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Abstract
We consider an inverse problem of determining an unknown source term in the
radially symmetric parabolic equation from a noisy final data and prove the
uniqueness of solution for the problem. Using the Hölder inequality, we obtain a
conditional stability for the space-dependent source term. A modified
quasi-reversibility method is applied to deal with the ill-posedness of the problem.
A Hölder-type error estimate between the approximate solution and the exact
solution is provided by introducing some technical inequalities and choosing a
suitable regularization parameter.
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1 Introduction
Inverse source problems occur in many branches of engineering sciences, for example,
heat conduction, reaction diffusion, pollutant detection, crack identification, geophysi-
cal prospecting and electromagnetic theory. These problems are typically ill-posed in the
sense of Hadamard []. In other words, the solution (if it exists) does not depend contin-
uously on measured data. So, the numerical simulation is very difficult and some special
regularization methods and stability estimates are required.

The inverse source problems have been investigated in many papers; for example, the
existence and uniqueness of the solution were investigated in [, ], the conditional stabil-
ity and the data compatibility were studied in [–], and the numerical algorithms for the
identification problem can be found in [–]. In [], Yang and Fu solved an inverse prob-
lem for determining a heat source in a parabolic equation by a mollification regularization
method, and they gave two kinds of explicit error estimates by using an a priori and an
a posteriori regularization parameter choice rule, respectively. In [], Wei and Wang used
a modified quasi-boundary value method to deal with an inverse source problem of the
time-fractional diffusion equation and provided two kinds of convergence rates. Cheng et
al. in [] solved the identification of an unknown source term in radial heat conduction
by a spectral method and gave a logarithmic-type error estimate. Yang et al. in [] ap-
plied a quasi-boundary value regularization method for identifying an unknown source
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in the Poisson equation. However, to our knowledge, the research into the inverse source
identification problem is mainly devoted to numerical methods. The stability theory with
explicit error estimate for the problem is still limited.

In this paper, we apply a modified quasi-reversibility method to deal with an inverse
source identification problem of a radially symmetric parabolic equation and obtain a
Hölder-type error estimate between the approximate solution and the exact solution. The
physical model we considered is a sphere of radius r with initial state, and it is consid-
ered radially symmetric and with the surface state distribution function remaining zero.
The correspondingly mathematical model is the following radially symmetric parabolic
equation:

∂u
∂t

–
∂u
∂r –


r

∂u
∂r

= f (r),  < r < r,  < t < T , (.)

with the boundary conditions

u(r, t) = , lim
r→

u(r, t) bounded,  ≤ t ≤ T , (.)

and the initial condition and final observation at t = T ,

u(r, ) = , u(r, T) = g(r),  ≤ r ≤ r, (.)

where r denotes the radial coordinate, u represents state function, and f is physical laws,
which means source term here. The inverse source identification problem (.)-(.) is to
determine the unknown source term f (r) from the noisy final data g(r).

The quasi-reversibility method was first proposed by Lattès and Lions in []. This
method consists in replacing the former second-order ill-posed problem into a family of
well-posed fourth-order problems that depend on a regularization parameter α. The so-
lution of quasi-reversibility is close to the exact solution when α is small. This method
has been used to solve various types of inverse problems such as inverse heat conduction
problem [, ], backward heat conduction problem [], the Cauchy problem of Laplace
equation [, ] and Cauchy problem for the modified Helmholtz equation [].

In this study, we propose a modified version of quasi-reversibility method to solve the
inverse source problem (.)-(.), i.e., adding a perturbation term in the parabolic equa-
tion (.) to form an approximate problem:

⎧
⎪⎨

⎪⎩

∂u
∂t – ∂u

∂r – 
r

∂u
∂r = f (r) – α

r


πr (rf (r))′′,  < r < r,  < t < T ,
u(r, ) = , u(r, T) = gδ(r),  ≤ r ≤ r,
u(r, t) = , limr→ u(r, t) bounded,  ≤ t ≤ T ,

(.)

where α plays a role of regularization parameter, data gδ represents the measured data
of function g . For this modification, we can obtain a Hölder-type error estimate with an
a priori choice of regularization parameter.

The paper is organized as follows. In Section , the ill-posedness of problem (.)-(.)
is described. In Section , we prove the uniqueness of solution and obtain a conditional
stability for the inverse source problem (.)-(.) by using the Hölder inequality. Intro-
ducing some technical inequalities and choosing a suitable regularization parameter, in
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Section  we present a Hölder-type error estimate between the approximate solution and
the exact solution for the modified quasi-reversibility method.

2 Ill-posedness of problem (1.1)-(1.3)
In this section, we derive an analytical solution for the inverse source problem by the eigen-
function expansion and analyze the ill-posedness of inverse source problem (.)-(.).
Throughout this paper, we denote by L[, r; r] the Hilbert space of Lebesgue measur-
able functions h with weight r on [, r], and (·, ·) and ‖ · ‖ denote the inner product and
the norm on L[, r; r], respectively, with the norm

‖h‖ =
(∫ r


r∣∣h(r)

∣
∣ dr

) 


.

If the solution of problem (.)-(.) exists, then it must be unique, which will be given in
Section .

Applying separation of variables, we can obtain the eigenvalues and corresponding
eigenfunctions of problem (.)-(.):

λn =
(

nπ

r

)

and Rn(r) = j
(

nπr
r

)

, n = , , . . . ,

where j(x) = sin x
x denotes a spherical Bessel function of the first kind []. Then, using the

eigenfunction method, we suppose that the solution u(r, t) and nonhomogeneous term
f (r) of problem (.)-(.) can be represented as follows:

u(r, t) =
∞∑

n=

un(t)j
(

nπr
r

)

, (.)

f (r) =
∞∑

n=

fnj
(

nπr
r

)

. (.)

Applying the properties of j(x), the eigenfunctions system j( nπr
r

) is complete and orthog-
onal with weight r on [, r]. Substituting (.) and (.) into equation (.) and the initial
condition in (.), we have that un(t) satisfies

{
u′

n(t) + (nπ/r)un(t) = fn,
un() = .

(.)

Solving this initial problem yields

un(t) =
∫ t


fne–( nπ

r
)(t–τ ) dτ , n = , , . . . . (.)

Combining (.) with (.), we have

u(r, t) =
∞∑

n=

fn

(∫ t


e–( nπ

r
)(t–τ ) dτ

)

j
(

nπr
r

)

.
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From (.) at t = T ,

g(r) =
∞∑

n=

fn

(∫ T


e–( nπ

r
)(T–τ ) dτ

)

j
(

nπr
r

)

. (.)

Thus, there holds

fn =
((nπ )/r

)
∫ T

 e–( nπ
r

)(T–τ ) dτ

∫ r


rg(r)j

(
nπr
r

)

dr, n = , , . . . , (.)

since

∫ T


e–( nπ

r
)(T–τ ) dτ =

(
r

nπ

)(
 – e–( nπ

r
)T)

,

then formula (.) becomes

g(r) =
∞∑

n=

fn

(
r

nπ

)(
 – e–( nπ

r
)T)

j
(

nπr
r

)

. (.)

Define

ϕn(r) =
√

nπ
√

r


j
(

nπr
r

)

, (.)

this eigenfunctions system is orthonormal with weight r on [, r] and a complete system
in L[, r; r]. Combining (.) with (.), formula (.) can be rewritten as

g(r) =
∞∑

n=

(
r

nπ

)(
 – e–( nπ

r
)T)

(f ,ϕn)ϕn(r). (.)

In practical applications, the input data g can only be measured, so we actually have the
measured data function gδ(·) which belongs to L[, r; r] and satisfies

∥
∥g – gδ

∥
∥ ≤ δ, (.)

where δ >  denotes the noise level.
We introduce an operator K : f (·) → g(·), then we have

g(r) = Kf (r) =
∞∑

n=

(
r

nπ

)(
 – e–( nπ

r
)T)

(f ,ϕn)ϕn. (.)

It is easy to see that K is linear self-adjoint compact operator with eigenvalues

kn =
(

r

nπ

)(
 – e–( nπ

r
)T)

(.)

and eigenelements ϕn. From formula (.), we have

(g,ϕn) = (f ,ϕn)kn,
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then

f (r) =
∞∑

n=

(f ,ϕn)ϕn =
∞∑

n=

k–
n (g,ϕn)ϕn. (.)

Since the eigenvalues kn of the operator K decay, we realize that problem (.)-(.) is an
ill-posed problem.

It is well known that for any ill-posed problems an a priori bound assumption for the
exact solution is needed and necessary. Otherwise, the convergence of the regularized
approximation solution will not be obtained or the convergence rate can be arbitrarily
slow []. Assume also that there exists an a priori condition for problem (.)-(.):

‖f ‖p ≤ E, p > , (.)

where ‖f ‖p is defined by

‖f ‖p =

( ∞∑

n=

(
 + n)p∣∣(f ,ϕn)

∣
∣

) 


.

3 Uniqueness and conditional stability for problem (1.1)-(1.3)
In this section, we provide the uniqueness and conditional stability in Theorems . and
., respectively.

Let g be a known function in L[, r; r]. We consider the problem of finding a pair of
functions (u(r, t), f (r)).

Theorem . If ui ∈ C,((, r) × (, T]), fi ∈ L[, r; r] (i = , ). Let (ui, fi) (i = , ) sat-
isfy problem (.)-(.), then (u, f) = (u, f).

Proof Put ũ = u – u, f̃ = f – f, it is easy to know that ũ satisfies

⎧
⎪⎨

⎪⎩

ũt – ũrr – 
r ũr = f̃ (r),  < r < r,  < t < T ,

ũ(r, t) = ,  ≤ t ≤ T ,
ũ(r, ) = , ũ(r, T) = ,  ≤ r ≤ r.

(.)

We now introduce a function

ν(r, t) = ũ(r, t) + F(r), (.)

where

F(r) =
∫ r


ξ–

∫ ξ


τ  f̃ (τ ) dτ dξ –

∫ r


ξ–

∫ ξ


τ  f̃ (τ ) dτ dξ . (.)

According to formulas (.)-(.), we can obtain that the function ν(r, t) satisfies

νt – νrr –

r
νr = ,  < r < r,  < t < T , (.)

ν(r, t) = ,  ≤ t ≤ T , (.)
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ν(r, ) = ν(r, T) = F(r),  ≤ r ≤ r. (.)

From (.)-(.), we have

∫ T



∫ r


rν

(

νt – νrr –

r
νr

)

dr dt

=



∫ r


rν|t=T

t= dr –
∫ T



∫ r


ν d

(
rνr

)
dt

=



∫ r


r(ν(r, T) – ν(r, )

)
dr

–
∫ T



(

rννr|r=r
r= –

∫ r


rν

r dr
)

dt

=
∫ T



∫ r


rν

r dr dt = .

Thus,

ν
r = ,

i.e.,

ν(r, t) = C(t),  ≤ r ≤ r.

So there holds ν(r, t) = C(t). Combining this with (.) yields

ν(r, t) ≡ , (r, t) ∈ [, r] × [, T]. (.)

From (.) and (.), we get

F(r) ≡ , (r, t) ∈ [, r] × [, T] (.)

and

∫ r


ξ–

∫ ξ


τ  f̃ (τ ) dτ dξ –

∫ r


ξ–

∫ ξ


τ  f̃ (τ ) dτ dξ = . (.)

Differentiating (.) with respect to r, we obtain f̃ ≡ . Substituting (.) and (.) into
(.) yields ũ ≡ . The uniqueness of inverse source problem (.)-(.) is proved. �

We give a conditional stability for the inverse source problem (.)-(.) in the following
theorem.

Theorem . Let f (r) be the solution of the inverse source problem (.)-(.), and condi-
tion (.) be satisfied, then the following estimate holds:

‖f ‖ ≤
(

e(π/r)Tπ

(e(π/r)T – )r


) p
p+

E


p+ ‖g‖ p
p+ . (.)
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Proof From (.) and the Hölder inequality, the following holds:

‖f ‖ =

∥
∥
∥
∥
∥

∞∑

n=

k–
n (g,ϕn)ϕn

∥
∥
∥
∥
∥



=
∞∑

n=

|kn|–|gn| =
∞∑

n=

|kn|–|gn|


p+ |gn|
p

p+

≤
[ ∞∑

n=

(|kn|–|gn|


p+
) p+



] 
p+

[ ∞∑

n=

(|gn|
p

p+
) p+

p

] p
p+

=

[ ∞∑

n=

∣
∣k–

n
∣
∣p+|gn|

] 
p+

[ ∞∑

n=

|gn|
] p

p+

=

[ ∞∑

n=

∣
∣k–

n
∣
∣p∣∣k–

n gn
∣
∣

] 
p+

‖g‖ p
p+

=

[ ∞∑

n=

∣
∣
∣
∣

(nπ/r)

 – e–(nπ/r)T

∣
∣
∣
∣

p(
 + n)–p( + n)p|fn|

] 
p+

‖g‖ p
p+

≤ max
n∈N

∣
∣
∣
∣

(
π

r

) e(nπ/r)T

e(nπ/r)T – 

∣
∣
∣
∣

p
p+

[ ∞∑

n=

(
 + n)p|fn|

] 
p+

‖g‖ p
p+

≤
(

e(π/r)Tπ

(e(π/r)T – )r


) p
p+

E


p+ ‖g‖ p
p+ .

The proof is completed. �

4 Modified quasi-reversibility method and error estimate
In this section, we propose a modified quasi-reversibility method to solve problem (.)-
(.) and give a Hölder-type error estimate with some technical inequalities and an a priori
regularization parameter choice rule.

Let (uδ
α(r, t), f δ

α (r)) be the solution of the following regularized problem:

⎧
⎪⎨

⎪⎩

∂uδ
α

∂t – ∂uδ
α

∂r – 
r

∂uδ
α

∂r = f δ
α (r) – α

r


πr (rf δ
α (r))′′,  < r < r,  < t < T ,

uδ
α(r, ) = , uδ

α(r, T) = gδ(r),  ≤ r ≤ r,
uδ

α(r, t) = , limr→ uδ
α(r, t) bounded,  ≤ t ≤ T ,

(.)

where α >  is a regularization parameter.
Similar to the derivation process of formula (.), we can obtain the solution of problem

(.) as follows:

f δ
α (r) =

∞∑

n=

k–
n

 + αn (gδ ,ϕn)ϕn. (.)

We call f δ
α (r) above the quasi-reversibility approximations of the solution f (r) of problem

(.)-(.).
Before giving an error estimate, we present firstly the following lemma which is crucial

for error estimate.
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Lemma . Let x ≥ , then we have the inequality


 – e–x ≤ e

e – 
. (.)

Lemma . If constants α > , p > , then we obtain the inequality

max
n∈N

αn

 + αn

(
 + n)– p

 ≤
{

α
p
 ,  < p < ,

α, p ≥ .
(.)

Proof Let

ψ(n) =
αn

 + αn

(
 + n)– p

 . (.)

The proof of (.) is divided into two cases.
Case I. For large values of n, i.e., for n ≥ n := α– 

 , we have

ψ(n) ≤ (
 + n)– p

 ≤ n–p
 = α

p
 . (.)

Case II. For n < n, there holds

ψ(n) ≤ αn( + n)– p
 . (.)

If  < p < , inequality (.) becomes

ψ(n) ≤ αn · n–p ≤ α
p
 . (.)

If p ≥ , we obtain

ψ(n) ≤ αn

 + n ≤ α. (.)

According to (.)-(.), the proof of (.) is completed. �

Theorem . Let f (r) given by (.) be the exact source history for r ∈ [, r] and f δ
α (r)

given by (.) be the regularized approximation source to f (r). Suppose that the a priori
condition (.) and the noise assumption (.) hold, then:

() If  < p <  and select the regularization parameter α = ( δ
E )


p+ , there holds the

stability estimate

∥
∥f (·) – f δ

α (·)∥∥ ≤
(

 +
πe(π/r)T

r
(e(π/r)T – )

)

E


p+ δ
p

p+ . (.)

() If p ≥  and choose the regularization parameter α = ( δ
E ) 

 , there holds the stability
estimate

∥
∥f (·) – f δ

α (·)∥∥ ≤
(

 +
πe(π/r)T

r
(e(π/r)T – )

)

E

 δ


 . (.)
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Proof Due to (.) and (.), there holds

∥
∥f (·) – f δ

α (·)∥∥ =

∥
∥
∥
∥
∥

∞∑

n=

k–
n (g,ϕn)ϕn –

∞∑

n=

k–
n

 + αn

(
gδ ,ϕn

)
ϕn

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=

k–
n (g,ϕn)ϕn –

∞∑

n=

k–
n

 + αn (g,ϕn)ϕn

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=

k–
n

 + αn

(
g – gδ ,ϕn

)
ϕn

∥
∥
∥
∥
∥

≤ sup
n∈N

αn

 + αn

(
 + n)–p/

∥
∥
∥
∥
∥

∞∑

n=

(
 + n)p/k–

n (g,ϕn)ϕn

∥
∥
∥
∥
∥

+ sup
n∈N

( nπ
r

)

( + αn)


( – e–(nπ/r)T )

∥
∥
∥
∥
∥

∞∑

n=

(
g – gδ ,ϕn

)
ϕn

∥
∥
∥
∥
∥

≤ sup
n∈N

(
π

r

) 
α


( – e–(nπ/r)T )

‖g – gδ‖

+ sup
n∈N

αn

 + αn

(
 + n)–p/‖f ‖p.

Combining with conditions (.), (.) and inequalities (.), (.), we obtain

∥
∥f (·) – f δ

α (·)∥∥ ≤ πe(π/r)T

r
(e(π/r)T – )

δ

α
+

{
Eα

p
 ,  < p < ,

Eα, p ≥ .

Choose the regularization parameter α by

α =

{
( δ

E )


p+ ,  < p < ,
( δ

E ) 
 , p ≥ .

Thus, we have

∥
∥f (·) – f δ

α (·)∥∥ ≤

⎧
⎪⎨

⎪⎩

( + πe(π/r)T

r
(e(π/r)T –)

)E


p+ δ
p

p+ ,  < p < ,

( + πe(π/r)T

r
(e(π/r)T –)

)E 
 δ


 , p ≥ .

The proof is completed. �

Remark . In general, the a priori bound E is unknown in practice. In this case, for
Theorem ., with

α =

{
δ


p+ ,  < p < ,

δ

 , p ≥ ,

the following stability estimates hold:

∥
∥f (·) – f δ

α (·)∥∥ ≤

⎧
⎪⎨

⎪⎩

(E + πe(π/r)T

r
(e(π/r)T –)

)δ
p

p+ ,  < p < ,

(E + πe(π/r)T

r
(e(π/r)T –)

)δ 
 , p ≥ ,
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where E is only a bounded positive constant and it is not necessary to know it ex-
actly.
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