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Abstract
In this paper we discuss the problem of pth moment exponential stability for general
nonlinear stochastic differential equations with Markovian switching and
time-varying delay. By using the Lyapunov function, the stochastic analysis technique
and the generalized Halanay inequality, some novel sufficient conditions on pth
moment exponential stability of stochastic differential equations with Markovian
switching and time-varying delay are derived. The results obtained in this paper are
completely new and modify and improve some known results. Moreover, two
numerical examples are also provided to demonstrate the effectiveness and
applicability of the theoretical results. The aim of this paper is to investigate pth
moment exponential stability of general nonlinear stochastic differential equations
with Markovian switching and time-varying delay.
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1 Introduction
In the last decades, the stability of stochastic differential equations has been extensively
studied by many authors (see, e.g., [–]). Recently, the stability of stochastic differen-
tial equations with Markovian switching (or jumping) has received a lot of attention. For
example, Ji and Chizeck [] and Mariton [] studied the stability of a jump linear equa-
tion. Basak et al. [] discussed the stability of a semi-linear stochastic differential equation
with Markovian switching. Mao [] as well as Shaikhet [] investigated the stability for
nonlinear stochastic differential delay equations with Markovian switching. Especially, for
a systematic and detailed review about stochastic differential equations with Markovian
switching, Mao and Yuan [] should be referred to.

Most of these papers are concerned with asymptotics in the probability or in mean
square, while to the best of our knowledge, very few studies on pth moment exponential
stability of stochastic differential delay equations with Markovian switching. We should
point out that [], Theorem . investigated pth moment exponential stability for general
nonlinear stochastic differential equations with Markovian switching and constant delay,
however, this theorem cannot apply to the case of stochastic differential equations with
Markovian switching and variable time delay. We should also point out that [], Theo-
rem . discussed pth moment exponential stability for a general nonlinear stochastic
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differential equation with Markovian switching and time-varying delay under the follow-
ing assumptions: the delay functions are differentiable and the corresponding derivatives
are simultaneously required to be not greater than . Obviously these impose a very strict
constraint on the model because time delays sometimes vary dramatically with time in
real models [, ].

Motivated by the above discussions, the purpose of this paper is to study pth moment
exponential stability of a general nonlinear stochastic differential equation with Marko-
vian switching and time-varying delay. By virtue of the generalized Halanay inequality and
using stochastic analysis techniques, we establish a set of novel sufficient criteria for pth
moment exponential stability. Finally, the effectiveness of the proposed methods is illus-
trated by examples.

2 Model description, notations, and assumptions
Notations The notations are quite standard. Throughout this paper,Rn andR

n×m denote,
respectively, the n dimensional Euclidean space and the set of all n × m real matrices. The
superscript T denotes the transpose. I is the identity matrix with compatible dimension.
For a fixed τ ∈ [,∞) denoting the delay or time-lag, let C := C([–τ , ];Rn) be the family of
continuous functions ζ : [–τ , ] �→R

n with the norm ‖ζ‖ := sup–τ≤θ≤ |ζ (θ )|, where | · | is
the Euclidean norm in R

n. If A is a matrix, we denote by ‖A‖ its operator norm, i.e., ‖A‖ =
sup {|Ax| : |x| = } =

√
λmax(AT A) where λmax(·) (respectively, λmin(·)) means the largest (re-

spectively, smallest) eigenvalue of A. Moreover, let (�,F , {Ft}t≥,P) be a complete prob-
ability space with a filtration {Ft}t≥ (i.e., it is right-continuous and F contains all P-null
sets). Denote by Cb

F
([–τ , ];Rn) the family of all bounded, F-measurable, C([–τ , ];Rn)-

valued random variables. For p >  and τ > , denote by Lp
F

([–τ , ];Rn) the family of all
F-measurable C([–τ , ];Rn)-valued random variables φ = {φ(θ ) : –τ ≤ θ ≤ } such that
sup–τ≤θ≤ E|φ(θ )|p < ∞, where E stands for the corresponding expectation operator with
respect to the given probability measure P. ω(t) = (ω(t), . . . ,ωm(t))T is an m-dimensional
Brownian motion defined on a complete probability space (�,F ,P) with a natural filtra-
tion {Ft}t≥ (i.e., Ft = σ {ω(s) :  ≤ s ≤ t} and F contains all P-null sets).

Let {r(t)}t≥ be a right-continuous irreducible homogeneous Markov chain defined on
the probability space (�,F ,P) taking values in a finite state space S := {, , . . . , N} with
generator 
 := (γij)N×N given by

P
{

r(t + �) = j|r(t) = i
}

=

{
γij� + o(�) if i 	= j,
 + γii� + o(�) if i = j,

where � > , lim�→ o(�)/� = , γij ≥  is the transition rate from i to j, if i 	= j, while
γii = –

∑
j 	=i γij. We assume that the Markov chain {r(t)}t≥ is independent of the Brownian

motion {ω(t)}t≥.
Consider a stochastic differential equation with Markovian switching and time-varying

delay of the form

dx(t) = f
(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
dt + g

(
x(t), x

(
t – τ (t)

)
, t, r(t)

)
dω(t) (.)

on t ≥ , with initial conditions r() = i ∈ S and x(s) = ξ (s) ∈ Cb
F

([–τ , ];Rn) for s ∈
[–τ , ]. Here f : Rn × R

n × R
+ × S → R

n and g : Rn × R
n × R

+ × S → R
n×m are mea-
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surable mappings, x(t) = (x(t), . . . , xn(t))T and τ (t) : [,∞) → [, τ ] is a Borel measurable
function.

In order to guarantee the existence and uniqueness of the solution to (.), we shall
impose some assumptions:

(H) Both f and g satisfy the local Lipschitz condition. That is, for each k = , , . . . ,
there is an hk >  such that

∣∣f (x, y, t, i) – f (x̄, ȳ, t, i)
∣∣ +

∣∣g(x, y, t, i) – g(x̄, ȳ, t, i)
∣∣ ≤ hk

(|x – x̄| + |y – ȳ|)

for all t ≥ , i ∈ S and those x, y, x̄, ȳ ∈R
n with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ k.

(H) Both f and g satisfy the linear growth condition, that is, there is an h >  such that

∣∣f (x, y, t, i) + g(x, y, t, i)
∣∣ ≤ h

(
 + |x| + |y|)

for all x, y ∈R
n, t ≥ , and i ∈ S.

(H) f (, , t, i) = , g(, , t, i) = , where i ∈ S, t ∈R
+.

Throughout this paper, we always assume that f and g satisfy the usual local Lipschitz
condition and linear growth condition. It follows from [] that, for any given initial data
r() ∈ S and x = ξ ∈ Cb

F
([–τ , ];Rn), system (.) has a unique global solution on t ∈ R

+

and we denote the solution by x(t; r(), ξ ). For notational simplicity, we write x(t; r(), ξ ) =
x(t).

Let C,(Rn × R
+ × S;R+) denote the family of all non-negative functions V (x, t, i) on

R
n ×R

+ × S which are twice continuously differentiable in x and once differentiable in t.
For V ∈ C,(Rn × R

+ × S;R+), we define an operator from R
n × R

n × R
+ × S to R as

follows:

L V (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)f (x, y, t, i)

+



trace
[
gT (x, y, t, i)Vxx(x, t, i)g(x, y, t, i)

]
+

N∑

j=

γijV (x, t, j), (.)

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x
, . . . ,

∂V (x, t, i)
∂xn

)
,

Vxx(x, t, i) =
(

∂V (x, t, i)
∂xi ∂xj

)

n×n
.

Under Hypothesis (H), system (.) admits a trivial solution x(t; i, ) =  corresponding
to the initial data ξ =  and r() = i.

The following definitions will be used in the sequel.

Definition  The trivial point of system (.) is said to be pth moment exponentially stable
if there exist α >  and β >  such that

E
∣∣x(t; ξ )

∣∣p ≤ αe–βt sup
–τ≤θ≤

E
∣∣ξ (θ )

∣∣p, t ≥ ,

holds for any ξ ∈ Cb
F

([–τ , ];Rn).
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Definition  For a continuous function h : R −→ R, the upper right Dini-derivative d+h
of h is defined as

d+h(t) = lim sup
δ−→+

h(t + δ) – h(t)
δ

.

3 Main results
In this section, we first present a lemma and a proposition which help us prove our main
results.

Lemma  (Hardy inequality, [], Lemma ) Assume that there exist constants ak ≥ ,
pk ≥  (k = , , . . . , m + ), then the following inequality holds:

(m+∏

k=

apk
k

) 
Sm+

≤
(m+∑

k=

pkar
k

) 
r

S
–
r

m+, (.)

where r >  and Sm+ =
∑m+

k= pk . In (.), if we let pm+ = , r = Sm+ =
∑m

k= pk + , we will
get

( m∏

k=

apk
k

)

am+ ≤ 
r

( m∑

k=

pkar
k

)

+

r

ar
m+, (.)

if we let pm+ = , r = Sm+ =
∑m

k= pk + , we will get

( m∏

k=

apk
k

)

am+ ≤ 
r

( m∑

k=

pkar
k

)

+

r

ar
m+. (.)

Proposition  Assume that there are positive continuous functions λ(t, i), λ(t, i) (i ∈ S)
such that  < λ ≤ λ(t, i) and  < λ(t, i) ≤ qλ(t, i) with  ≤ q <  for all t ∈ R

+, and y(t, i)
(i ∈ S) is a non-negative continuous function on [–τ ,∞] and satisfies the following inequal-
ity:

d+y(t, i) ≤ –λ(t, i)y(t, i) + λ(t, i)ȳ(t, i) (.)

on t ∈ R
+, where ȳ(t, i) = supt–τ≤s≤t{y(s, r(s))}, τ ≥  is a constant. Then for all t ∈ R

+, we
have

y(t, i) ≤ ỹ(t, i)e–λ∗t , (.)

where ỹ(t, i) = sup–τ≤t≤ |y(t, r(t))|, and λ∗ >  is defined as

λ∗ = inf
t∈R+

{
λ(t, i) : λ(t, i) = λ(t, i) – λ(t, i)eλ(t,i)τ}. (.)

Proof Note that the result is trivial if τ = . In the following we assume that τ > . Denote

H(λ) = λ – λ(t, i) + λ(t, i)eλτ .
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By the condition  < λ ≤ λ(t, i),  < λ(t, i) ≤ qλ(t, i) for all t ∈ R
+, we have H() =

–λ(t, i) + λ(t, i) ≤ –( – q)λ(t, i) ≤ (q – )λ < , limλ−→∞ H(λ) = ∞, and H ′(λ) =  +
λ(t, i)τeλτ >  for any given fixed t ∈ R

+. So H(λ) is a strictly monotone increasing func-
tion. Therefore for any t ∈ R

+ there is a unique positive λ(t, i) such that λ(t, i) – λ(t, i) +
λ(t, i)eλ(t,i)τ = . From the definition, one has λ∗ ≥ . We have to prove λ∗ > . Suppose
this is not true. Fix q̃ satisfying  ≤ q < q̃ <  and choose ε < min{( 

τ
) ln( 

q̃ ), ( – q
q̃ )λ}. Then

there is t∗ ≥  such that λ̃(t∗, i) < ε and λ̃(t∗, i) – λ(t∗, i) + λ(t∗, i)eλ̃(t∗ ,i)τ = . Now we have

 = λ̃
(
t∗, i

)
– λ

(
t∗, i

)
+ λ

(
t∗, i

)
eλ̃(t∗ ,i)τ

< ε – λ
(
t∗, i

)
+ λ

(
t∗, i

)
eετ

< ε – λ
(
t∗, i

)
+


q̃
λ

(
t∗, i

)

≤ ε – λ
(
t∗, i

)
+

q
q̃
λ

(
t∗, i

)

= ε –
(

 –
q
q̃

)
λ

(
t∗, i

)

≤ ε –
(

 –
q
q̃

)
λ < ,

which is a contradiction.
For any given k > , set x(t, i) = kỹ(t, i)e–λ∗t and z(t, i) = x(t, i) – y(t, i). Suppose (.) fails.

Then there exists a k >  such that

y(t, i) > kỹ(t, i)e–λ∗(t,i)t

for some t ∈R
+. Let ζ = inf{t ≥  : x(t, i) – y(t, i) ≤ }. Then we have for some ζ > τ that

z(ζ ) = x(ζ ) – y(ζ ) =  and z′(ζ ) = x′(ζ ) – y′(ζ ) ≤ . (.)

Hence

z′(ζ ) = x′(ζ ) – y′(ζ )

≥ –kỹ(t, i)λ∗e–λ∗ζ –
[
–λ(ζ , i)y(ζ , i) + λ(ζ , i)ȳ(ζ , i)

]

> –kỹ(t, i)λ∗e–λ∗ζ + kỹ(t, i)λ(ζ , i)e–λ∗ζ – kỹ(t, i)λ(ζ , i)e–λ∗(ζ–τ )

≥ kỹ(t, i)e–λ∗ζ
[
–λ∗ + λ(ζ , i) – λ(ζ , i)eλ∗τ

]
.

Let λ(ζ , i) satisfy λ(ζ , i) – λ(ζ , i) + λ(ζ , i)eλ(ζ ,i)τ = . According to the definition of λ∗, it
follows that

–λ∗ + λ(ζ , i) – λ(ζ , i)eλ∗τ

=
[
–λ∗ + λ(ζ , i) – λ(ζ , i)eλ∗τ

]
+

[
λ(ζ , i) – λ(ζ , i) + λ(ζ , i)eλ(ζ ,i)τ ]

=
(
λ(ζ , i) – λ∗) + λ(ζ , i)

[
eλ(ζ ,i)τ – eλ∗τ

] ≥ .
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Therefore

z′(ζ ) = x′(ζ ) – y′(ζ ) > kȳ
(
, r()

)
e–λ∗ζ

[
–λ∗ + λ(ζ , i) – λ(ζ , i)eλ∗τ

] ≥ .

Obviously, this contradicts (.) and hence

y(t, i) ≤ ȳ
(
, r()

)
e–λ∗t for t ∈R

+. �

Remark Obviously, if taking S = {}, then Proposition  reduces to [], Lemma . So
Proposition  extends and improves the corresponding result given in [], Lemma .

Theorem  Let (H) and (H) hold. Assume that there exists a function V ∈ C,(Rn ×
R

+ × S;R+) such that

c|x|p ≤ V (x, t, i) ≤ c|x|p (.)

and

L V (x, y, t, i) ≤ –λ(t, i)V (x, t, i) + λ(t, i)V (y, t, i) (.)

for all x, y ∈R
n, t ∈ R

+ and i ∈ S, where p, c, c are positive numbers and  < λ ≤ λ(t, i),
 < λ(t, i) ≤ qλ(t, i) with  ≤ q < . Then

lim sup
t→∞


t

log
(
E

∣∣x(t; ξ )
∣∣p) ≤ –λ∗ (.)

for all ξ ∈ Cb
F

([–τ , ];Rn), and

E
(∣∣x(t; ξ )

∣∣p) ≤ c

c
E

(
sup

–τ≤s≤

∣∣ξ (s)
∣∣p

)
e–λ∗t , (.)

where λ∗ >  is the unique root to the equation

λ∗ – λ(t, i) + λ(t, i)eλ∗τ = . (.)

In other words, the trivial solution of system (.) is pth moment exponentially stable and
the pth moment Lyapunov exponent is not greater than –λ∗.

Proof For any small enough δ > , applying the generalized Itô formula, we have

EV
(
x(t + δ), t + δ, r(t + δ)

)
– EV

(
x(t), t, r(t)

)

=
∫ t+δ

t
EL V

(
x(s), x

(
s – τ (s)

)
, s, r(s)

)
ds

≤
∫ t+δ

t

[
–λ

(
s, r(s)

)
EV

(
x(s), s, r(s)

)
+ λ

(
s, r(s)

)
EV

(
x
(
s – τ (s)

)
, s, r(s)

)]
ds

≤
∫ t+δ

t

[
–λ

(
s, r(s)

)
EV

(
x(s), s, r(s)

)
+ λ

(
s, r(s)

)
sup

s–τ≤θ≤s
EV

(
x(θ ), θ , r(θ )

)]
ds. (.)
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Taking y(t, r(t)) = EV (x(t), t, r(t)), then from inequality (.) we obtain

d+y(t, i) ≤ –λ(t, i)y(t, i) + λ(t, i)ȳ(t, i),

for all r(t) = i ∈ S. Hence, it follows from Proposition  that

y(t, i) ≤ ỹ(t, i)e–λ∗t ,

where ỹ(t, i) = sup–τ≤s≤ y(s, r(s)).
On the other hand, by inequality (.), we get

ỹ(t, i) = sup
–τ≤s≤

y
(
s, r(s)

)
= sup

–τ≤s≤
EV

(
x(s), s, r(s)

)

≤ c sup
–τ≤s≤

E
(∣∣ξ (s)

∣∣p) ≤ cE
(

sup
–τ≤s≤

∣∣ξ (s)
∣∣p

)

and

E
(∣∣x(t)

∣∣p) ≤ 
c

y(t, i). (.)

Hence

E
(∣∣x(t; ξ )

∣∣p) ≤ c

c
E

(
sup

–τ≤s≤

∣∣ξ (s)
∣∣p

)
e–λ∗t , (.)

where λ∗ is the unique positive root of the following equation:

λ∗ = λ(t, i) – λ(t, i)eλ∗τ , i ∈ S.

Therefore, by Definition , we see that system (.) is pth moment exponentially stable.
�

4 Numerical examples
In this section, we will discuss two examples to demonstrate the effectiveness of the ob-
tained theory.

Example  Consider a one-dimensional stochastic differential equation with Markovian
switching and time-varying delay of the form

d
(
x(t)

)
= f

(
x(t), t, r(t)

)
dt + g

(
x
(
t – τ (t)

)
, t, r(t)

)
dω(t) (.)

on t ≥ , where f , g : R × R
+ × S → R, ω(t) is a scalar Brownian motion, and r(t) is a

right-continuous irreducible homogeneous Markov chain taking values in S = {, } with
generator


 = (γij)× =

[
– 
 –

]

.
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Assume that ω(t) and r(t) are mutually independent, and

xf (x, t, ) ≤ x


, xf (x, t, ) ≤ –x (.)

for all (x, t) ∈R×R
+, while

∣∣g(y, t, )
∣∣ ≤ |y|


,

∣∣g(y, t, )
∣∣ ≤ |y|


(.)

for all (y, t) ∈R×R
+. To examine third moment exponential stability, we construct a Lya-

punov function V : R×R
+ × S→ R

+ by

V (x, t, i) = αi|x| (.)

with α = α >  and α = . It is simple to show that the operator L V (x, y, t, i) from R ×
R×R

+ × S to R has the following form:

L V (x, y, t, i) = αi|x|xf (x, t, i) + αi|x|∣∣g(y, t, i)
∣∣ + (γiα + γi)|x|. (.)

By conditions (.) and (.), we have

L V (x, y, t, i) =

{
–(.α – )|x| + .α|x||y|, if i = ,
–( – α)|x| + .|x||y|, if i = .

(.)

Noting that

|x||y| ≤ 

|x| +



|y|,

we obtain

L V (x, y, t, ) ≤ –(.α – )|x| + .α|y|

and

L V (x, y, t, ) ≤ –(. – α)|x| + .α|y|.

Choosing α as the solution to

.α –  = . – α,

that is, α = ., then we have

L V (x, y, t, i) =

{
–.|x| + .|y|, if i = ,
–.|x| + .|y|, if i = .

(.)

Hence

L V (x, y, t, i) ≤ –.|x| + .|y|.
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By Theorem , we conclude that the trivial solution of (.) is third moment exponentially
stable.

Example  Consider the following one-dimensional stochastic differential equation with
Markovian switching and time-varying delay:

dx(t) = f
(
x(t), x

(
t – τ (t)

)
, r(t)

)
dt + g

(
x
(
t – τ (t)

)
, r(t)

)
dω(t), (.)

where r(t) is a right-continuous Markov chain taking values in S = {, } with generator


 = (γij)× =

[
– 
 –

]

,

f (x(t), x(t – τ (t)), ) = –( – . sin t)x(t) + x(t – τ (t)), f (x(t), x(t – τ (t)), ) = –(. –
. sin t)x(t) + .x(t – τ (t)), g(x(t – τ (t)), ) = .x(t – τ (t)), g(x(t – τ (t)), ) = .x(t – τ (t)),
τ (t) = .| cos t|, ω(t) is a scalar Brownian motion. In this example, let p = , c = c = ,
V (x, t, i) = x. By a simple computation, we can easily get

L V
(
x(t), x

(
t – τ (t)

)
, 

)

= 
∣∣x(t)

∣∣[–( – . sin t)x(t) + x
(
t – .| cos t|)]

+ .
∣∣x(t)

∣∣∣∣x
(
t – .| cos t|)∣∣ + (γ + γ)|x|

≤ –(. – . sin t)
∣∣x(t)

∣∣ + .
∣∣x

(
t – .| cos t|)∣∣ (.)

and

L V
(
x(t), x

(
t – τ (t)

)
, 

)

= 
∣∣x(t)

∣∣[–(. – . sin t)x(t) + .x
(
t – .| cos t|)]

+ .
∣∣x(t)

∣∣∣∣x
(
t – .| cos t|)∣∣ + (γ + γ)|x|

≤ –(. – . sin t)
∣∣x(t)

∣∣ + 
∣∣x

(
t – .| cos t|)∣∣. (.)

Hence, we have

L V
(
x(t), x

(
t – τ (t)

)
, r(t)

) ≤ –(. – . sin t)
∣∣x(t)

∣∣ + 
∣∣x

(
t – .| cos t|)∣∣. (.)

By Theorem , we conclude that system (.) is the third moment exponentially stable.
Numerical simulation further confirms the obtained results. Figures  and  show that the
states x of system (.) asymptotically approach zero indeed.

5 Conclusions
In this paper, we have investigated pth moment exponential stability of stochastic differ-
ential equations with Markovian switching and time-varying delay. By using the Lyapunov
function, the generalized Halanay inequality, and stochastic analysis techniques, some suf-
ficient conditions are derived to ensure pth moment exponential stability. The results ob-
tained in this paper generalize and improve many well-known results. It is worth pointing
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Figure 1 Trajectory of x(t) of system (4.8).

Figure 2 Trajectory of r(t) of system (4.8).

out that the contribution of this paper is that the traditional assumptions on the differen-
tiability of the time-varying delay and the boundedness of its derivative are necessary in
the earlier works. However, we take these restrictiveness away in this paper. Moreover, we
present two examples to illustrate well the obtained results.
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