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Abstract
We present a novel optimization method to handle dose-volume constraints (DVCs)
directly in intensity-modulated radiation therapy (IMRT) treatment planning based on
the idea of continuous dynamical methods. Most of the conventional methods are
constructed for solving inconsistent inverse problems with, e.g., dose-volume based
objective functions, and one expects to obtain a feasible solution that minimally
violates the DVCs. We introduce the concept of ‘acceptable’, meaning that there exists
a nonempty set of radiation beam weights satisfying the given DVCs, and we resolve
the issue that the objective and evaluation are different in the conventional planning
approach. We apply the initial-value problem of the proposed dynamical system to an
acceptable and inconsistent inverse problem and prove that the convergence to an
equilibrium in the acceptable set of solutions is theoretically guaranteed by using the
Lyapunov theorem. Indeed, we confirmed that we can obtain acceptable beam
weights through numerical experiments using phantom data simulating a clinical
setup for an acceptable and inconsistent IMRT planning system.

Keywords: intensity-modulated radiation therapy treatment planning; dose-volume
constraints; dose-volume constrained optimization; inverse problem; stability of
solution

1 Introduction
Intensity-modulated radiation therapy (IMRT) [, ] is an effective radiotherapy technique
that attacks cancer without inflicting serious damage to critical normal tissues by deliver-
ing radiation beams from many angles. For designing IMRT inverse plans, an optimiza-
tion strategy is typically used to minimize an objective or cost function of radiation beam
weights []. We widely utilize the objective function to achieve as high as possible propor-
tions of the total volumes receiving doses greater than and less than the prescribed doses
for planning target volumes (PTVs) and organs at risk (OARs), respectively. However, in
practice, it is often impossible to fill all the volumes with permissible doses. Namely, the
inverse problem generally becomes inconsistent, so the optimization problem has no op-
timum solution. Dose-volume constraints (DVCs) expressed as a percentage of the pre-
scription dose are a natural way to specify the objective and have been the standard way of
evaluating the treatment in practice. Most of the conventional methods are constructed
for solving inconsistent inverse problems with, e.g., dose-based, dose-volume based, and
biology-based objective functions [–], and one expects to obtain a feasible solution that
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minimally violates the DVCs. Therefore, planning for IMRT requires a trial-and-error pro-
cess and human intervention [] due to the difference between the optimization objective
and the evaluation of planning results.

In this paper, we introduce the concept of ‘acceptable’ meaning that there exists a
nonempty set of radiation beam weights satisfying the given DVCs on PTVs and OARs
in the IMRT planning system and resolve the issue that the objective and evaluation are
different in the conventional planning approach. That is, we present a novel optimization
method to handle DVCs directly in IMRT treatment planning based on the idea of con-
tinuous dynamical methods [–]. We apply the initial-value problem of a dynamical
system, which is described by nonlinear differential equations for an acceptable and in-
consistent inverse problem, and prove that the convergence to an equilibrium [] in the
acceptable set of solutions is theoretically guaranteed by using the Lyapunov theorem [].
Then we can obtain a set of acceptable beam weights over time with decreasing Kullback-
Leibler divergence [, ] measure. We also show the fact that the intensities of all ra-
diation beams are not negative and are less than a specific upper limit, which is achieved
in accordance with a box-constrained optimization procedure. The proposed dynamical
system extends our previously presented nonlinear continuous-time system [] for solv-
ing a split feasibility problem [–]. A simulated dynamics approach [] also uses a
differential equation, but it is difficult to ascertain whether its solution has converged to
the global optimum.

We examined numerical experiments using phantom data simulating a clinical setup
for an acceptable and inconsistent IMRT planning system. The system proposed in this
paper is compared with another dynamical system constructed for optimizing a consistent
inverse problem. We found that the proposed system can provide an acceptable solution,
but the other cannot.

2 IMRT planning
In this section, we give some definitions and notations. Assume that x ∈ �̄ ⊂ RJ is an
unknown variable for radiation beam weight satisfying

D = Kx, ()

where �̄ indicates the closure of the open hypercube � = (,γ )J with γ >  applying an
upper limit to all beam weights and D ∈ RI

+ and K ∈ RI×J
+ denote the irradiated dose vec-

tor and the dose influence matrix, respectively, with R+ being the set of nonnegative real
numbers. If there are volumes of PTV and OAR with I and I voxels, respectively, then
D includes D ∈ RI

+ and D ∈ RI
+ as subvectors, and K includes K ∈ RI×J

+ and K ∈ RI×J
+

as submatrices. A similar definition can be applied to the existence of multiple PTVs and
OARs.

Let DL
 and DU

 represent the lower and upper bounds of doses for PTV and OAR, re-
spectively (DL

 >  and DU
 ≥ ). Additionally, we define an upper dose bound for PTV as

DU
 > DL

 to avoid excessively high dose values inside the PTV.

Definition  The IMRT planning system is consistent if the set

E =
{

e ∈ � : DU
 ≥ (Ke)i ≥ DL

 ,∀i ∈ {, . . . , I}, (Ke)i ≤ DU
 ,∀i ∈ {, . . . , I}

}
()

is not empty; otherwise it is inconsistent.
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Definition  For each set of dose volumes and their conditions (PTV, DU
 , ζ U

 ), (PTV,
DL

 , ζ L
 ), and (OAR, DU

 , ζ U
 ), where ζ U

 ≤ , ζ L
 ≤ , and ζ U

 ≤  are the prescribed propor-
tion rates, the corresponding dose distribution is partly acceptable if there exists x ∈ �

such that each number of elements of the index sets

IU
 (x) =

{
i ∈ {, . . . , I} : (Kx)i ≤ DU


}

,

IL
 (x) =

{
i ∈ {, . . . , I} : (Kx)i ≥ DL


}

, and ()

IU
 (x) =

{
i ∈ {, . . . , I} : (Kx)i ≤ DU


}

is, respectively, greater than the prescribed proportion of I, I, and I, namely, each of the
inequalities

#IU
 (x) ≥ ζ U

 I,

#IL
 (x) ≥ ζ L

 I, and ()

#IU
 (x) ≥ ζ U

 I

is satisfied for some x, where # indicates the number of elements in the set.

We define the IMRT planning system to be acceptable if there exists a common beam
set such that dose distributions in PTVs and OARs are partly acceptable for all DVCs.

Definition  The IMRT planning system is acceptable if the following set is not empty:

A =
{

a ∈ � : #IU
 (a) ≥ ζ U

 I, #IL
 (a) ≥ ζ L

 I, #IU
 (a) ≥ ζ U

 I
}

. ()

Obviously, if the IMRT planning system is consistent, it is acceptable. We are interested
in the situation where the system is inconsistent and acceptable. In this paper, the prob-
lem of dose-volume constrained optimization in IMRT planning is defined to obtain the
unknown variable x ∈A if the system is acceptable.

We define the projection P as follows:

P : RI
+ → RI

+; D =

⎛

⎜
⎝

D

D

D

⎞

⎟
⎠ �→ P(D), ()

where I = I + I and

(
P(D)

)
i

=

{
(D)i , if (D)i ≤ DU

 ,
DU

 , otherwise;

(
P(D)

)
I+i

=

{
(D)i , if (D)i ≥ DL

 ,
DL

 , otherwise;

(
P(D)

)
I+i

=

{
(D)i , if (D)i ≤ DU

 ,
DU

 , otherwise;

for i = , , . . . , I and i = , , . . . , I.
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We introduce the generalized Kullback-Leibler divergence [] of two nonnegative vec-
tors α and β :

KL(α,β) =
∑

�

β� log
β�

α�

+ α� – β�, ()

where α� and β� denote the �th elements of α and β , respectively. The divergence KL(α,β)
for the vectors α and β of nonnegative real numbers is nonnegative with KL(α,β) =  if
and only if α = β . This divergence is also called Csiszár’s I-divergence measure [].

3 Dynamical system for dose-volume constrained optimization
This section provides an exact definition of the dose-volume constrained optimization
method and its theoretical results. Consider an initial-value problem for the nonlinear
differential equation

dx
dt

= –X
(
U – γ –X

)
K	Q

(
Log(Kx) – Log

(
P(Kx)

))
,

x() = x ∈ �,
()

where X := diag(x) indicates the diagonal matrix in which the diagonal entries starting in
the upper left corner are the elements of x, U denotes the identity matrix, Log(y) is the
vector-valued function Log(y) := (log(y), log(y), . . . , log(yI))	 of each element in vector
y = (y, y, . . . , yI)	, the superscript 	 stands for the transpose of a matrix or vector, K ∈
RI×J is defined by

K =

⎛

⎜
⎝

K

K

K

⎞

⎟
⎠ ,

and the projection Q is defined such that

Q : RI
+ → RI

+; D =

⎛

⎜
⎝

D

D

D

⎞

⎟
⎠ �→ Q(D), ()

where I = I + I and

(
Q(D)

)
i

=

{
, if (PTV, DU

 , ζ U
 ) is partly acceptable,

(D)i , otherwise;

(
Q(D)

)
I+i

=

{
, if (PTV, DL

 , ζ L
 ) is partly acceptable,

(D)i , otherwise;

(
Q(D)

)
I+i

=

{
, if (OAR, DU

 , ζ U
 ) is partly acceptable,

(D)i , otherwise;

for i = , , . . . , I and i = , , . . . , I.
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We give theoretical results for the behavior of the solution to the dynamical system in
Eq. (). First, we show that all solutions stay inside the hypercube.

Proposition  If we choose the initial value x ∈ � in the dynamical system in Eq. (), then
the solution ϕ(t, x) stays in � for all t > .

Proof Since the system can be written as dxj/dt = –xj( – γ –xj)(K	)jQ(Log(Kx) –
Log(P(Kx))), we see that for any j the solution satisfies dϕj/dt ≡  on the subspace where
xj =  or xj = γ . Therefore, the subspace is invariant, and trajectories cannot pass through
every invariant subspace in accordance with the uniqueness of solutions for the initial-
value problem. This leads to any solution ϕ(t, x) of the system in Eq. () with initial value
x ∈ � being in � for all t > . �

Next, we prove the stability of an equilibrium in the set A, which corresponds to the de-
sired radiation beam weights. Namely, the existence of a Lyapunov function for the system
in Eq. () guarantees the stability of the equilibrium set [].

Theorem  If the IMRT planning system is acceptable, then the equilibrium set of Eq. ()
is stable.

Proof Any point a ∈ A in Eq. () is an equilibrium of Eq. (), which means that A is an
equilibrium set as a union of equilibria. Consider a Lyapunov candidate function defined
in the set �̄ as

W (x) = KL(Ka, Kx)

=
I∑

i=

(Kx)i log
(Kx)i

(Ka)i
+ (Ka)i – (Kx)i

=
I∑

i=

∫ (Kx)i

(Ka)i

log
y

(Ka)i
dy,

which is positive definite with respect to the point a ∈A.
Note that there exists a diagonal matrix X̃ ∈ RJ×J

+ such that

X̃ = X
(
U – γ –X

)
, ()

where the diagonal elements are positive real numbers.
Then we obtain the derivative of W along the solution ϕ(t, x) with an arbitrary initial

state x ∈ � of the system in Eq. (), which can be written as dx/dt = f (x), in the following
expression:

d
dt

W (ϕ)
∣∣∣∣
()

=
∂W
∂x

f (ϕ)

= –
(
Log(Kϕ) – Log(Ka)

)	K

(
U – γ –


)
K	Q

(
Log(Kϕ) – Log

(
P(Kϕ)

))

= –
(
Log(Kϕ) – Log(Ka)

)	K
̃(K
̃)	Q
(
Log(Kϕ) – Log

(
P(Kϕ)

))

= –
(
(K
̃)	

(
Log(Kϕ) – Log(Ka)

))	(
(K
̃)	Q

(
Log(Kϕ) – Log

(
P(Kϕ)

)))



Tanaka et al. Journal of Inequalities and Applications  (2015) 2015:122 Page 6 of 13

= –
∑

i∈ĪU
 (ϕ)

∥∥(K
̃)i
∥∥

 · (log
(
(Kϕ)i

)
– log

(
(Ka)i

))

· (log
(
(Kϕ)i

)
– log

(
DU


))

–
∑

i∈ĪL
 (ϕ)

∥∥(K
̃)i
∥∥

 · (log
(
(Kϕ)i

)
– log

(
(Ka)i

))

· (log
(
(Kϕ)i

)
– log

(
DL


))

–
∑

i∈ĪU
 (ϕ)

∥∥(K
̃)i
∥∥

 · (log
(
(Kϕ)i

)
– log

(
(Ka)i

))

· (log
(
(Kϕ)i

)
– log

(
DU


))

≤ –
∑

i∈ĪU
 (ϕ)

∥∥(K
̃)i
∥∥

 · (log
(
(Kϕ)i

)
– log

(
DU


))

–
∑

i∈ĪL
 (ϕ)

∥∥(K
̃)i
∥∥

 · (log
(
(Kϕ)i

)
– log

(
DL


))

–
∑

i∈ĪU
 (ϕ)

∥∥(K
̃)i
∥∥

 · (log
(
(Kϕ)i

)
– log

(
DU


))

= –
∥∥(K
̃)	

(
Log(Kϕ) – Log

(
P(Kϕ)

))∥∥


≤ .

Here 
 denotes diag(ϕ), 
̃ satisfies 
̃ = 
(U – γ –
), and

ĪU
 (x) =

{
φ, if (PTV, DU

 , ζ U
 ) is partly acceptable,

{, . . . , I} \ IU
 (x), otherwise;

ĪL
 (x) =

{
φ, if (PTV, DL

 , ζ L
 ) is partly acceptable,

{, . . . , I} \ IL
 (x), otherwise;

ĪU
 (x) =

{
φ, if (OAR, DU

 , ζ U
 ) is partly acceptable,

{, . . . , I} \ IU
 (x), otherwise;

with

ĪU
 (x) ∩ ĪL

 (x) = φ, ∀x ∈ �.

The derivative is zero at x = a ∈ �̄. Thus, W (x) is a Lyapunov function with respect to a.
Consequently, the equilibrium set A is stable. �

The theoretical results show that an element in the acceptable set can be obtained by
applying the initial-value problem of the hybrid dynamical system with piecewise contin-
uous vector fields in Eq. (). To be acceptable, the vector of beams or the solution ϕ(t, x)
must behave appropriately for the volume percentage in the dose-volume constraints,
roughly speaking, in the following manner. Let us assume, e.g., the dose D = Kϕ(t, x)
for PTV does not satisfy the upper bound constraint (DU

 , ζ U
 ), i.e., it is not partly accept-

able. The solution ϕ(t, x) causes the dose to change its distributions along the gradient of
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the Kullback-Leibler divergence measure so that D can satisfy the constraint. The same
manner is applied to the lower and upper bounds of doses for PTV and OAR, respectively.
When all dose distributions in PTVs and OARs become partly acceptable, the vector field
is entirely zero after the solution has converged to an equilibrium.

4 Materials for numerical experiments
We examine the problem of IMRT treatment planning with DVCs for a  ×  image
as shown in Figure . This phantom image is a slice of computed tomography (CT) images
obtained from the Visible Human Project []. We assume that the prostate contains a
cancerous malignant tumor and the other organs are normal. To treat the prostate cancer,
we designated the blue region containing the prostate as a PTV and assigned the regions
colored green, red, cyan, and magenta to OARs (OAR to OAR). The numbers of voxels in
PTV, OAR, OAR, OAR, and OAR are ,, ,, ,, , and ,, respectively,
and then we have I = ,.

Table  shows the DVCs that were determined by referencing the ultra high prescribed
dose (. Gy) IMRT case for PTV [, ] and the normal prescribed dose (- Gy)
IMRT case for OARs [, ]. While the ultra high dose IMRT is very efficient to treat the
prostate cancer [], the DVCs to OARs used in normal IMRT cases cannot be applied
ordinarily due to the increase of irradiated OARs with escalating dose. Despite this, in our
experiments, all upper dose limits for the OARs were decreased by subtracting - Gy
from the typical dose values in normal IMRT cases for creating a higher quality IMRT
plan. In fact, the DVCs shown in Table  are very stringent.

For the phantom imitating prostate cancer, in accordance with the Memorial Sloan
Kettering Cancer Center (MSKCC) protocol of the report [, ], we applied five-field
irradiation at angles of , , , , and  degrees; these angles were measured
counterclockwise from the horizontal line that passes through the center of the CT im-
age in Figure . Since we should find that the intensity of radiation beams affects only the
PTV and OARs, we obtain J = . In the calculation of K , we did not take scattering of
radiation [] into consideration to simplify the dose calculation.

Figure 1 CT image and designated PTV and OARs regions. (a) 512× 512 CT image of male lower
abdomen and (b) colored regions designated as PTV and OARs. Blue region is PTV, and green, red, cyan, and
magenta regions are OARs.



Tanaka et al. Journal of Inequalities and Applications  (2015) 2015:122 Page 8 of 13

Table 1 Dose-volume constraint or equivalent parameters for partly acceptable dose
distribution in our example

Assigned region
(color in Figure 1)

Organ Dose-volume
constraint

Set of parameters for
being partly acceptable

PTV (blue) Prostate V82.1 ≥ 87% (DL
1 ,ζ

L
1 ) = (82.1, 0.87)

V95.9 < 2% (DU
1 ,ζ

U
1 ) = (95.9, 0.98)

OAR1 (green) Right femoral head V30 < 10% (DU
2 ,ζ

U
2 ) = (30, 0.9)

OAR2 (red) Bladder V20 < 60% (DU
2 ,ζ

U
2 ) = (20, 0.4)

V45 < 30% (DU
2 ,ζ

U
2 ) = (45, 0.7)

V50 < 15% (DU
2 ,ζ

U
2 ) = (50, 0.85)

OAR3 (cyan) Rectum V20 < 40% (DU
2 ,ζ

U
2 ) = (20, 0.6)

V30 < 20% (DU
2 ,ζ

U
2 ) = (30, 0.8)

V35 < 10% (DU
2 ,ζ

U
2 ) = (35, 0.9)

OAR4 (magenta) Left femoral head V30 < 10% (DU
2 ,ζ

U
2 ) = (30, 0.9)

Vd denotes the percentage of volume receiving at least d Gy. Note that dose values 82.1 Gy and 95.9 Gy for PTV are 95% and
111% of prescribed dose of 86.4 Gy, respectively.

The IMRT planning derived from the above mentioned construction is inconsistent and
acceptable in the meaning of the definitions in Section .

5 Experimental results
For the IMRT planning system that is not consistent but is acceptable, we compared the
proposed system of Eq. () with a continuous-time dynamical system for optimizing a
consistent inverse problem, which is described by

dx
dt

= –X
(
U – γ –X

)
K	(

Log(Kx) – Log
(
P(Kx)

))
,

x() = x ∈ �.
()

Note that, if the IMRT planning system is consistent, E in Eq. () as an equilibrium set of
Eq. () is stable. This fact can be proved in a similar manner as Theorem .

As with conventional IMRT planning optimization, the method of the split feasibility
problem as well as the gradient methods such as Newton’s method and the conjugate gra-
dient method are known to be used for objective function minimization. All of these meth-
ods for searching for feasibility solutions are based on iterative procedure. However, the
differential equation described in Eq. () is a continuous analog of the CQ-algorithm [],
which is designed for implementing the split feasibility problem with the advantage of not
calculating a matrix inversion or Hessian over the conventional gradient methods, and is
suitable for comparing and verifying the mechanism of obtaining acceptable solutions to
the proposed continuous system in Eq. ().

The common parameters and conditions for numerical simulation are as follows. For
numerical integration of differential equations, we used the solver ode15s provided by
MATLAB (MathWorks, Natick, USA). The parameter γ was set to , and the initial
values of the state variables at t =  were chosen as x

j =  for any j. The upper beam
limit γ is defined to avoid machine restrictions, and we are able to confirm that the IMRT
planning system cannot reach any acceptable solution if the second inequality of Eq. ()
with x replaced by the vector containing each element of γ is not satisfied.

We first tried to solve the IMRT planning problem by using the continuous-time dy-
namical system (). Figure  shows the dose-volume histograms (DVHs) generated from
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Figure 2 DVH obtained by method using dynamical system in Eq. (11). (a) PTV, (b) OAR1, (c) OAR2,
(d) OAR3, and (e) OAR4. Red right-angle corner indicates DVC.

the solution at t = , to Eq. (). Each red right-angle corner in the figures indicates
the DVC shown in Table . These DVHs show that the dose distributions do not satisfy
three DVCs, (PTV, ., .), (OAR, , .), and (OAR, , .) because the DVH on
PTV passes the lower-left side of the upper red right-angle corner and the DVHs on OAR
and OAR pass the right side of each red right-angle corner, i.e., a failed IMRT plan was
obtained. Furthermore, when we tried several different initial values x, we did not obtain
an IMRT plan such that all the given DVCs are satisfied. The results demonstrated that
this IMRT planning problem is quite a challenge to solve.

On the other hand, in spite of the difficult conditions, the proposed system () can easily
produce an IMRT plan where all dose distributions are acceptable. Figure  shows the
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Figure 3 DVH obtained by proposed method using dynamical system in Eq. (8). (a) PTV, (b) OAR1,
(c) OAR2, (d) OAR3, and (e) OAR4. Red right-angle corner indicates DVC.

DVHs generated from the solution at t = . to Eq. (). We can confirm that all volumes of
PTV and OARs fulfill the given DVCs. Namely, the solution converges to an equilibrium
in set A. In particular, compared with the DVHs in Figures (c) and (d), the spreads
between the DVHs and the red right-angle corners in Figures (c) and (d) were decreased;
therefore, adequate doses to the PTV were realized as shown in Figure (a).

To illustrate the mechanism of the behavior of solutions toward an equilibrium in the
acceptable set, the time courses showing the variation of Q in Eq. () for some DVCs are
drawn in Figure . The values of  and  indicate the instantaneous states where the dose
distributions are partly acceptable and not acceptable, respectively, for the corresponding
DVCs. As seen from Figures (d) and (e), it is interesting that graphs for (OAR, , .)
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Figure 4 Time course showing variation of Q. (a) (PTV, 82.1, 0.87), (b) (PTV, 95.9, 0.98), (c) (OAR1, 30, 0.9),
(d) (OAR2, 20, 0.4), (e) (OAR3, 20, 0.6), and (f) (OAR, 30, 0.9). Values of 0 and 1 indicate states of being partly
acceptable and not acceptable, respectively.

and (OAR, , .) transiently oscillate between  and  and tend to zero as a steady state.
When (PTV, ., .) is partly acceptable at t = . as shown in Figure (b), all dose
distributions become acceptable.

6 Discussion and conclusion
The purpose of this paper is to present a dose-volume constrained optimization method
of IMRT treatment planning using the initial-value problem of the continuous-time dy-
namical system. First, let us discuss the theoretical results obtained by using the proposed
method. Theorem  guarantees that the value of the Lyapunov function W , which corre-
sponds to an objective or cost function, monotonically decreases along a solution obtained
by the proposed method when an IMRT planning system is acceptable, which is mathe-
matically defined for the existence of radiation beams satisfying the given DVCs. Addi-
tionally, when we choose an initial state in �, our method is able to find a box-constrained
solution within � that is supported by Proposition .

Then we discuss the convergence to an equilibrium in the acceptable set of solutions
in numerical experiments. The behavior can be explained qualitatively as follows. When
the dose distribution for a PTV or an OAR becomes partly acceptable as time passes, the
value of the corresponding function Q and the term added to the vector field (the right-
hand side of Eq. ()), which is required to make it acceptable, are zero in the dynamical
system. Therefore, it is expected that the dynamics will make it easier for other OARs and
PTVs to work to be partly acceptable. The function Q plays an essential role to control the
cooperation among terms for DVCs in the vector field. If all dose distributions in PTVs
and OARs become partly acceptable, then the vector field is entirely zero after the solution
has converged to an equilibrium corresponding to the desired radiation beam weights.

In accordance with the theoretical result, we can take any initial state x in �. Indeed,
when performing numerical experiments with several other initial values x

j for all j in
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the range (,γ ), similar results of convergence to equilibria in the acceptable set A were
obtained for all trials. Note that our goal is to reach an arbitrary element in A, although an
optimal solution is, in general, an isolated point in the state space in the usual definition of
optimization problems. Nevertheless, it is significant to consider an optimization problem
restricted to the set A from the viewpoint of another object. Regarding this, the following
property of solutions was observed experimentally: the mean value of the state variables
in an acceptable equilibrium after obtaining convergence was relatively small when the
initial state x

j was taken as a small value. In practical IMRT planning, the radiation beam
weights are expected to be as weak as possible for reducing normal tissue doses. Hence,
we can say that we should choose a small initial value so long as the selection of the initial
state in � results in the same convergence to an element in A.

A discretization of the differential equation in Eq. () using the Euler method leads to
the iterated CQ-algorithm; therefore, the continuous system has the same convergence
property on solutions as that of the difference equation. That is, the continuous system
possesses a good characteristic that its solutions converge asymptotically to an equilib-
rium if the given inverse problem is consistent; otherwise, a close solution to the complete
solution can be found []. By extending the continuous system, we have presented a hy-
brid dynamical system that can change the vector fields depending on partly acceptable
conditions. For the inverse problem dealing with the discontinuous constraints defined
by proportion rates, the global stability of solutions of the hybrid system can be proved
theoretically using the tool of the Lyapunov theorem.

Although the proposed method of using dynamical systems with piecewise continuous
vector fields is well designed for dose-volume constrained optimization, it requires numer-
ical integration with a high computational cost to solve solutions to differential equations.
In future work, we will attempt to construct an iterative method formulated by discretiz-
ing our differential equations for reducing the costs.
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