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Abstract
LetA be a maximal subdiagonal algebra of a finite von Neumann algebraM. For
0 < p <∞, we define the noncommutative Hardy-Lorentz spaces and establish the
Riesz and Szegö factorizations on these spaces. We also present some results of
Jordan morphism on these spaces.
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1 Introduction
The concept of maximal subdiagonal algebras A, which appeared earlier in Arveson’s pa-
per [], unifies analytic function spaces and nonselfadjoint operator algebras. In fact, sub-
diagonal algebras are the noncommutative analogue of weak* Dirichlet algebras. In the
case that M has a finite trace, Hp(A) may be defined to be the closure of A in the noncom-
mutative Lp space Lp(M). Subsequently, Arveson’s pioneering work has been extended to
different cases by several authors. For example, Marsalli and West [] obtained a series
of results including a Riesz factorization theorem, the dual relations between Hp(A) and
Hq(A), and Labuschagne [] proved the universal validity of Szegö’s theorem for finite
subdiagonal algebras. Recently, the noncommutative Hp spaces have been developed by
Blecher, Bekjan, Labuschagne, Xu and their coauthors in a series of papers.

The noncommutative Hardy spaces have received a lot of attention since Arveson’s pi-
oneering work. Most results on the classical Hardy spaces on the torus have been estab-
lished in this noncommutative setting. Here we mention only two of them directly related
with the objective of this paper. After the fundamental work of Arveson, Labuschagne
[] proved the noncommutative Szegö type theorem for finite subdiagonal algebras, and
Blecher and Labuschagne [] gave several useful variants of this theorem for Lp(M). In [],
Bekjan and Xu presented the more general form of Szegö type factorization theorem: Let
 < p, q ≤ ∞. Let x ∈ Lp(M) be an invertible operator such that x– ∈ Lq(M). Then there
exist a unitary u ∈M and h ∈ Hp(A) such that x = uh and h– ∈ Hq(A). The second result
we wish to mention concerns the following direct decomposition: Let  < p < ∞. Then

Lp(M) = Hp
 (A) ⊕ Lp(D) ⊕ JHp

 (A). (.)

This result is proved in [] for p = , in [] for the general case as above.
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In this article we introduce the noncommutative Hardy-Lorentz spaces Hp,ω(A). If
ω ≡ , the noncommutative Hardy-Lorentz spaces Hp,ω(A) correspond to the noncom-
mutative Hardy spaces Hp(A). By adapting the ideas and techniques in [, , ], we es-
tablish the Riesz and Szegö factorizations on these spaces. We also present some results
of inner-outer type factorization and Jordan morphism according to noncommutative
Hardy-Lorentz spaces.

The remainder of this article is organized as follows. After a short introduction to this
article, Section  consists of some preliminaries and notations, including the noncommu-
tative weighted Lorentz spaces and their elementary properties. Section  presents the
Riesz and Szegö factorization of noncommutative Hardy-Lorentz spaces. Section  con-
tains some results of outer operators according to noncommutative Hardy-Lorentz spaces.
The last section is devoted to Jordan morphism on these spaces.

2 Preliminaries
Throughout this paper M will be a finite von Neumann algebra with a faithful normal
tracial state τ . We refer to [, ] for the theory of noncommutative integration. Let M be
a von Neumann algebra acting on a Hilbert space H. We denote by P(M) the complete
lattice of all (self-adjoint) projections in M. The closed densely defined linear operator x
in H with domain D(x) is said to be affiliated with M if and only if yx ⊆ xy for all y ∈M′.
When x is affiliated with M, x is said to be τ -measurable if for every ε >  there exists
e ∈ P(M) such that e(H) ⊆ D(x) and τ (e⊥) < ε (where for any projection e, we let e⊥ =
 – e). The set of all τ -measurable operators will be denoted by L(M). The set L(M)
is an ∗-algebra with sum and product being the respective closure of the algebraic sum
and product. The topology of L(M) is determined by the convergence in measure. For
 < p < ∞, let

Lp(M) =
{

x ∈ L(M : τ
(|x|p) 

p < ∞}
.

We define

‖x‖p = τ
(|x|p) 

p , x ∈ Lp(M).

Then (Lp(M);‖ · ‖p) is a Banach (or quasi-Banach for p < ) space. As usual, we put
L∞(M; τ ) = M and denote by ‖ · ‖∞ (= ‖ · ‖) the usual operator norm.

For x ∈ L(M), we define

λt(x) = τ
(
e(t,∞)

(|x|)) and μt(x) = inf
{

s >  : λs(x) ≤ t
}

,

where e(t,∞)(|x|) is the spectral projection of |x| associated with the interval (t,∞). The
function t → λt(x) is called the distribution function of x and t → μt(x) is the generalized
singular number of x. We will denote simply by λ(x) and μ(x) the functions t → λt(x) and
t → μt(x), respectively. It is easy to check that both are decreasing and continuous from
the right on (,∞) (cf. []).

It will be sometimes convenient to write L = L(I) for brevity, where I = [, ]. When ω

is a nonnegative, integrable function on [, ] and not identically zero, we say that ω is a



Han and Shao Journal of Inequalities and Applications  (2015) 2015:120 Page 3 of 19

weight. For a given weight ω, we write W (t) =
∫ t

 ω(s) ds < ∞,  ≤ t ≤ . We also agree that
‘decreasing’ or ‘increasing’ will mean ‘nonincreasing’ or ‘nondecreasing’, respectively.

Let L be the set of all Lebesgue measurable functions on I . For f ∈ L, we define its
nonincreasing rearrangement as

f ∗(t) = inf
{

s >  : df (s) = m
{

r :
∣∣f (r)

∣∣ > s
} ≤ t

}
, t > ,

where m denotes the Lebesgue measure on I . The Lorentz space �
p
ω ,  < p < ∞, is a sub-

space of L such that

‖f ‖�
p
ω

=
(∫ 


f ∗(t)pω(t) dt

) 
p

< ∞. (.)

It is clear that

‖f ‖�
p
ω

=
(∫ ∞


ptp–W

(
df (t)

)
dt

) 
p

.

Let  < p < ∞, we define

�p
ω =

{
f ∈ L : ‖f ‖�

p
ω

=
(∫ 


f ∗∗(t)pω(t) dt

) 
p

< ∞
}

,

where f ∗∗(t) = 
t
∫ t

 f ∗(s) ds. Let ω be a weight in I , we write W (t) =
∫ t

 ω(s) ds ∈ � if there
exists some constant C such that W (t) ≤ CW (t),  < t < 

 . For any  < p < ∞, it is well
known that �

p
ω is a quasi-Banach space if and only if W (t) ∈ � (cf. []). Since we deal

further with the space �
p
ω which is at least a quasi-Banach space, we will assume in what

follows that W (t) ∈ �.
Let �

p
ω be a quasi-Banach space. For  < s < ∞, we define the dilation operator Ds on

�
p
ω by

(Dsf )(t) = f (st)χ[,](ts), t ∈ [, ].

Define the lower Boyd index α�
p
ω

of �
p
ω by

α�
p
ω

= lim
s→∞

log s
log‖D 

s
‖ = sup

s>

log s
log‖D 

s
‖

and the upper Boyd index β�
p
ω

of �
p
ω by

β�
p
ω

= lim
s→

log s
log‖D 

s
‖ = inf

<s<

log s
log‖D 

s
‖ .

Note that

α�
p
ω

= sup
{

p >  : ∃c > ,∀ < a ≤ ,‖Daf ‖p,ω ≤ ca– 
p ‖f ‖p,ω

}
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and

β�
p
ω

= inf
{

p >  : ∃c > ,∀ < a ≤ ,‖Daf ‖p,ω ≤ ca– 
p ‖f ‖p,ω

}
.

It is clear that  ≤ α�
p
ω

≤ β�
p
ω

≤ ∞ and α�
rp
ω

= rα�
p
ω

, β�
rp
ω

= rβ�
p
ω

, r > . If �
p
ω is a Banach

function space, then  ≤ α�
p
ω

≤ β�
p
ω

≤ ∞. For further results about the Boyd index of
quasi-Banach spaces, the reader is referred to [, ].

We consider a couple (E, E) of topological vector spaces E and E, which are both
continuously embedded in a topological vector space E. The morphisms T : (E, E) →
(E, E) in E are all bounded linear mappings from E +E to E +E such that TE : E → E

and TE : E → E. A (quasi-)Banach space A is said to be an intermediate space between E

and E if E is continuously embedded between E ∩ E and E + E. The space E is called
an interpolation space between E and E if, in addition, T : (E, E) → (E, E) implies
T : E → E. Further details may be found in [, ].

Let  < p < ∞, we say that �
p
ω has order continuous norm if for every net (fi) in �

p
ω such

that fi ↓  we have ‖fi‖p,ω ↓ . It follows from Proposition .. and Theorem .. of []
that the norm on �

p
ω is order continuous. Then it follows from Theorem . of [] that

�r
ω is an interpolation space for the couple (Lp, Lq), where  < p < α�r

ω
≤ β�r

ω
< q ≤ ∞. Let

 < p < ∞, it is well known (Theorem A, []) that �
p
ω = �

p
ω if and only if ω satisfies the

condition Bp (ω ∈ Bp), that is, there exists B >  such that
∫ 

t s–pω(t) dt ≤ Bt–pW (t), t ∈ I .
We refer to [, ] for these spaces.

A (quasi-)Banach function space E is called symmetric if for f ∈ L and g ∈ E with f ∗ ≤
g∗, we have f ∈ E and ‖f ‖E ≤ ‖g‖E . It is called fully symmetric if, in addition, for f ∈ L and
g ∈ E with

∫ t
 f ∗(s) ds ≤ ∫ t

 g∗(s) ds, we have f ∈ E and ‖f ‖E ≤ ‖g‖E . If  ≤ p < ∞ and ω is a
non-increasing weighted function, it is clear that �

p
ω is a fully symmetric Banach function

space. Let  < p < ∞, then �
p
ω is a fully symmetric quasi-Banach function space.

Let x ∈ L(M) and  < p < ∞. We define

‖x‖p,ω = ‖x‖�
p
ω(M) =

(∫ 


μt(x)pω(t) dt

) 
p

. (.)

By a simple computation we derive

‖x‖p,ω =
(∫ ∞


ptp–W

(
λt(x)

)
dt

) 
p

.

The noncommutative Lorentz space �
p
ω(M) is defined as the space of all τ -measurable

operators affiliated with a finite von Neumann algebra M such that ‖x‖p,ω < ∞. If ω ≡ ,
then the noncommutative Lorentz space �

p
ω(M) is the usual noncommutative Lp space

Lp(M). If ω = t
p
q –, p, q > , then �

p
ω(M) = Lq,p(M). For further results about the non-

commutative Lorentz spaces Lq,p(M), the reader is referred to [].
If  < p < ∞, we define

�p
ω(M) =

{
x ∈ L(M) : ‖x‖�

p
ω(M) =

(∫ 


x∗∗(t)pω(t) dt

) 
p

< ∞
}

,

where x∗∗(t) = 
t
∫ t

 μs(x) ds.
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Since �
p
ω and �

p
ω are quasi-Banach spaces, then the following result follows from The-

orem  of [].

Proposition . Let  < p < ∞, then �
p
ω(M) and �

p
ω(M) are quasi-Banach spaces.

We should introduce the Köthe dual spaces (associate spaces) generalizing the definition
that can be found in [] in the context of classical Lorentz space �

p
ω ,  < p ≤ ∞. We define

the Köthe dual space of �
p
ω(M) by

�p
ω(M)′ =

{
f ∈ L(M);‖x‖�

p
ω(M)′ = sup

‖y‖p,ω≤
τ
(|xy|) < ∞

}
.

If x ∈ �
p
ω(M)′, it is clear that

‖x‖�
p
ω(M)′ = sup

‖y‖p,ω≤
‖xy‖ = sup

{∣∣τ (xy)
∣∣ : ‖y‖p,ω ≤ 

}
.

Lemma . Let M have no minimal projection for every measurable function f with

lim
t→∞ df (t) = ,

then there exists x ∈ L(M) such that μt(x) = f ∗(t).

Proof By Lemma . of [], there exist Qk–n ∈ Mproj such that τ (Qk–n ) = k–n and
Qk–n ≤ Qk–n , k–n ≤ k–n , where n, k, ni, ki ∈ N, i = , . Let Qλ = sup k

n ≤λ
Qk–n ,

λ ∈ [, ]. Then {Qλ}λ∈[,] is an increasing family of projections in M, and it is clear that
τ (Qλ) = λ, Q =  and Q = . Therefore, it is a spectral family of M. Let f ∈ L with
limt→∞ df (t) = . For x =

∫ ∞
 f ∗(λ) dQλ, we have

τ
(
e(t,∞)(x)

)
= τ

(∫

{λ≥:f ∗(λ)>t}
dQλ

)
=

∫

{λ≥:f ∗(λ)>t}
dλ = df ∗ (t) = df (t) → , t → ∞,

which implies x ∈ L(M) and μt(y) = f ∗(t), t > . �

Lemma . Let  < p < ∞. Then the injection �
p
ω(M)′ ↪→ L(M) is continuous.

Proof For x ∈ �
p
ω(M)′ with ‖x‖�

p
ω(M)′ ≤ . Since μt(x) → , t → ∞, then |x| admits

the Schmidt decomposition |x| =
∫ ∞

 μt(x) d̃et , where ẽt = eμt (x)–, t > , and e– = 
(cf. []). Given δ > , it is clear that μt(x) ≥ μδ(x)χ[ δ

 ,δ). Thus |x| =
∫ ∞

 μt(x) d̃et ≥ μδ(x)q,
where q =

∫ ∞
 χ[ δ

 ,δ) d̃et . Since τ (q) < ∞, we obtain q ∈ �
p
ω(M)′. Therefore, ‖x‖�

p
ω(M)′ =

‖|x|‖�
p
ω(M)′ ≥ μδ(x)‖q‖�

p
ω(M)′ and ‖q‖–

�
p
ω(M)′ ≥ μδ(x), which complete the proof. �

Proposition . Let  < p < ∞. Then �
p
ω(M)′ is a noncommutative Banach function

space.

Proof It is clear that ‖ · ‖�
p
ω(M)′ is subadditive, homogenous and positive. If ‖x‖�

p
ω(M)′ = ,

then ‖xy‖ =  for every y ∈ �
p
ω(M). Since eA(|x|) ∈ �

p
ω(M), we have xeA(|x|) = , where

A is a subset of (,∞), which implies that x = . The proof of Theorem . of [] shows
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that it is sufficient to prove the noncommutative form of the Riesz-Fischer theorem, i.e.,
we have an estimate

∥∥∥∥∥

∞∑

n=

xn

∥∥∥∥∥
�

p
ω(M)′

≤
∞∑

n=

‖xn‖�
p
ω(M)′ , xn ≥ , n = , , , . . . ,

whenever the right-hand side is finite. Let
∑∞

n= ‖xn‖�
p
ω(M)′ < ∞, then

∑∞
n= xn converges

to some x in L(M). Indeed, set zn =
∑n

k= xk , it is clear that {zn}∞n= is a Cauchy sequence
in �

p
ω(M)′. It follows from Lemma . that {zn}∞n= converges to some x in L(M). Since

∑∞
n= ‖xny‖�

p
ω(M)′ ≤ ∑∞

n= ‖xn‖�
p
ω(M)′ < ∞, then

∥∥∥∥∥

( ∞∑

n=

xn

)

y

∥∥∥∥∥


=

∥∥∥∥∥

∞∑

n=

xny

∥∥∥∥∥


≤
∞∑

n=

‖xny‖ ≤
∞∑

n=

‖xn‖�
p
ω(M)′ < ∞

holds for each y ∈ �
p
ω(M) with ‖y‖�

p
ω(M) ≤ . Thus

∑∞
n= xn ∈ �

p
ω(M)′ and

∥∥∥∥∥

∞∑

n=

xn

∥∥∥∥∥
�

p
ω(M)′

≤
∞∑

n=

‖xn‖�
p
ω(M)′ < ∞.

�

Proposition . Let M have no minimal projection, then the associate space �
p
ω(M)′ is

a noncommutative Banach function space. For x ∈ �
p
ω(M)′,

‖x‖�
p
ω(M)′ = sup

{∫ 


μt(x)μt(y) dt : ‖y‖�

p
ω(M) ≤ 

}
. (.)

Proof Let x ∈ �
p
ω(M)′ and y ∈ �

p
ω(M), then xy ∈ L(M). By Theorem . of [], we have

τ (|xy|) ≤ ∫ ∞
 μt(x)μt(y) dt. Thus

‖x‖�
p
ω(M)′ ≤ sup

{∫ 


μt(x)μt(y) dt : ‖y‖�

p
ω(M) ≤ 

}
.

To prove the other inequality, let y ∈ �
p
ω(M) with ‖y‖�

p
ω(M) ≤ . By Proposition . of

[], we obtain

∫ 


μt(x)μt(y) dt = sup

{
τ
(|x|̃y) : ỹ ∈ L(M), ỹ ∼ y

}

≤ sup
‖̃y‖

�
p
ω (M)≤

τ
(|x|̃y) = sup

‖̃y‖
�

p
ω (M)≤

τ
(
u∗x̃y

)

≤ sup
‖̃y‖

�
p
ω (M)≤

τ
(|x̃y|) = ‖x‖�

p
ω(M)′ .

Hence, ‖x‖�
p
ω(M)′ ≥ sup{∫ ∞

 μt(x)μt(y) dt : ‖y‖�
p
ω(M) ≤ }. �

Proposition . Let x ∈ �
p
ω(M)′, then we have

‖x‖�
p
ω(M)′ =

∥∥μt(x)
∥∥

�
p
ω(I)′ .

Moreover, (�p
ω)′(M) = �

p
ω(M)′.
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Proof This result follows immediately from Lemma . and Proposition .. First, let M
have no minimal projection. For every f ∈ �

p
ω , by Lemma ., there exists y ∈ �

p
ω(M) such

that μ(y) = f ∗(t), t > . Thus, by Proposition ., we obtain

‖x‖�
p
ω(M)′ = sup

{∫ 


μt(x)μt(y) dt : ‖y‖�

p
ω(M) ≤ 

}

= sup

{∫ 


μt(x)f ∗(t) dt : ‖f ‖�

p
ω

≤ 
}

=
∥∥μt(x)

∥∥
�

p
ω(I)′ .

If M has minimal projections, we consider the von Neumann algebra tensor product
M⊗̄L∞([, ], m) denoted by M, equipped with the tensor product trace τ ⊗ m, then
M has no minimal projection. By the trivial fact μ(x) = μ(x ⊗ ) and argument of above,
we have ‖x‖�

p
ω(M)′ = ‖μt(x)‖�

p
ω(I)′ , which implies that

�p
ω(M)′ =

{
x ∈ L(M) : μt(x) ∈ (

�p
ω

)′} =
(
�p

ω

)′(M). �

Definition . Let  < p ≤ ∞. If l ∈ �
p
ω(M)∗, then l is called normal if xα ↓  holds in

�
p
ω(M) implies l(xα) → .

If l ∈M∗ then, by Theorem . of [], l is normal if and only if l is ultra-weak topology
on M. Then a similar discussion of Lemma . of [] leads to the following lemma.

Lemma . Let  < α�
p
ω

≤ β�
p
ω

< ∞,  < p < ∞ and l ∈ �
p
ω(M)∗. If e ∈ Mproj, we define le

by setting le(x) = l(ex), x ∈M, then le is a normal linear functional on M.

Proof Let e ∈ M and x > xα ↓  hold in M, then exαe ↓  holds in L(M), and so
μt(exαe) ↓  holds in L. Thus,

μt(exα) = μt(xαe) = μt
(|xαe|) 

 = μt
(
ex

αe
) 

 = ‖x‖ 
 μt(exαe)


 ↓ .

By Theorem .. of [], we have ‖exα‖�
p
ω(M) = (

∫ 
 μt(exα)pω(t))


p ↓ . Therefore,

le(xα) → . This tells us that le is a normal linear functional on M. �

Proposition . Let  < α�
p
ω

≤ β�
p
ω

< ∞,  < p < ∞. If l ∈ �
p
ω(M)∗, then there exists a

unique operator y ∈ �
p
ω(M)′ such that l(x) = τ (yx) for every x ∈M and ‖l‖ ≥ ‖y‖�

p
ω(M)′ .

Proof It follows from Theorem . of [] that �
p
ω is an interpolation space for the couple

(L, L∞). Thus L∞ ↪→ �
p
ω ↪→ L, and so M ↪→ �

p
ω(M) ↪→ L(M), where ‘↪→’ denotes a

continuous embedding. It follows that there exists some constant C such that

C–‖x‖ ≤ ‖x‖p,ω ≤ C‖x‖, x ∈M

and W (t) ≤ C, t ∈ [, ]. We apply Lemma . and some techniques from the proof of
Theorem . in []. The result follows in the same way as in []. �

Proposition . Let  < α�
p
ω

≤ β�
p
ω

< ∞,  < p < ∞. Then
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(i) �
p
ω(M)∗ = �

p
ω(M)′ = (�p

ω)′(M) = �
q
ω̃(M), where ω̃(t) = tqW (t)–qω(t), t > .

(ii) If ei is an increasing sequence of projections in M converging strongly to , we have
limi→∞ ‖xei – x‖p,ω = , limi→∞ ‖eix – x‖p,ω = , ∀x ∈ �

p
ω(M).

(iii) �
p
ω(M)∗ separates points.

Proof (i): Combining Proposition . with Remark .. of [], we obtain �
p
ω(M)′ =

(�p
ω)′(M) = �

q
ω̃(M). For l ∈ �

p
ω(M)∗, by Proposition ., there exists y ∈ �

p
ω(M)′ such

that

l(x) = ly(x) = τ (xy), ∀x ∈M.

Let ls = l – ly, we have ls ∈ �
p
ω(M)∗ and ls(x) = , x ∈M. For x ∈ �

p
ω(M), it is well known

that τ (e( 
n ,∞)(|x|)) < ∞, n = , , , . . . . Let xn = xe[, 

n ](|x|), n = , , . . . , then x–xn ∈M. This
implies that |ls(x)| = |ls(xn)| ≤ ‖ls‖‖xn‖p,ω , n = , , . . . . Note that |xn| ≤ |x| and μ(xn) → ,
n → ∞. Then, by Theorem .. of [], we have ‖xn‖p,ω = ‖μ(xn)‖p,ω → , n → ∞, and
so |ls(x)| = |ls(xn)| = . Therefore, ls = , that is, l = ly. (ii): Without loss of generality, we
suppose  ≤ x ∈ �

p
ω(M). Let x =

∫ ∞
 λdeλ be the spectral decomposition of x. We write

qi =  – ei, then qi converges strongly to  and qi > qi+, n = , , . . . . Set xi = (xqix) 
 , n =

, , . . . . Since τ () < ∞, then x
i →  in the measure topology. Thus, by Theorem .. of

[] and μt(xn) ≤ μt(x), we have

‖xn‖p,ω =
∥∥μt(xn)

∥∥
�

p
ω(I)

=
∥∥μt

(
x

n
) 


∥∥

�
p
ω(I) ↓n .

It follows that ‖xqn‖p,ω = ‖(xqnx) 
 ‖p,ω = ‖xn‖p,ω → , n → ∞. (iii): Suppose that there

exists  �= x ∈ �
p
ω(M) such that l(x) =  holds for all l ∈ �

p
ω(M)∗. Then, for ev-

ery y ∈ �
p
ω(M)′, we have ly(x) = τ (xy) = . By (i), we have �

p
ω(M)′ = �

q
ω̃(M), then

e(a,∞)(|x|) ∈ �
p
ω(M)′, ∀a > . Thus τ (xe(a,∞)(|x|)) = le(a,∞)(|x|)(x) = , ∀a > , which im-

plies that x = , contradiction. Therefore, �p
ω(M)∗ separates points. �

The identity inM is denoted by , and we denote byD a von Neumann subalgebra ofM;
moreover, we let E : M → D be the unique normal faithful conditional expectation such
that τ ◦ E = τ . A finite subdiagonal algebra of M with respect to E (or D) is a w∗-closed
subalgebra A of M satisfying the following conditions:

(i) A + JA is w∗-dense in M;
(ii) E is multiplicative on A, i.e., E(ab) = E(a)E(b) for all a, b ∈A;

(iii) A∩ JA = D.
D is then called the diagonal of A, where JA = {x∗ : x ∈ A}. We say that A is a maximal
subdiagonal algebra in M with respect to E in case that A is not properly contained in any
other subalgebra of M which is subdiagonal with respect to E . It is proved by Exel (Theo-
rem , []) that a finite subdiagonal algebra A is automatically maximal. This maximality
yields the following useful characterization of A:

A =
{

x ∈M : τ (xa) = ,∀a ∈A
}

,

where A = A∩ kerE (see []).
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If K is a subset of �
p
ω(M), [K]p,ω will denote the closure of K in �

p
ω(M) (with respect

to the w∗-topology in the case of p = ∞). Since M is a finite von Neumann algebra, then
M = �∞

ω (M) ⊆ �
p
ω(M),  < p ≤ ∞.

Definition . Let M be a finite von Neumann algebra, we define noncommutative
weighted Hardy spaces by Hp,ω(A) = [A]p,ω and Hp,ω

 (A) = [A]p,ω .

In what follows, we will keep all previous notations throughout the paper, and C will al-
ways denote a constant, which may be different in different places. Unless otherwise stated,
it will be assumed throughout that Lorentz spaces �

p
ω satisfy the following property: for

f ∈ L and g ∈ �
p
ω with

∫ t
 f ∗(s) ds ≤ ∫ t

 g∗(s) ds, we have

f ∈ �p
ω and ‖f ‖p,ω ≤ C‖g‖p,ω. (.)

For two nonnegative (possibly infinite) quantities A and B, by A � B we mean that there
exists a constant C >  such that A ≤ CB.

Remark .
(i) If ω ≡ , then Hp,ω(A) = Hp(A) and Hp,ω

 (A) = Hp
 (A). In [], Section  it is shown

that for  ≤ p ≤ ∞,

Hp(A) = [A]p =
{

x ∈ Lp(M) : τ (xy) =  for all y ∈A
}

and

Hp
 (A) = [A]p =

{
x ∈ Lp(M) : τ (xy) =  for all y ∈A

}
.

Subsequently, Bekjan and Xu (Proposition ., []) showed that
Hq(A) = Hp(A) ∩ Lq(M) and Hq

(A) = Hp
 (A) ∩ Lq(M), where  < p < q ≤ ∞.

(ii) Let  < p ≤ q ≤ ∞. Since M is a finite von Neumann algebra, then
�

q
ω(M) ⊆ �

p
ω(M).

(iii) Let  < r < α�
p
ω

≤ β�
p
ω

< r ≤ ∞. It follows from Theorem . of [] that �
p
ω is an

interpolation space for the couple (Lr , Lr ). Thus Lr ↪→ �
p
ω ↪→ Lr , and so

Lr (M) ↪→ �
p
ω(M) ↪→ Lr (M), where ‘↪→’ denotes a continuous embedding.

Moreover, this implies that Hr (A) ↪→ Hp,ω(A) ↪→ Hr (A).
(iv) Let  < p < ∞ and ω ∈ Bp. Then Theorem A of [] implies that �

p
ω satisfies

property (.).
(v) If  < α�

p
ω

≤ β�
p
ω

< ∞ and �
p
ω satisfies property (.), it follows from Proposition 

of [] that E is bounded on �
p
ω(M).

3 Riesz and Szegö factorization of noncommutative weighted Hardy spaces
Proposition . Let  < p < ∞ and  < α�

p
ω

≤ β�
p
ω

< ∞. Then

Hp,ω(A) =
{

x ∈ �p
ω(M) : τ (xy) = ,∀y ∈A

}
,

Hp,ω
 (A) =

{
x ∈ �p

ω(M) : τ (xy) = ,∀y ∈A
}

.
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Moreover, if  < α�
p
ω

≤ β�
p
ω

< ∞,  < p < ∞ and r < α�
p
ω

, then

Hr(A) ∩ �p
ω(M) = Hp,ω(A),

Hr
(A) ∩ �p

ω(M) = Hp,ω
 (A).

Proof Since  < α�
p
ω

≤ β�
p
ω

< ∞ and A is an ideal of A, then

A⊆ {
x ∈ �p

ω(M) : τ (xy) = ,∀y ∈A
}

.

For x ∈ Hp,ω(A), there exist xn ∈A such that ‖x – xn‖p,ω → , n → ∞ and τ (xny) = , ∀y ∈
A, n = , , . . . . Hence, xn → x in the measure topology. This means that xny → xy in the
measure topology holds for every y ∈A. By Remark .(iii), we obtain �

p
ω(M) ⊆ L(M).

Using Theorem . of [], we obtain

lim
n→∞

∣∣τ (xny – xy)
∣∣ ≤ lim

n→∞ τ
(|xny – xy|) � lim

n→∞‖xny – xy‖p,ω = ,

which implies that τ (xy) = , and so

Hp,ω(A) ⊆ {
x ∈ �p

ω(M) : τ (xy) = ,∀y ∈A
}

.

Conversely, let x ∈ {x ∈ �
p
ω(M) : τ (xy) = ,∀y ∈ A} and x /∈ Hp,ω(A). By (i) and (iii) of

Proposition ., there exists y ∈ �
p
ω(M)′ such that τ (xy) �=  and τ (ya) = , ∀a ∈ Hp,ω(A).

Since (f + g)∗∗ ≤ f ∗∗ + g∗∗, �
q
ω̃ is Banach function spaces over [, ], where 

q + 
p = . By

Corollary II. . of [], we have �
q
ω̃ ⊆ L, which implies that �

q
ω̃(M) ⊆ L(M). Combining

this with Proposition ., we obtain y ∈ �
p
ω(M)′ = �

q
ω̃(M) ⊆ L(M). Note that τ (ya) = ,

∀a ∈ A ⊆ Hp,ω(A). Then by Proposition . of [] and Remark .(i), we have y ∈ H
(A)

and E(y) = . Set  ≤ s < α�
p
ω

, then x ∈ {z ∈ Ls(M) : τ (za) = ,∀a ∈A} = Hs(A). By Corol-
lary . of [], we deduce τ (xy) = τ (E(xy)) = τ (E(x)E(y)) = . This is a contradiction, and
so the first equality holds.

A similar argument to the proof of above shows that

Hp,ω
 (A) ⊆ {

x ∈ �p
ω(M) : τ (xy) = ,∀y ∈A

}
.

On the other hand, let x ∈ {x ∈ �
p
ω(M) : τ (xy) = ,∀y ∈ A}. Since D ⊆ A, then τ (xy) =

τ (E(x)y) = , ∀y ∈ D. It follows that E(x) = . Since x ∈ �
p
ω(M) ⊆ L(A), it follows from

Corollary . of [] that τ (xy) = τ (E(xy)) = τ (E(x)E(y)) =  holds for all y ∈A. This implies
that x ∈ Hp,ω(A), and so there exist xn ∈A, n = , , . . . , such that ‖x – xn‖p,ω → , n → ∞.
On the other hand, Remark .(v) shows that E is bounded on �

p
ω(M). It follows from the

fact E(x) =  that

∥∥xn – E(xn) – x
∥∥

p,ω � ‖xn – x‖p,ω +
∥∥E(xn) – E(x)

∥∥
p,ω → , n → ∞.

Since xn – E(xn) ∈A, then x ∈ Hp,ω
 (A), which implies the second equality holds.

For the third equality, it is clear that Hr(A) ∩ �
p
ω(M) ⊇ Hp,ω(A). Conversely, if r ≥ 

and x ∈ Hr(A) ∩ �
p
ω(M), then x ∈ {z ∈ �

p
ω(M) : τ (za) = ,∀a ∈ A} since Hr(A) = {z ∈

Lr(A) : τ (za) = ,∀a ∈A} and Lr(A) ⊇ �
p
ω(M). By the first equality, we have x ∈ Hp,ω(A).
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On the other hand, if r <  and x ∈ Hr(A) ∩ �
p
ω(M), there exists  ≤ s < α�

p
ω

such that
�s

ω(M) ⊆ Ls(M), and so, by Proposition . of [], we have Hr(A) ∩ �
p
ω(M) = Hr(A) ∩

Ls(M) ∩ �
p
ω(M) = Hs(A) ∩ �

p
ω(M) = Hp,ω(A). Similarly, the fourth equality holds. �

Theorem . Let  < p, q < ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. If x ∈ �
p
ω(M) is an invertible

operator such that x– ∈ �
q
ω(M), then there exist a unitary u ∈ M and h ∈ Hp,ω(A) such

that x = uh, h– ∈ Hq,ω(A).

Proof By the fact α�
rp
ω

= rα�
p
ω

, β�
rp
ω

= rβ�
p
ω

, r >  and  < α�
p
ω

≤ β�
p
ω

< ∞, we have  <
α�

q
ω

≤ β�
q
ω

< ∞. First, let  < p, q ≤ ∞, α�
p
ω

> , α�
q
ω

> , and let x ∈ �
p
ω(M) with x– ∈

�
q
ω(M). Take r, r with  ≤ r < α�

p
ω

,  ≤ r < α�
q
ω

. By Theorem . of [], there exist a
unitary u ∈ M and h ∈ Hr (A) such h = u∗x and h– ∈ Hr (A). It is clear that h = u∗x ∈
�

p
ω(M). It follows from Proposition . that h ∈ Hp,ω(A). Similarly, h– ∈ Hq,ω(A).
On the other hand, if min(p, q) ≤  or min(α�

p
ω

,α�
p
ω

) ≤ , there exists an integer n such
that min(np, nq) >  and min(nα�

p
ω

, nα�
q
ω

) = min(α�
np
ω

,α�
nq
ω

) > . Let x = v|x| be the polar
decomposition of x. We write x = v|x| 

n , xk = |x| 
n ,  ≤ k ≤ n, then x = xx · · ·xn. Thus,

xk ∈ �
np
ω (M) and x–

k ∈ �
nq
ω (M). Therefore, there exist un ∈ M and hn ∈ Hnp,ω(A) such

that xn = unhn and x–
n ∈ Hnq,ω(A). Repeating this argument, we again get the same fac-

torization for xn–un: xn–un = un–hn–, and then for xn–un–, and so on. In this way, we
obtain the factorization x = uh · · ·hn, u ∈M, where u ∈M is a unitary and hk ∈ Hnp,ω(A)
such that h–

k ∈ Hnq,ω(A). We write h = h · · ·hn, then x = uh is the desired factorization.
�

Remark .
(i) Let x ∈ �∞

ω (M) = M be an invertible operator such that x– ∈ �∞
ω (M).

Theorem . of [] implies that there exist a unitary u ∈M and h ∈A such that
x = uh, h– ∈A.

(ii) Let  < p < ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. If x ∈ �
p
ω(M) is an invertible operator such

that x– ∈ �∞
ω (M) = M, then there exist a unitary u ∈M and h ∈ Hp,ω(A) such

that x = uh, h– ∈A.
Indeed, if  < p < ∞,  < α�

p
ω

, take r >  with  ≤ r < α�
p
ω

. By Theorem . of [],
there exist a unitary u ∈M and h ∈ Hr(A) such that h = u∗x and h– ∈A. Since
h = u∗x ∈ �

p
ω(M), it follows from Proposition . that h ∈ Hp,ω(A). Therefore, by

adapting the proof of Theorem ., we complete the proof.

Proposition . Let  < p < q < ∞ and  < α�
q
ω

≤ β�
q
ω

< ∞. Then

Hp,ω(A) ∩ �q
ω(M) = Hq,ω(A), Hp,ω

 (A) ∩ �q
ω(M) = Hq,ω

 (A).

Proof Since  < p < q < ∞, then �
q
ω(M) ⊆ �

p
ω(M), which implies that Hp,ω(A) ∩

�
q
ω(M) ⊇ Hq,ω(A). Conversely, let x ∈ Hp,ω(A) ∩ �

q
ω(M). We write a = (x∗x + ) 

 , then
a ∈ �

q
ω(M) and a– ∈M. Applying Remark .(ii) to a, there exist u ∈M and h ∈ Hq,ω(A)

such that a = uh and h– ∈A. Since h∗h = x∗x+, then there exists v ∈Mwith ‖v‖ ≤  such
that x = vh. Since α�

rp
ω

= rα�
p
ω

, r >  and  < α�
q
ω

, then there exists  < α�
p
ω

. Let  < r < α�
p
ω

.
By Remark .(iii), we deduce x ∈ Hp,ω(A) ⊆ Hr(A). Thus v = xh– ∈ Hp,ω(A) ⊆ Hr(A). It
follows from Proposition . of [] that v ∈A. Therefore, x ∈A · Hq,ω(A) = Hq,ω(A). Sim-
ilarly, the second equality holds. �
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Theorem . Let  < p < ∞,  < q ≤ ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. Then, for every x ∈
Hp,ω(A) and ε > , there exist y ∈ Hq,ω(A) and z ∈ Hr,ω(A) such that x = yz, where 

p = 
q + 

r .

Proof The case where max{q, r} = ∞ is trivial. Thus we assume max{q, r} < ∞. Let x ∈
Hp,ω(A) and ε > . We write a = (x∗x + ε) 

 , then x ∈ �
p
ω(M) and a– ∈M. Let v ∈M be a

contraction operator such that x = va. Now applying Remark .(ii) to a
p
r , we have a

p
r = uz,

z– ∈ M, where u is a unitary in M and z ∈ Hr,ω(A). Let y = va
p
q u ∈ �

q
ω(M), then x = yz

and so y = xz–. Since x ∈ Hp,ω(A) and z– ∈ A, we have y ∈ Hp,ω(M). By Proposition .
and the fact p < q, we obtain y ∈ Hq,ω(A). �

Remark . Let  < p, q ≤ ∞,  < α�
p
ω

≤ β�
p
ω

< ∞ and 
p = 

q + 
r . For every x ∈ Hp,ω(A)

and ε > , let y, z be as in Theorem ., then ‖y‖q,ω‖z‖r,ω ≤ C( + ε)‖x‖p,ω for some con-
stant C (independent of x). Indeed, the case p = ∞ follows from Theorem . of [] since
�∞

ω (M) = M. The other case follows from Theorem ..

4 Outer operators according to Hp,ω(A)
Let x be a τ -measurable operator with limt→∞ μt(x) = . The Fuglede-Kadison determi-
nant �(x) is defined by

�(x) = exp
(
τ
(
log |x|)) = exp

(∫ ∞


log t dν|x|(t)

)
,

where dν|x| denotes the probability measure on R
+ which is obtained by composing the

spectral measure of |x| with the trace τ . We refer the reader to [, ] for more information
on determinant.

Proposition . Let  < p < q ≤ ∞,  < α�
p
ω

≤ β�
p
ω

< ∞ and h ∈ Hq
ω(A), then

(i) [hA]p,ω = Hp,ω(A) if and only if [hA]q,ω = Hq,ω(A).
(ii) [Ah]p,ω = Hp,ω(A) if and only if [Ah]q,ω = Hq,ω(A).

(iii) [AhA]p,ω = Hp,ω(A) if and only if [AhA]q,ω = Hq,ω(A).

Proof We shall prove only the third equivalence. The other cases are similar. Since
p < q, then Hq,ω(A) is dense in Hp,ω(A). It follows from [AhA]�q

ω(M) = Hq,ω(A) that
[AhA]�p

ω(M) = Hp,ω(A). Conversely, since α�
p
ω

> , there is r >  such that �
p
ω(M) ⊆

Lr(M), and so [AhA]r = Hr(A). Using Proposition . of [], we have [AhA]∞ = H∞(A),
which means that [AhA]q,ω = Hq,ω(A). �

Definition . Let  < p < ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. An operator h ∈ Hp,ω(A) is called
left outer, right outer or bilaterally outer according to [hA]p,ω = Hp,ω(A), [Ah]p,ω = Hp,ω(A)
or [AhA]p,ω = Hp,ω(A).

Remark .
(i) Proposition . justifies the relative independence of the index p in Definition ..

(ii) Since �∞
ω (M) = M, Proposition . of [] and Proposition . imply that

Definition . coincides with the definition in the sense of [].

Proposition . Let  < α�
p
ω

≤ β�
p
ω

< ∞ and h ∈ Hp,ω(A).
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(i) If h is left or right outer, then �(h) = �(E(h)). Conversely, if �(h) = �(E(h)) and
�(h) > , then h is left and right outer (so bilaterally outer too).

(ii) If A is antisymmetric and h is bilaterally outer, then �(h) = �(E(h)).

Proof Since α�
p
ω

> , then there is r >  such that Hp,ω(A) ⊆ Hr(A). Applying Theorem .
of [] to h ∈ Hp,ω(A) ⊆ Hr(A), we obtain that (i) and (ii) hold. �

In the classical function algebra setting, one assumes that D = A ∩ JA is one-dimen-
sional, which forces E = τ (·). If in our setting this is the case, then we say that A is an-
tisymmetric. It is worth remarking that the antisymmetric maximal subdiagonal subalge-
bras of commutative von Neumann algebras are precisely the weak* Dirichlet algebras. It
is clear that A is antisymmetric if and only if dimD =  (equivalently, D = C).

The following corollary is a consequence of Proposition ..

Corollary . Let h ∈ Hp,ω(A),  < α�
p
ω

≤ β�
p
ω

< ∞.
(i) If �(h) > , then h is left outer if and only if h is right outer.

(ii) Assume that A is antisymmetric, then the following properties are equivalent:
(a) h is left outer;
(b) h is right outer;
(c) h is bilaterally outer;
(d) �(E(h)) = �(h) > .

We will say that h is outer if it is at the same time left and right outer. If h ∈ Hp
ω(A)

with �(h) > , then h is outer if and only if �(h) = �(E(h)). Also in the case that A is
antisymmetric, h with �(h) >  is outer if and only if it is left, right or bilaterally outer.

The following corollary is an immediate consequence of Corollary . of [] and the
proof of Proposition ..

Corollary . Let  < p, q ≤ ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. If h ∈ Hp,ω(A) with h– ∈
Hq,ω(A), then h is outer.

Theorem . Let  < p < ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. If x ∈ �
p
ω(M) with �(x) > , then

there exist a unitary u ∈M and an outer h ∈ Hp,ω(A) such that x = uh.

Proof First, let α�
p
ω

>  and p > , there is α�
p
ω

> r >  such that M⊆ �
p
ω(M) ⊆ Lr(M) and

A ⊆ Hp,ω(A) ⊆ Hr(A). Applying Theorem . of [] to x ∈ �
p
ω(M) ⊆ Lr(M), there exist

a unitary u ∈M and an outer h ∈ Hr(A) such that x = uh. It follows from Proposition .
that h = u∗x ∈ �

p
ω(M) ∩ Hr(A) = Hp,ω(M). By adapting the proof of Theorem ., we

complete the proof. �

Corollary . Let  < α�
p
ω

≤ β�
p
ω

< ∞ and x ∈ �
p
ω(M) with  < p < ∞ such that �(x) > ,

then there exist a unitary u ∈A (inner) and an outer h ∈ Hp,ω(A) such that x = uh.

Proof Let α�
p
ω

>  and p > , there exists α�
p
ω

> r >  such that M⊆ �
p
ω(M) ⊆ Lr(M) and

A⊆ Hp,ω(A) ⊆ Hr(A). Applying Corollary . of [] to x ∈ �
p
ω(M) ⊆ Lr(M), there exist a

unitary u ∈A and an outer h ∈ Hr(A) such that x = uh. Thus, Proposition . implies that
h = u∗x ∈ �

p
ω(M) ∩ Hr(A) = Hp,ω(M). By adapting the end of the proof of Theorem .,

we get the desired factorization of x. For simplicity we consider only the case α�
p
ω

> 
 and
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p > 
 . Let x = v|x| be the polar decomposition of x. Using a similar discussion of above to

|x| 
 , there exist a unitary u ∈ A and an outer h ∈ Hp,ω(A) such that |x| 

 = uh since
�(|x| 

 ) > . Similarly, we have v|x| 
 u = uh, where u ∈ A and an outer h ∈ Hp,ω(A).

Therefore, u = u and h = hh yield the desired factorization of x. �

Corollary . Let  < p < ∞,  < α�
p
ω

≤ β�
p
ω

< ∞ and h ∈ Hp,ω(A) with �(h) > , then h
is outer if and only if for any x ∈ Hp,ω(A) with |x| = |h|, we have �(E(x)) ≤ �(E(h)).

Proof Let h be outer and x ∈ Hp,ω(A) with |x| = |h|. Taking  < r < α�
p
ω

, we obtain that
x ∈ Hr(A). From Corollary . of [], we get �(E(x)) ≤ �(E(h)). Conversely, since  < α�

p
ω

,
there is  < r < α�

p
ω

such that Hp,ω(A) ⊆ Hr(A). From Corollary . of [] and Re-
mark .(i), we obtain that h is outer. �

5 Jordan morphism
Let x be an operator, we write Re x = x+x∗

 and Im x = x–x∗
i . If u ∈ ReA, then u = Re x for

some x ∈ A. Let a = x – 
E(x – x∗), it is clear that a ∈ A, u = Re a and E(Im a) = . There-

fore, there exists ũ = Im a ∈ ReA such that a = u + ĩu ∈ A and E (̃u) = E(Im a) = . By
a similar discussion of [], we have ũ ∈ ReA is unique. Thus, we can define ũ = Im a,
where a ∈M is the unique element of M with u = Re a and E(Im a) = . It is obvious that
∼: u �→ ũ is real linear. We called ũ the conjugate of u. We define the Herglotz transform
H : �p

ω(M) → �
p
ω(M) by H(u) = u + ĩu. It is clear that H is real linear.

Theorem . Let �
p
ω be a fully symmetric quasi-Banach function space and  < α�

p
ω

≤
β�

p
ω

< ∞. The real linear maps

∼: ReA→ ReA, H : ReA→A

extend to real linear maps

∼: �p
ω(M)sa → �p

ω(M)sa, H : �p
ω(M)sa → Hp,ω(A).

If x ∈ �
p
ω(M)sa, then H(x) = x + ĩx ∈ Hp,ω(A) and E (̃x) = . Both ∼ and H are bounded.

Proof Let r, r >  with  < r < α�
p
ω

≤ β�
p
ω

< r < ∞. By Theorem . of [], we have that
∼ and H extend to bounded real linear maps

∼: Lri (M)sa → Lri (M)sa, H : Lri (M)sa → Hri (A)

and E (̃x) = , H(x) = x + ĩx ∈ Hri (A), i = , . Now consider the standard complexification
∼ : Lri (M) → Lri (M), i = , , that is, x̃ = R̃e x + iĨm x. From the method in [], we know
that x, y ≺ x + iy, x, y ∈ Lri (M)sa, i = , . Thus,

∥∥∼(x + iy)
∥∥

ri
= ‖̃x + ĩy‖ri � ‖x + iy‖ri ,

and so ∼ is bounded on Lri (M), i = , . Since  < α�
p
ω

≤ β�
p
ω

< ∞, it follows from The-
orem . of [] that �

p
ω(M) is an interpolation space for the couple (Lr (M), Lr (M)),

which implies that ∼ is bounded on �
p
ω(M). Thus, both ∼ and H are bounded. By the

discussion of above we know that H(x) ∈ Hr (M), ∀x ∈ Lr (M)sa. Since �
p
ω(M) ⊆ Lr (M)
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and H is bounded, we have H(x) ∈ Hr (M), E (̃x) =  and H(x) ∈ �
p
ω(M) hold for all

x ∈ �
p
ω(M)sa. Combining this with Proposition ., we obtain H(x) ∈ Hp,ω(A). �

Using the same method as that in Theorem . of [], we obtain the following result.

Theorem . Let �
p
ω be a fully symmetric quasi-Banach function space and  < α�

p
ω

≤
β�

p
ω

< ∞, then

�p
ω(M) = Hp,ω

 (A) ⊕ �p
ω(D) ⊕ JHp,ω

 (A).

The relevant projections are x �→ 
 [x + ĩx – E(x)]; x �→ E(x); x �→ 

 [x – ĩx – E(x)], where
∼ : �p

ω(M) → �
p
ω(M) is the standard complexification of ∼, that is, x̃ = R̃e x + iĨm x.

Let B, B be two Banach algebras, a linear map ϕ : B → B is a homomorphism if
ϕ(ab) = ϕ(a)ϕ(b), a, b ∈ B. We say that a linear map ϕ : B → B is an anti-morphism
if ϕ(ab) = ϕ(b)ϕ(a), a, b ∈ B. Given a unital Banach algebra B with identity , under the
term irreducible representation of B, we understand a continuous homomorphism π :
B → B(X), where B(X) is the set of all bounded linear operators on some Banach space X
such that π (B) is an irreducible subalgebra of B(X) in the sense of admitting only trivial
invariant subspaces. A Jordan morphism between two von Neumann algebras M and
M is a linear mapping ϕ : M → M which preserves the Jordan product, i.e., ϕ(ab +
ba) = ϕ(a)ϕ(b) + ϕ(b)ϕ(a) for all a, b ∈M. For further information, we refer the reader to
[].

Lemma . Let  ≤ p < ∞ and let ϕ : A → A be a Jordan morphism such that π ◦ ϕ

is either a morphism or an anti-morphism for each irreducible representation π of M.
If ϕ extends to a bounded map ϕ : Hp,ω(A) → Hp,ω(A) with norm ‖ϕ‖p,ω , then for any
integer  < k ≤ p, ϕ extends to a map ϕ : H

p
k ,ω(A) → H

p
k ,ω(A) with norm not exceeding

Ck–(‖ϕ‖p,ω)k , where C is a constant.

Proof Let ε >  and x ∈ A be given. Using Remark ., we obtain h, . . . , hk ∈ A so that
x = hh · · ·hk with

k∏

n=

‖hn‖p,ω ≤ (
C( + ε)

)k–‖x‖ p
k ,ω.

By Lemma . of [], we have

∣∣∣∣∣
ϕ

( k∏

n=

hn

)∣∣∣∣∣
≤

∣∣∣∣∣

k∏

n=

ϕ(hn)

∣∣∣∣∣
+

k∏

n=

∣∣ϕ(hk+–n)
∣∣.

Thus, by the fact that �
p
ω is a fully symmetric quasi-Banach function space, we deduce

∥∥ϕ(x)
∥∥ p

k ,ω =

∥∥∥∥∥
ϕ

( k∏

n=

hn

)∥∥∥∥∥ p
k ,ω

≤
∥∥∥∥∥

∣∣∣∣∣

k∏

n=

ϕ(hn)

∣∣∣∣∣
+

k∏

n=

∣∣ϕ(hk+–n)
∣
∣
∥
∥∥∥∥ p

k ,ω

≤ C

(∥∥∥∥∥

k∏

n=

ϕ(hn)

∥
∥∥∥∥ p

k ,ω

+

∥
∥∥∥∥

k∏

n=

∣
∣ϕ(hk+–n)

∣
∣
∥
∥∥∥∥ p

k ,ω

)
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≤ Ck
k∏

n=

∥∥ϕ(hn)
∥∥

p,ω ≤ Ck(‖ϕ‖p,ω
)k

k∏

n=

‖hn‖p,ω

≤ Ck(‖ϕ‖p,ω
)k(C( + ε)

)k–‖x‖ p
k ,ω.

This implies that the required estimate holds. �

Lemma . Let ϕ : A→A be a continuous identity-preserving Jordan morphism extend-
ing continuously to a map ϕ : Hp,ω(A) → Hp,ω(A),  ≤ p < ∞ with norm ‖ϕ‖p,ω . For any
k ∈ N and any x ∈ A such that ϕ(x) is normal, we have ‖ϕ(x)‖pk,ω ≤ (‖ϕ‖p,ω)


k ‖x‖pk,ω . Let

 < p < ∞ and  < α�
p
ω

≤ β�
p
ω

< ∞. If, in addition, ϕ is contractive on A and �
p
ω is a fully

symmetric quasi-Banach function space, it extends to a unique bounded hermitian map ϕ̃

on �
p
ω(M) which is positive on A + JA⊆ �

p
ω(M). If ϕ̃ is positive on all of �

p
ω(M), we get

∥∥ϕ(x)
∥∥

pk ,ω ≤ C


(‖ϕ‖p,ω

) 
k ‖x‖pk ,ω, k ∈N, x ∈A, (.)

where C is a constant. If, moreover, ϕ̃ satisfies the condition

ϕ̃
(∣∣x∗∣∣k

+ |x|k ) ≥ ∣∣ϕ̃
(
x∗)∣∣k

+
∣∣ϕ̃(x)

∣∣k
, k ∈ N, x ∈M, (.)

we obtain the estimate

∥∥ϕ(x)
∥∥

pk ,ω ≤ C
(
‖ϕ‖p,ω

) 
k ‖x‖pk ,ω, x ∈A, k ∈N, (.)

where C is a constant.

Let B be a linear complement of D in A. It is well known that JA = D ⊕ JB and hence
that A + JA = B ⊕ D ⊕ JB. Let ϕ : A → M be a contractive identity-preserving Jordan
morphism, we may extend ϕ to a map ϕ̃ on A+ JA by setting ϕ = ϕ̃ on A and defining the
action on JB by ϕ̃(x) = ϕ(x∗)∗, x ∈ JB. Since ϕ is order-preserving on D, it follows that ϕ̃

preserves adjoints. Indeed, φ̃ is order-preserving, positive and contractive on A+ JA. For
further information, we refer the reader to [].

Proof Our proof follows Labuschagne’s argument of (Lemma ., []). Given some x ∈A
such that ϕ(x) is normal, then

∥∥ϕ(x)
∥∥

pk,ω =
(∥∥∣∣ϕ(x)

∣∣k∥∥
p,ω

) 
k =

(∥∥∣∣ϕ(x)k∣∣∥∥
p,ω

) 
k

=
(∥∥ϕ

(
xk)∥∥

p,ω

) 
k ≤ (‖ϕ‖p,ω

∥∥xk∥∥
p,ω

) 
k

≤ (‖ϕ‖p,ω
) 

k ‖x‖pk,ω, k ∈N.

Let  < p < ∞,  < α�
p
ω

≤ β�
p
ω

< ∞, and let ϕ be an identity-preserving contractive Jor-
dan morphism on A. From the preceding discussion (above the proof of this lemma), ϕ

uniquely extends to a positive map on A+ JA. Moreover, ϕ then acts positively on the von
Neumann algebra D. By Theorem ., we have Hp,ω(A) = Hp,ω

 (A) ⊕ �
p
ω(D). Since D is

dense in �
p
ω(D), then the continuous action of ϕ on Hp,ω(A) (and hence also on Lp(M))
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ensures that the unique extension of ϕ to Hp,ω(A) acts positively on �
p
ω(D). The extension

of ϕ to a hermitian map ϕ̃ on �
p
ω(M) can now be defined by

ϕ̃(x) = ϕ
(
x∗)∗, x ∈ JHp,ω

 (A) and ϕ̃(x) = ϕ(x), x ∈ Hp,ω(A). (.)

Since this construction canonically contains that construction in the discussion above this
lemma, ϕ̃ constructed as (.) will restrict to A + JA, which yields precisely the map in
the preceding discussion (above the proof of this lemma). From Theorem ., the ‖ · ‖p,ω

boundedness of ϕ̃ follows from the ‖ · ‖p,ω boundedness of ϕ and of the conjugate linear
map x → x∗. Let  ≤ q < ∞, we write |x|q = ( 

 (|x|q + |x∗|q))

q . It is well known that |x|q ≤

|x|qq, and so |x| ≤ 

q |x|q. If ϕ̃ acts positively on all of �

p
ω(M), it will surely map ‖ · ‖∞

boundedly M into M. By Lemma . of [], we get

ϕ̃(x)∗ϕ̃(x) + ϕ̃(x)ϕ̃(x)∗ ≤ ϕ̃
(
x∗x + xx∗), x ∈M.

Since ϕ̃(y) ≤ ϕ̃(y) for each y ∈M+, we have

∥∥ϕ̃(y)
∥∥

pk ,ω =
∥∥ϕ̃(y)∥∥



pk–,ω ≤ ∥∥ϕ̃

(
y)∥∥



pk–,ω ≤ ∥∥ϕ̃

(
yk )∥∥


k
p,ω, k ∈ N, y ∈M+. (.)

Now note that

∣∣ϕ̃(x)
∣∣
 =



(∣∣ϕ̃(x)

∣∣ +
∣∣ϕ̃

(
x∗)∣∣) ≤ ϕ̃

(|x| +
∣∣x∗∣∣) = ϕ̃

(|x|
)
, x ∈M,

which implies that

∥∥∣∣ϕ̃(x)
∣∣


∥∥
pk ,ω =

∥∥∣∣ϕ̃(x)
∣∣


∥∥


pk–,ω ≤ ∥∥ϕ̃

(|x|
)∥∥



pk–,ω.

Combining this with (.), we get

∥∥∣∣ϕ̃(x)
∣∣


∥∥
pk ,ω ≤ ((∥∥ϕ̃

((|x|
)k–)∥∥

p,ω

) 
k–

) 
 =

(∥∥ϕ̃
(|x|k


)∥∥

p,ω

) 
k , x ∈M, k ∈N.

Consequently, given x ∈ A, the positivity of ϕ̃ and the fact that |ϕ(x)| ≤  
 |ϕ(x)| imply

that

∥∥ϕ(x)
∥∥

pk ,ω =
∥∥∣∣ϕ(x)

∣∣∥∥
pk ,ω ≤ 



∥∥∣∣ϕ(x)

∣∣


∥∥
pk ,ω

≤ 


∥∥∣∣ϕ(x)

∣∣k



∥∥


k
p,ω ≤ 



∥∥ϕ

(|x|k


)∥∥


k
p,ω

≤ 

 ‖ϕ‖


k
p,ω

∥∥|x|
∥∥

pk ,ω ≤ C

 ‖ϕ‖


k
p,ω‖x‖pk ,ω.

The final inequality is a consequence of Lemma . of []. Observe that |x| ≤ 


k |x|k ,
a similar proof using |x|k instead of |x| will suffice in the case that ϕ̃ satisfies condition
(.). �

Lemma . Let  < p ≤ ∞ be given and let (qn) be a sequence of reals in [, p) increasing
to p. Then x ∈ �

p
ω(M) if and only if x ∈ ⋂∞

n= �
qn
ω ⊆ �

p
ω(M), and supn ‖x‖qn ,ω < ∞. In this

case ‖x‖p,ω = limn→∞ ‖x‖qn ,ω .
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Proof Let x ∈ �
p
ω(M) ⊆ �

qn
ω (M), then

‖x‖qn
qn ,ω =

∫ 


μt(x)qnω(t) dt ≤ ‖‖ p

p–qn ,ω‖μt(x)qn‖ p
qn ,ω

= ‖x‖qn
p,ωW ()qn( 

qn – 
p ).

Thus, lim supn→∞ ‖x‖qn ,ω ≤ ‖x‖p,ω . By the Levi lemma and the dominated convergence
theorem, we have

lim
n→∞‖x‖qn

qn ,ω = lim
n→∞

∫

{t∈[,]:μt (x)>}
μt(x)qn dt + lim

n→∞

∫

{t∈[,]:μt (x)≤}
μt(x)qn dt

=
∫

{t∈[,]:μt (x)>}
μt(x)p dt +

∫

{t∈[,]:μt (x)≤}
μt(x)p dt = ‖x‖p

p,ω. �

Lemma . Let  ≤ p < ∞ be given and let (qn) be a sequence of reals in (p,∞) decreasing
to p. Given x ∈ ⋃∞

n= �
qn
ω ⊆ �

p
ω(M), we have ‖x‖p,ω = limn→∞ ‖x‖qn ,ω .

Proof Let x ∈ �
qn
ω ⊆ �

qn+
ω ⊆ �

p
ω(M). Let E = {t ∈ [, ] : μt(x) ≥ } and E = {t ∈ [, ] :

μt(x) < }, then μt(x)p ≤ μt(x)qn , t ∈ E and μt(x)p ≥ μt(x)qn , t ∈ E. This implies that

lim
n→∞

∫

E

μt(x)qnω(t) dt =
∫

E

μt(x)pω(t) dt

and

lim
n→∞

∫

E

(
μt(x)qn – μt(x)p)ω(t) dt =

∫

E

ω(t) dt = ,

which yield the desired result. �

Using the same method as that in Theorem . of [], we obtain the following result.

Theorem . Let �
p
ω be a fully symmetric quasi-Banach function space, and let ϕ : A→A

be a contractive identity-preserving Jordan morphism such that:
(a) π ◦ ϕ is either a homomorphism or an anti-morphism for each irreducible

representation of M⊇A; and
(b) for some  < p < ∞, ϕ extends to a bounded map ϕ : Hp,ω(A) → Hp,ω(A).

If the canonical hermitian extension ϕ̃ to all of �
p
ω(M) (see Lemma .) is even positive,

then, for any other  ≤ q < ∞, if  < α�
q
ω

≤ β�
q
ω

< ∞, ϕ will induce a unique closed operator
ϕ : D(ϕ) ⊆ Hq,ω(A) → Hq,ω(A) with the following properties:

(i) D(ϕ) ⊇ ⋃
r>q Hr,ω(A);

(ii) for any r > q, ϕ restricts to a bounded map ϕ : Hr,ω(A) → Hq,ω(A).
(iii) for any q > s ≥ , ϕ extends uniquely to a bounded map ϕ : Hq,ω(A) → Hs,ω(A).

If ϕ̃ : �p
ω(M) → �

p
ω(M) satisfies the slightly stronger condition (.) in Lemma ., then

ϕ : Hq,ω(A) → Hq,ω(A) itself is a bounded everywhere defined operator.
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