∞ λn < lim supn→∞ λn < α and

∑∞
n= |λn – λn–| < ∞.

Then the sequence {xn} converges strongly to z, which is the unique solution of the varia-
tional inequality:

〈
ρU(z) – μF(z), x – z

〉≤ , ∀x ∈ VI(C, A) ∩ GMEP(F ,ϕ, D) ∩ F(T).

Putting ρ = μ = , βn = δn = , ϕ = , U = f a contraction mapping, and F = A a strongly
positive linear bounded operator, we obtain the following theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let Bm : C → H be lm-inverse strongly monotone mapping for each  ≤ m ≤ r, where r is
some positive integer. Let D : C → H be a α-inverse strongly monotone mapping. Let F : C ×
C → R satisfy (A)-(A). Let T : C → C be nonexpansive mappings such that F = F(T) ∩
VI(C, A) ∩ EP �= ∅. Let A be a strongly positive linear bounded operator with coefficient γ
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and let f : H → H be a contraction with contraction constant h ( < h < ) and  < γ <
(γ /h). Let {xn}, {yn}, {ρn} be sequences generated by x ∈ H and

⎧
⎪⎨

⎪⎩

F(yn,η) + 〈Dyn,η – yn〉 + 
rn

〈η – yn, yn – xn〉 ≥ , ∀η ∈ C;
ρn =

∑r
m= ηm

n PC(I – μmBm)yn;
xn+ = αnγ f (xn) + βnxn + (( – βn)I – αnA)T(ρn);

where μm ∈ (, lm), {α}, {β} ⊂ [, ], and {rn} ⊂ [,∞]. If the following conditions are sat-
isfied:

(a) limn→∞ αn = , and
∑∞

n= αn = ∞;
(b) limn→∞ ηm

n = ηm ∈ (, );
(c)

∑∞
n= |rn+ – rn| < ∞;

(d) lim infn→∞ rn > ,  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(e)

∑r
m= ηm

n = , ∀n ≥ ;
then {xn} converges strongly to q ∈ F , where q = PF (γ f + (I – A))q.

Remark If T = Wn in Theorem ., where Wn is the W -mapping of C into itself which is
generated by a family of nonexpansive mappings Sn, Sn–, . . . , S, and a sequence of positive
numbers in [, ] λn,λn–, . . . ,λ, we can easily get Theorem  in Zhou et al. []. It is worth
to mention two points as follows:

() Since we all know that Wn mapping is nonexpansive, if T = Wn in Theorem ., then
we can easily get Theorem  in Zhou et al. [].

() A family of infinite kn-strict pseudocontractive mappings in Theorem  in Zhou et
al. [] did not work, so we should omit them. Theorem  in Zhou et al. [] should
be corrected as follows:

Theorem . Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let Bm : C → H be lm-inverse strongly monotone mapping for each  ≤ m ≤ r, where r
is some positive integer. Let D : C → H be a α-inverse strongly monotone mapping. Let
F : C × C → R satisfy (A)-(A). Let {λn}∞n= be a sequence of positive numbers in [, b] for
some b ∈ (, ), and let {Sn}∞n= : C → C be a family of infinitely nonexpansive mappings such
that F = F(T) ∩ VI(C, A) ∩ EP �= ∅. Let A be a strongly positive linear bounded operator
with coefficient γ and let f : H → H be a contraction with contraction constant h ( < h < )
and  < γ < (γ /h). Let {xn}, {yn}, {ρn} be sequences generated by x ∈ H and

⎧
⎪⎨

⎪⎩

F(yn,η) + 〈Dyn,η – yn〉 + 
rn

〈η – yn, yn – xn〉 ≥ , ∀η ∈ C;
ρn =

∑r
m= ηm

n PC(I – μmBm)yn;
xn+ = αnγ f (xn) + βnxn + (( – βn)I – αnA)Wnρn;

where μm ∈ (, lm), {α}, {β} ⊂ [, ], and {rn} ⊂ [,∞]. If the following conditions are sat-
isfied:

(a) limn→∞ αn = , and
∑∞

n= αn = ∞;
(b) limn→∞ ηm

n = ηm ∈ (, );
(c)

∑∞
n= |rn+ – rn| < ∞;

(d) lim infn→∞ rn > ,  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(e)

∑r
m= ηm

n = , ∀n ≥ ;
then {xn} converges strongly to q ∈ F , where q = PF (γ f + (I – A))q.
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